
Frontiers in Endocrinology

OPEN ACCESS

EDITED BY

Gaetano Santulli,
Albert Einstein College of Medicine,
United States

REVIEWED BY

Milan M. Obradovic,
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Central role of cardiac
fibroblasts in myocardial fibrosis
of diabetic cardiomyopathy

Yanan Cheng †, Yan Wang †, Ruili Yin, Yongsong Xu, Lijie Zhang,
Yuanyuan Zhang, Longyan Yang* and Dong Zhao*

Beijing Key Laboratory of Diabetes Prevention and Research, Center for Endocrine Metabolic and
Immune Diseases, Beijing Luhe Hospital, Capital Medical University, Beijing, China
Diabetic cardiomyopathy (DCM), a main cardiovascular complication of diabetes,

can eventually develop into heart failure and affect the prognosis of patients.

Myocardial fibrosis is the main factor causing ventricular wall stiffness and heart

failure in DCM. Early control of myocardial fibrosis in DCM is of great significance

to prevent or postpone the progression of DCM to heart failure. A growing body

of evidence suggests that cardiomyocytes, immunocytes, and endothelial cells

involve fibrogenic actions, however, cardiac fibroblasts, the main participants in

collagen production, are situated in the most central position in cardiac fibrosis.

In this review, we systematically elaborate the source and physiological role of

myocardial fibroblasts in the context of DCM, and we also discuss the potential

action and mechanism of cardiac fibroblasts in promoting fibrosis, so as to

provide guidance for formulating strategies for prevention and treatment of

cardiac fibrosis in DCM.

KEYWORDS

diabetic cardiomyopathy, cardiac fibrosis, cardiac myofibroblasts, cardiac fibroblasts,
imbalance of extracellular matrix synthesis and degradation, disorder of matrix
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1 Introduction

Diabetes mellitus, a metabolic disease, is widely considered as a public health problem.

At present, there are about 463 million people suffering from diabetes worldwide (1).

Cardiovascular (CV) complications are the main causes of death in diabetic patients (2).

Diabetic cardiomyopathy (DCM) is an important cardiovascular complication of diabetes

mellitus, which refers to the changes of cardiac function and structure caused by diabetes,

independent of any other recognized cardiac risk factors such as coronary atherosclerotic

heart disease and hypertension (3, 4). The epidemiological relationship between diabetes

and heart failure was confirmed 50 years ago (5). Clinical heart failure trials showed that the

hospitalization rate of diabetic patients with heart failure was twice that of non-diabetic

patients (6, 7). Myocardial fibrosis in DCM is a crucial factor of ventricular wall stiffness

and heart failure. Therefore, early control of the progress of diabetic myocardial fibrosis is

of great significance to prevent or delay the progression of DCM to heart failure.
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Myocardial fibrosis, known as interstitial expansion of the

myocardium caused by net accumulation of extracellular matrix

(ECM) (8, 9), mainly includes three distinct forms according to the

basic histopathological analysis (10). In myocardial infarction,

myocardial cells that are necrotic due to ischemia are replaced by

collagen-based scars, resulting in “replacement fibrosis”. With the

net accumulation of ECM proteins, the endomysial and perimysial

spaces were expanded, causing “interstitial fibrosis”. Also,

“perivascular fibrosis”, which describes the expansion of the

microvascular adventitia, is part of cardiac fibrosis (10). On the

one hand, “replacement fibrosis” does not seem to occur as there is

no acute loss of cardiomyocytes in DCM. However, abnormal

metabolism could lead to unusual apoptosis of cardiomyocytes

(11), and chronic myocardial cell injury provides a condition of

“replacement fibrosis” for DCM exacerbation. This “replacement

fibrosis” may be a form of self-protection of heart against chronic

pathological injury in the early stage of DCM. Another

manifestation of self-protection is that myofibroblasts have

similar activity to macrophages, which have the function of

phagocytizing apoptotic cells and secreting cytokines that

suppress inflammatory responses (12, 13). On the other hand,

DCM is in a persistent state of metabolic derangement (14) that

leads to long-term existence of fibrotic irritants in the internal

environment, increasement of proliferation and activation of

fibroblasts (15), as well as transdifferentiation of other cell types

into CFs (16), thereby causing interstitial and perivascular fibrosis

that disrupts diastolic function and results in abnormal cardiac

electrophysiological activity (17). In the late stage of DCM,

myocardial cell injury and apoptosis are aggravated and

replacement fibrosis is more obvious, which eventually leads to

the cardiac contraction dysfunction.

Despite its severity and poor prognosis, DCM still lacks formal

treatment guidelines or approved specific pharmacological drugs to

treat it (18). Both in human patients and in animal models of

diabetes, cardiac fibrosis is prominent characteristic of diabetic

cardiomyopathy (19, 20). As the main ECM-producing cells in

the heart, CFs are critically involved in all cardiac fibrotic conditions

(21, 22). For these reasons, an in-depth understanding of the

character of CFs in myocardial fibrosis in DCM may point the

direction for formulating strategies to prevent and treat

myocardial fibrosis.
2 Diabetic cardiomyopathy

DCM is a chronic disease characterized by metabolic disorder,

often accompanied by fibrosis, myocardial cell apoptosis, local

inflammation, oxidative stress, endoplasmic reticulum stress and

mitochondrial dysfunction (23–25). It typically manifests initially

with diastolic dysfunction, but with timemay also evolve with systolic

dysfunction, and eventually leads to heart failure (26). In 1972, the

first clinical description of DCM was published, which showed the

postmortem of four patients with diabetes who had died of heart

failure in the absence of coronary artery disease, hypertension, or

valvular heart disease (27). Myocardial hypertrophy and fibrosis were

noted in the hearts of those patients, suggesting that the fibrosis is
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responsible for this result. These observations were supported by

Regan in 1977 (28). Autopsies of 11 uncomplicated diabetic patients

revealed that collagen accumulation occurred in the heart which was

present as perivascular, intermuscular, or replacement fibrosis.

Therefore, it is indicated that heart failure of DCM is related to

cardiac fibrosis, and even to some extent, cardiac fibrosis is a basis of

heart failure caused by DCM.
3 The cellular effects of cardiac
fibrosis in DCM

Diabetes-associated cardiac fibrogenesis, including cardiac

fibrosis in DCM, is a multistep and multicell process originated in

cellular reaction to oxidative stress, endoplasmic reticulum stress

and inflammation (26). The heart tissue is composed of

cardiomyocytes and non-cardiomyocytes. After acute myocardial

injury, acute death of cardiomyocytes is usually an initial event in

the activation of myocardial fibrotic signaling. However, deleterious

stimuli in DCM may activate pathways of fibrosis in the absence of

acute cell death. Several cell types have been implicated in cardiac

fibrosis and remodeling in DCM, as summarized in Figure 1.
3.1 Myofibroblasts

Myofibroblasts have been demonstrated to accumulate in

myocardial interstitium under different cardiac pathological

conditions (29, 30). Although the mechanism of myocardial

fibrosis differ in various heart diseases, the transition from CFs to

myofibroblasts is a key cellular event in cardiac fibrosis (31, 32).

Myofibroblast, a kind of contractile and secretory cell type,

participate in cardiac fibrotic remodeling by producing proteins

of ECM (21), and by secreting matrix metalloproteinases (MMPs)

as well as their inhibitors, tissue inhibitors of metalloproteinases

(TIMPs). The balance between synthesis and degradation of ECM is

very important in cardiac fibrosis. And the main enzyme regulating

ECM degradation is MMPS, whose activity is primarily regulated by

TIMPs (32–34). CFs derived from type 2 diabetes(T2DM) patients

exhibited high collagen synthesis (35). And CFs isolated from

diabetic heart also showed increased proliferative activity and

elevated collagen and protease inhibitors expression (36, 37). In

vitro, high glucose (HG) treatment could promote the proliferation

of CFs and the collagen formation (38–40). Moreover,

hyperglycemia increased the expression of transforming growth

factor b (TGF-b) in CFs (41). Smads, the main downstream

medium of TGF-b signaling, play important roles in the fibrosis

of liver, lung, kidney and heart (42–44). Activation of TGF-b/Smads

signal transduction in DCM could induce the production of MMPs

and collagens, which leads to cardiac fibrosis (45, 46).
3.2 Cardiomyocytes

Cardiomyocytes play a critical role in myocardial fibrosis in

DCM. Long-term disturbance of glucose metabolism can lead to
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cardiomyocyte death. First, insulin resistance leads to the increase

of serine phosphorylation of insulin receptor substrate 1 (p-IRS-

1), a key insulin signal factor in myocardial cells, which in turn

damages the signal transduction pathway of phosphatidylinositol

3-kinase (PI3K)- protein kinase B (also known as AKT), then

blocks the shift of glucose transporter 4 (GLUT4) to the cell

membrane and reduces the intake of glucose in the heart (47).

Moreover, fatty acid uptake regulated by fatty acid translocase

(FAT) and cluster of differentiation 36 (CD36) is increased in

diabetes, which causes the metabolic transformation of

cardiomyocyte from glucose metabolism to fatty acid b
oxidation, increased cell metabolic pressure, and ultimately

cardiomyocyte death (47). In addition, up-regulation of

endoplasmic reticulum stress (ERS) and reactive oxygen species

(ROS) in DCM is a major cause of cardiomyocyte apoptosis

(48, 49), which may eventually impair cardiac function and

induce myocardial fibrosis (50). Necrotic cardiomyocytes

activate immune pathways and initiate inflammatory responses.

Inflammatory signals promote the infiltration of leukocytes to

clear dead cardiomyocytes, while DAMPs released by the

inflammatory response activate CFs, leading to the proliferation

and transdifferentiation of CFs, and the deposition of a large

amount of ECM to maintain the integrity of cardiac structure, but

will be accompanied by the occurrence of myocardial fibrosis (51).
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3.3 Immunocytes

Increasing evidence implicates immunocytes are involved in the

regulation of cardiac fibrosis in DCM. First, the role of monocytes/

macrophages (Mo/Mf) in the process of cardiac fibrosis has two

sides. On the one hand, monocytes/macrophages differentiate into

myofibroblasts under the action of various cytokines, producing a

variety of inflammatory mediators and profibrotic factors (52). It

was found that lipid metabolism disorders may lead to increased

expression of full-length platelet-derived growth factor-D (PDGF-

D) secreted into body fluids by adipose tissue. Urokinase

plasminogen activator (uPA) produced by activated macrophages

in cardiac tissue splices circulating PDGF-D into an active form that

activates PI3K-AKT signaling in CFs, thereby promoting fibrosis

(53, 54). The recruitment and polarization of macrophages are

important processes in cardiac fibrosis (55). Traditionally, two

different polarization states of macrophages are identified (29):

classically activated macrophages (M1) are proinflammatory

macrophages that produce proinflammatory cytokines and

reactive oxygen species(ROS), and then cause the induction of

inflammation and cardiac fibrosis (55, 56), whereas alternatively

activated macrophages (M2) are considered as anti-inflammatory

macrophages, and replacing them with M1macrophages can inhibit

cardiac fibrosis (57). On the other hand, because of their ability to
FIGURE 1

Cell types involved in myocardial fibrosis and remodeling in DCM. Transdifferentiation from cardiac fibroblast to myofibroblast is the core cellular
event in cardiac fibrosis in DCM. 1) Myofibroblasts produce high level of collagen and other extracellular matrix proteins (ECM), and secrete matrix
metalloproteinases (MMPs) as well as their inhibitors, tissue inhibitors of metalloproteinases (TIMPs), taking part in the progression to fibrotic
remodeling. 2) Insulin resistance leads to the metabolic transformation of cardiomyocytes from glucose metabolism to fatty acid b oxidation,
increased cell metabolic pressure, reactive oxygen species (ROS) and endoplasmic reticulum stress (ERS) and finally led to the death of
cardiomyocytes. DAMPs released in inflammatory reaction by dead myocardial cells activate cardiac fibroblasts. 3) Immunocytes, including mast cell,
Th1 cell and Mo/Mf could directly differentiate into myofibroblasts or indirectly promote cardiac fibroblast transdifferentiate into myofibroblast. 4)
Endothelial cells were transformed into mesenchymal cells (EndMT), and further into myofibroblasts. In addition, fibrogenic mediators produced by
endothelial cells participate in the proliferation and differentiation of myocardial fibroblasts. By Figdraw. ISR-1, insulin receptor substrate 1; P,
phosphorylation; PI3K, phosphatidylinositol 3-kinase; GLUT4, glucose transporter 4; CD36, cluster of differentiation 36; FAT, fatty acid translocatase;
DAMPS, danger-associated molecular patterns; Mo/Mf, monocytes/macrophages; PDGF-D, platelet-derived growth factor-D; uPA, urokinase
plasminogen activator; KLK8, kallikrein-related peptidase 8; ET-1, endothelin 1; AGES, advanced glycation end products; RAGE, AGES receptor; TGF-
b, transforming growth factor-beta.
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devour cell debris and apoptotic cells, Mo/Mf may have anti-fibrosis

effects (29, 52). Both lymphocytes and mast cells could participate

in cardiac fibrosis by activating CFs. Th1 lymphocytes stimulate

TGF-b to activate CFs via integrin-a4 (58, 59). Mast cells are

capable of directly activating fibroblasts and stimulating fiber

formation by histamine, tryptase, TGF-b and chymotrypsin (60).
3.4 Endothelial cells

Endothelial cells participation in cardiac fibrosis is suggested by

the prevalence of perivascular fibrosis under the pathological

conditions of infarction and pressure overload (61). Endothelial

cells are the initial target of hyperglycemia damage. Sustained

endothelial injury during diabetes mellitus causes endothelial-to-

mesenchymal transition (EndMT), and promotes the further

transformation of this endothelial cell phenotype into

myofibroblasts, thus providing an additional activated fibroblasts

bank and promoting cardiac fibrosis (62–64). It was found that

diabetes-related EndMT and myocardial fibrosis were partly

stimulated by the up-regulation of kallikrein-related peptidase 8

(KLK8). KLK8 activates platelet hemoglobin-dependent pro-

EndMT signaling pathway, contributes to the evolution of EndMT

and cardiac fibrosis, and accelerates the progress of cardiac

dysfunction in diabetes (65). Consistently, inhibition of EndMT

could reduce diabetic myocardial fibrosis (66–70), and EndMT

seems to be regulated by autophagy. Endothelial autophagy

deficiency induces interleukin 6 (IL-6)-dependent EndMT and

cardiac fibrosis in mice with metabolic defects (71). The deletion of

advanced glycation end product receptor (RAGE) has been shown to

inhibit excessive autophagy and ameliorated cardiac fibrosis (72).

AGES/RAGE- autophagy EndMT axis participates in the

development of cardiac fibrosis, and knocking out RAGE can

improve cardiac fibrosis by reducing autophagy-regulated EndMT

(73). In addition, fibrogenic factors generated by endothelial cells,

such as Endothelin 1 (ET-1) and TGF-b, play an important role in the

pathogenesis of diabetic cardiac fibrosis (74–76). ET-1 can promote

the proliferation of myocardial fibroblasts, enhance the synthesis of
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type I and type III collagen, resulting in the differentiation of

myofibroblasts (77, 78). At the same time, ET-1 is also involved in

the fibrogenic reaction of TGF-b (41, 79, 80).

Many cell types play important roles in the heart during the

formation and expansion of myocardial fibrosis in DCM, and

importantly, there is evidence that CFs from DCM mice and rats

exhibit increased proliferation and an imbalance in ECM synthesis

and degradation (Table 1), and this process is a central event in

cardiac fibrosis in DCM.
4 The origin and pathophysiological
function of cardiac fibroblasts

4.1 The origin and physiological function of
cardiac fibroblasts

In the heart of adult mammals, cardiomyocytes account for

about 75% of the volume of myocardium, and they are surrounded

by the ECM network mainly composed of fibrous collagen

(Figure 2). The main function of the cardiac ECM is to serve as

the mechanical support of the heart and transmit the contraction

force to ensure the normal blood pumping function of the heart (32,

91, 92). CFs are the main matrix-generating cells, forming one of

the largest cell groups in the normal mammalian heart, and are

usually entangled in the intima (93, 94). Methods based on

histology and flow cytometry have proved that fibroblasts

accounted for about 13% of mouse heart cells (95, 96). Pedigree

tracing technique was used to study the origin of mouse CFs. It was

found that epicardial progenitor cells differentiated into CFs and

vascular smooth muscle cells during development, and

endocardium differentiated into CFs through EndMT (97–104). It

was estimated that approximately 85% of CFs originate from

epicardial cells, while the other 15% come from endothelial cells

(101). RNA analysis revealed that cells derived from epicardium

and endocardium had similar expression profile (101, 104, 105),

and similar multiplying activity (106). Hence, it can be inferred that

there is no obvious correlation between the source and function of
TABLE 1 Association between diabetic cardiomyopathy (DCM) and cardiac fibroblasts (CFs).

Model of DCM Performance of CFs References

T1DM mice (induced by streptozotocin) Fatty acid oxidation damage, ECM synthesis and degradation imbalance. (81)

Increased in numbers (82)

Activation (83)

Increased EndM (69)

T1DM rats (induced by streptozotocin) Induced apoptosis, inflammation and oxidative stress by activation autophagy. (84)

Increased autophagy (85)

Increased proliferation and collagen secretion. (86, 87)

T2DM rats (induced by streptozotocin and high fat diet) Increased oxidative stress and reactive oxygen species production. (88)

Increased EndMT and fibroblast activation (89)

Increased proliferation and collagen secretion (90)
EndMT, endothelial-to-mesenchymal transition; T1DM, type 1 diabetes mellitus; T2DM, type 2 diabetes mellitus.
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fibroblasts. However, it may be due to the diversity of origin and

transformation that the specificity and credible marker proteins of

myofibroblasts have not been reported yet (13, 31, 74, 107).

Resident CFs may serve to protect and support the constructional

entirety of the ECM network and regulate collagen renewal, which is

a continuous process of synthesis and decomposition of ECM

proteins (108, 109). The Smad3 and platelet-derived growth factor

receptor (PDGFR)-a signaling in fibroblasts are found to be vital for

sustaining cell survival and cell function (110, 111). Regardless of

ECM remodeling, fibroblasts play diverse functions in heart

homeostasis and diseases, including providing support for multiple

types of cardiac cells. In addition, CFs release paracrine factors, which

may inhibit harmful inflammatory reactions and promote the

survival of myocardial cells (112–116). In the early stage of

diabetes, when DCM is not yet present, although the high glucose

environment shocks cardiac cells, including CFs, which are in a stage

of functional compensation and still able to balance ECM

synthesis and degradation and yet provide a normal working

microenvironment for cardiomyocytes, the heart does not exhibit

obvious functional and pathological changes.
4.2 The role of cardiac fibroblasts in
pathological conditions

In diseased heart, the cellular composition has changed

dramatically. One interesting question is whether the epicardium

and endocardium cells of the adult heart still have the potential to

transdifferentiate into CFs. Early studies detected the presence of

epithelial-mesenchymal transition (EMT) in the adult heart

(117–120). In response to heart injury, CFs are activated into

myofibroblasts, and endothelial cells are derived into CFs

(105, 121), and macrophages can also be transdifferentiated into

fibroblast-like cells (122). CFs are also derived from bone marrow

hematopoietic cells (123), although the contribution of these cells to

the cardiac fibroblast cluster is minimal (101, 104, 105). Cells

derived from different states possess diverse expression types.

Active fibroblasts have high proliferation and migration activities,
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and their functions include recruiting inflammatory cells,

stimulating the synthesis of type I and III collagen, and

determining the proliferation of fibroblasts, as well as ECM

degradation mediated by MMPs, which leads to a disrupted

balance between ECM synthesis and degradation and results in

cardiac fibrosis (Figure 2) (52, 107). Some researchers have

proposed four different states of fibroblasts based on the infarcted

model (13, 94, 121, 122): resting fibroblasts, active fibroblasts,

myofibroblasts, and matrifibrocytes. During DCM, fibroblasts

stimulated by local inflammatory cytokines in the heart get the

activity of proliferation and ECM production, and enter a state of

ECM expansion. Activated fibroblasts can change their phenotype

into matrifibrocytes. Myofibroblasts produce ECM, while

matrifibrocytes express genes related to bone and cartilage

remodeling (their physiological significance in the heart is

unclear). Because of their location at the scar site, matrifibrocytes

may be unique to acute ischemic heart injury, and active CFs may

not change to this cell type in chronic heart injury such as DCM.

Based on this, during the progression of DCM, the transformation

of endothelial cells, epithelial cells, macrophages into cardiac

fibroblasts occurs more frequently in the heart due to the

stimulation of adverse factors such as local inflammatory factors,

AGES, and high glucose (23–25, 124), which, together with

increased activation and proliferation of cardiac fibroblasts and

impaired autophagy pathways (124–126), further creates the

imbalance between ECM synthesis and degradation in cardiac

tissue and causes and aggravates cardiac fibrosis in DCM.
5 Role of cardiac fibroblasts in the
development of DCM

5.1 Abnormal glucose metabolism affects
cardiac fibroblasts

The transport of glucose in cardiac tissue is mediated by

GLUT4. Insulin binding to its receptors activates insulin receptor

substrate (IRS)-1/2 and downstream AKT, which stimulates the
FIGURE 2

The origin and physiological function of cardiac fibroblasts. Cardiomyocytes account for about 75% of the volume of myocardium, and fibroblasts
accounted for about 13%. Cardiac fibroblasts including resident cardiac fibroblast and transformed cardiac fibroblast. Approximately 85% of cardiac
fibroblasts come from epicardial cells, while the other 15% are derived from endothelial cells. Both of them could serve to maintain the structural
integrity of the ECM network and regulate collagen renewal. By Figdraw. ECM, extracellular matrix.
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transfer of GLUT4 to cell membrane and subsequent glucose

absorption (47). In patients with diabetes mellitus, the decrease of

PI3K/AKT signal transduction and the high expression and

translocation of GLUT4 have been detected in ventricular tissue

(127). Knockout of insulin receptor reduces cardiac glucose intake,

which in turn increases the generation of cardiac reactive oxygen

species (ROS), triggers mitochondrial dysfunction, and increases

fibrosis and heart failure (128, 129). A large number of

investigations have shown that HG can induce activation,

proliferation, collagen synthesis and enhanced expression of a-
SMA in neonatal CFs (130–133). Sustained hyperglycemia leads to

the high activation of CFs, and persuades CFs to differentiate into

myofibroblasts, leading to ECM accumulation and myocardial

fibrosis in cardiac tissue (36, 37, 134). In vitro, HG treatment

increased the expression of calcium-sensitive receptor (CaSR), a-
SMA, collagen I/III and MMP2/9, and enhanced the generation of

autophagy and the proliferation of CFs (126). CaSR is a mediator

of intracellular calcium level. It is supposed that the increase of

intracellular calcium concentration could attract Smad specific E3

ubiquitin protein ligase 2 (Smurf2) expression, thus degrading SKI

like proto-oncogene (SnoN) and Smad family member 7 (Smad7)

proteins through ubiquitin proteasome signaling pathway

(135, 136). HG and CaSR agonist significantly enhance the

expression of TGF-b and p-Smad2/3, and degrade Smad7,

resulting in the increase of collagen secretion in CFs (126).

Therefore, continuous hyperglycemia stimulation can up-regulate

CaSR expression in CFs, increase intracellular Ca2+ level, stimulate

Smurf2 autophagy and ubiquitin proteasome, and promote

collagen secretion (126, 137). In addition, HG can increase the

expression of DNA methyltransferase1 (DNMT1) in CFs, cause

hypermethylation of suppression of cytokine signaling 3 (SOCS3),

downregulate the expression of SOCS3, and activate signal

transducer and activator of transcription 3 (Stat3), thus

promoting the activation of CFs and collagen deposition (138). At

the same time, HG can also regulate the expression of Methyl CpG

binding protein 2 (MeCP2), resulting in the methylation of target

gene promoter inhibiting the expression of ras association domain

family 1 isoform A (RASSF1A) and extracellular signal-regulated

kinase 1/2 (ERK1/2) pathway, thus triggering cardiac fibroblasts

proliferation and DCM (86). However, it was found that

hyperglycemia alone could not stimulate the activation of adult

CFs, pointing out that the direct influence of hyperglycemia on

fibroblasts is not the main driving factor of fibrosis and remodeling

in cardiac diabetic maladjustment (139). In fact, the phenotypic

changes of neonatal CFs stimulated by HG in vitro are consistent

with those in vivo, which indicates that it is still important to study

neonatal CFs in vitro for DCM.
5.2 Abnormal lipid metabolism affects
cardiac fibroblasts

In the utilization of metabolic substrates, CFs are very flexible,

and relatively more dependent on fatty acid oxidation than glucose

oxidation, which is similar to the integral heart (140). Obesity and
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insulin resistance models showed that CFs obtained enhanced

myofibroblast/fibrotic gene expression and decreased reactiveness

to TGF-b (141). In accordance with this, CFs isolated from db/db

mice showed enhancement in collagen synthesis and decrement in

TGF-b reaction (36). In response to high-fat diet (HFD), CFs have

the ability to differentiate into adipocytes (142). Resistin is a hormone

derived from adipocytes, which is related to obesity, insulin resistance

and diabetes (143, 144). Increased resistin expression can be detected

in cardiac myocytes and CFs after myocardial infarction and in

neurohumoral stimulation responses (145). Studies have shown that

resistin gene knockout mice fed with high fat did not exhibit relevant

changes in cardiac fibrosis (146). Cardiac tissue overexpressed with

resistin presented all the major markers of fibroblasts as well as the

phenotypic characteristic of fibrosis, and showed augmented

expression of ECM proteins including a-SMA, COL1a1, CTGF/

CCN2, fibronectin, LOX, and SF2 (146). Resistin stimulates the

proliferation of adult mouse CFs, activates janus kinase 2 (JAK2)

by binding to toll-like receptor 4 (TLR4), and then phosphorylates

Stat3, which transfers to the nucleus and activates the expression of

fibroblasts target genes (146). Cell death-inducing DFFA-like effector

C (CIDEC) is a vital regulator in lipid, glucose metabolism, and

insulin sensitivity (147, 148). In CFs model of insulin resistance, the

expression of CIDEC is increased, accompanied by nuclear

translocation of CIDEC (from cytoplasm to nucleus), leading to the

inhibition of AMP-activated protein kinase a (AMPK)

phosphorylation and further promotes collagen synthesis (149).
5.3 Advanced glycation end products affect
cardiac fibroblasts

Advanced glycation end products(AGES) accumulate naturally

in the body, and usually exist to a lesser extent in healthy individuals

(150). The accumulation of AGES occurs at a higher rate in diabetic

patients (151). AGES upregulates the expression and protein level of

type I collagen gene in adult rat CFs, which shows that AGES has

the ability to directly promote fibrosis of CFs (152). AGES can bind

to its receptor, RAGE, triggering the activation of various signal

cascades, leading to downstream events, such as oxidative stress

increasement, ECM reshaping and myofibroblast differentiation

(153, 154). The activation of AGE/RAGE signaling pathway

promotes differentiation of fibroblasts into myofibroblasts T2DM

(36). The elevated AGES within diabetic collagen mediates the

contraction of CFs via the increase of RAGE signal (155), and the

increase of myofibroblast differentiation may lead to the increase of

matrix contraction (156), in turn, the increased matrix contraction

promotes the transformation of myofibroblasts, thereby increasing

cardiac fibrosis (36, 153, 157). The migration level of diabetic CFs is

higher than that of non-diabetic CFs, and along with the addition of

AGES, the migration increases (158). Compared with non-diabetic

collagen, higher levels of AGES were found in the tail collagen of

diabetic mice (155). A 3D collagen matrix model made of tail

collagen of diabetes mellitus was used to imitate the conditions in

vivo and evaluate the changes of fibroblast function. Results showed

that the increase of AGES in ECM could not only amplify the
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phenotypic transformation of CFs to myofibroblasts through RAGE

cascade by signal transduction, but also change the cellular function

and surrounding ECM, causing the increase of matrix contraction,

thus accelerating the pathological remodeling of the heart (155). In

addition, AGES can increase the crosslinking of matrix proteins

(such as collagen) secreted by activated CFs, thus contributing to a

more rigid ECM (36, 159, 160).

Thus, in the early stage of diabetes, the high glucose internal

environment, the abnormal lipid metabolism of cells and the

cytotoxicity generated by AGES complement each other to

promote the phenotypic transformation of cardiac fibroblasts,

cause the secretory dysfunction of cardiac fibroblasts, trigger

cardiac fibrosis, gradually aggravate with the progression of the

disease, and finally cause the occurrence of adverse outcomes of

diabetic cardiomyopathy (Figure 3).

6 Mechanism of myocardial
fibroblasts on myocardial
fibrosis in DCM

6.1 Typical TGF-b/Smad signaling pathway

TGF-b is a strong inducer involved in the differentiation of CFs

into myofibroblasts, resulting in fibrosis (Figure 4) (161).

Additionally, experiments in vitro also showed that HG can
Frontiers in Endocrinology 07
increase the expression and activity of TGF-b (162–165). Stimulated

by TGF-b, CFs play a key role in the fibrosis process of cardiac ECM

remodeling by synthesizing and secreting various components of

ECM, such as type I and type III collagen (8). In the study of mice

with selectively deleted TGF-b receptors Tgfbr1/2, Smad2, or Smad3

(which are important components for regulating TGF-b signal

transduction) in CFs, it was found that regulating TGF-b signal

transduction plays an important role in activating CFs (166). TGF-

b stimulates the activation of typical Smad2/3 and AMPK signaling

pathways (161). The specific deletion of Tgfbr1/2 and Smad3 notably

reduce cardiac fibrosis resulting from transverse coarctation of aorta,

and Smad3 is activated downstream of TGF-b receptor (166, 167). In

vivo drug research found that inhibiting TGF-b/Smad2/3 pathway can

inhibit the proliferation and collagen production of CFs and attenuate

the degree of cardiac fibrosis (168). In recent years, there are several

researches focus on how TGF-b signaling pathway regulates the

phenotypic transformation and function of CFs. It was found that

TGF-b activates Smad3 to regulate phosphorylation of downstream

ERK1/2 and AKT, inhibits the expression of FoxO3a in CFs, and

results in the increase of CFs transformation and collagen synthesis

(169). This team also found that HG resulted in decreased AKT

activity and AKT-mediated phosphorylation level of forkhead box O1

(FoxO1), leading to the increase of the nuclear localization and

transcription activity of FoxO1, which in turn led to the phenotypic

transformation of myofibroblasts and the increase of a-SMA and

collagen expression (165).
FIGURE 3

High glucose, abnormal lipid metabolism and advanced glycation end products (AGES) affects cardiac fibroblasts in the development of diabetic
cardiomyopathy. Continuous hyperglycemia stimulation up-regulates the expression of calcium-sensitive receptor (CaSR), transforming growth
factor-beta1 (TGF-b), DNA methyltransferase 1 (DNMT1) and Methyl CpG binding protein 2 (MeCP2) in cardiac fibroblast, and result in the increase of
collagen secretion, deposition or proliferation, eventually promote the development of DCM. Resistin released by adipocytes increased expression of
profibrotic factors. Accumulation of AGES bind to its receptor, RAGE, triggering the activation of various signal cascades, leading to downstream
events, such as increased oxidative stress, extracellular matrix (ECM) remodeling and myofibroblast differentiation. By Figdraw. CaSR, calcium-
sensitive receptor; TGF-b, transforming growth factor-beta; SOCS3, suppression of cytokine signaling 3; p-Stat3, phosphorylation of signal
transducer and activator of transcription 3; RASSF1A, ras association domain family 1 isoform A; p-ERK1/2, phosphorylation of extracellular signal-
regulated kinase 1/2; HFD, high-fat diet; TLR4, toll-like receptor 4; p-JAK2, phosphorylation of janus kinase 2; CIDEC, cell death-inducing DFFA-like
effector C; p-AMPK, phosphorylation of AMP-activated protein kinase; ROS, reactive oxygen species.
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6.2 Atypical TGF-b signaling pathway

The difference in cardiac hypertrophy responses of Tgfbr1/2

and Smad2 and Smad3 (Smad2/3) specific cardiac fibroblasts

deficient mice to pressure overload stimulation indicates that

atypical TGF-b signal also plays an effective role in cardiac

fibroblast-mediated remodeling after chronic injury (166). It has

been found that TGFb-RhoA-ROCK pathway plays an important

part in the formation of actin stress fiber, which is necessary for the

differentiation of myofibroblasts (170–172). The phosphorylation

of actin mediated by ROCK increases the number of actin

monomers. Monomer actin loses its serum response factor (SRF)

inhibitory activity. SRF and MRTF together activate the

transcription of many genes, including profibrotic genes

(13, 173). CFs specific deletion of ROCK2, a subtype of ROCK,

significantly reduces the expression of a-SMA, decreases the

expression of connective tissue growth factor (CTGF) and FGF2

in CFs, and improves cardiac function and fibrosis (174). CTGF is

an important mediator in the differentiation of myofibroblasts

stimulated by TGF-b (175, 176), as well as a major pathogenic

factor in cardiac fibrosis (177). TGF-b has been known to increases

CTGF expression in CFs (178). CTGF acts as an autocrine factor in

CFs, and specific deletion of Ccn 2 (gene encoding CTGF) in CFs

significantly improves cardiac function after Ang II infusion (179).

Blocking the activation of TrkA, the primary receptor of CTGF,

can prevent phenotype transformation and collagen production

induced by HG in CFs, and CTGF knockdown shows the same

result (165).
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6.3 Interleukin

Interleukin (IL) is an important type of inflammatory cytokine.

A variety of interleukin receptors are expressed in CFs, which

regulate the activity of myofibroblasts (10, 22, 180, 181). It was

found that the expressions of IL-6 (133), IL-17 (182), IL-1b (162)

and IL-33 (183) were all up-regulated in myocardial fibroblasts

attacked by HG, and loss of these inflammatory factors could reduce

the collagen expression induced by HG. Under HG condition, the

increased expression of IL-6 seems to up-regulate collagen gene by

inducing TGF-b, which is sustained by down-regulating miR-29 by

IL-6 (133). The deletion of IL-17 in diabetic mice prevents the

increase of TGF-b expression (182). Therefore, interleukin mediates

the ECM production of myocardial fibroblasts induced by HG

(Figure 4), which seems to be related to the increase of TGF-b.
6.4 Calcium-sensitive receptor

Calcium-sensitive receptor (CaSR) belongs to the superfamily

of G protein-coupled receptors, whose main function is to regulate

intracellular calcium level, and it is related to many diseases,

including tumor, pulmonary hypertension and cardiac infarction.

It was found that HG increased CaSR expression in CFs, enhancing

the autophagy and proliferation of CFs (126). Activation of CaSR

leads to the increase of intracellular Ca2+ concentration (126).

Increased intracellular calcium promots the expression of Smurf2,

which has the function of degrading SnoN and Smad7 proteins
FIGURE 4

Mechanism of myocardial fibroblasts on myocardial fibrosis in diabetic cardiomyopathy. High glucose increases the expression and activity of TGF-b
and causes a series of changes in signal pathways regulating the phenotypic transformation and synthesis function of CFs. The expressions of
Interleukin (IL), including IL-6, IL-17, IL-1b and IL-33, were all up-regulated in myocardial fibroblasts attacked by HG, especially, IL-6 seems to up-
regulate collagen gene by inducing transforming growth factor-beta 1 (TGF-b). At the same time, increased Ca2+ concentration regulated by CaSR
could modulate the ubiquitination of Smad7 to affect DCM. By Figdraw. Smurf2, Smad specific E3 ubiquitin protein ligase 2; SnoN, SKI like proto-
oncogene; Smad2/3, Smad family member 2 and Smad family member 3; Smad4, Smad family member 4; Smad7, Smad family member 7; ITCH,
itchy E3 ubiquitin protein ligase; p-ERK1/2, phosphorylation of extracellular signal-regulated kinase 1/2; p-Smad3, phosphorylation of smad family
member 3; p-AKT, phosphorylation of protein kinase B; p-FoxO1, phosphorylation of forkhead box O1; RhoA, ras homolog family member A; ROCK,
Rho-associated coiled-coil containing kinases; SRF, serum response factor; CTGF, connective tissue growth factor.
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through ubiquitin proteasome signaling pathway (135, 136). Smad7

can degrade Smad2/3, prevent nuclear translocation and inhibit the

activation of TGF-b/Smads signaling pathway (184). SnoN belongs

to the SKI proto-oncogene family, which is able to inhibit the

formation of binding complex between Smad2/3 and Smad4, thus

inhibiting fibrosis (185). Up-regulation of Smurf2 degrades Smad7,

which leads to the weakening of the inhibitory effect of Smad7 on

TGF-b/Smad2/3 signaling pathway. Meanwhile, Smurf2-siRNA

significantly decreased the expression of Beclin1 and LC3II and

increases the expression of p62 in CFs, which indicated that

Smurf2-siRNA can down-regulate autophagy and inhibit collagen

production in CFs. Studies consistent with this have also shown that

CaSR activation increases Ca2+ concentration in myocardial

fibroblasts and up-regulates the expression of itchy E3 ubiquitin

protein ligase (ITCH), causing an increase in the ubiquitination of

Smad7 and up-regulation of p-Smad2 and p-Smad3 expressions,

thus promoting fibrosis (Figure 4) (186).

The investigation of these signaling pathways of cardiac

fibroblasts in diabetic cardiomyopathy could provide ideas and

theoretical basis for preventing or even reversing cardiac fibrosis in

DCM. Future studies will still focus on understanding the

alterations of cardiac fibroblast signaling pathways in diabetic

cardiomyopathy with a view to finding unique targets for

cardiac fibroblasts.
7 Future perspective

To date, Clinical attention to myocardial fibrosis in DCMis far

from enough, no consensus has been reached on the best

management strategy for the prevention or treatment of DCM,

and there is no standard drug treatment for DCM (187). But it is

encouraging that the related research is increasing year by year

(188). Previous studies have shown that Irbesartan inhibits CFs

proliferation and ameliorates myocardial fibrosis in T2DM rats

(168). Inhibition of SGLT1 expression in CFs improves DCM

cardiac fibrosis by attenuating myofibroblasts activation (90), and

the SGLT1/2 inhibitor sogliflozin (zynquista) has completed phase

III clinical trials (189), suggesting a novel therapeutic strategy for

the treatment of DCM fibrosis. It has also been found that DAPA,

the new class of antidiabetic drugs, could inhibit cardiac fibroblasts

activation and EndMT to prevent cardiac fibrosis via TGF-b/Smads

signaling (89). A recent study showed that the diabetic basic

therapeutic drug Metformin is able to attenuate profibrotic gene

expression in rat aortic adventitial fibroblasts (190). It can be seen

that the role of CFs in DCM fibrosis is gradually valued, and fully

investigating the role of CFs in myocardial fibrosis of DCM will

hopefully provide power assist on targets for the treatment and

prevention of myocardial fibrosis in DCM.
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Cardiac fibrosis is one of the most critical causes of morbidity

and mortality in DCM, which can lead to heart failure and increase

the incidence of arrhythmia events. Although DCM has been

recognized for more than 40 years, the effective prevention and

treatment strategies of DCM are still elusive. Enhanced CFs

proliferation, increased collagen synthesis, and disordered MMPs

synthesis are the results of long-term abnormalities in glucose and

lipid metabolism, which disrupt the balance between ECM

synthesis and degradation in DCM, and activate multiple

mechanic pathways, and ultimately increase the stiffness of

ventricular wall and cardiac fibrosis. Therefore, understanding

sources and changes of CFs involved in the pathogenesis of

cardiac fibrosis in DCM, as well as related molecular mechanism

pathways, will hopefully provide the guidance for prevention and

treatment of cardiac fibrosis in DCM.
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et al. Transition of macrophages to fibroblast-like cells in healing myocardial infarction.
J Am Coll Cardiol (2019) 74(25):3124–35. doi: 10.1016/j.jacc.2019.10.036

123. van Amerongen M, Bou-Gharios G, Popa E, van Ark J, Petersen A, van Dam G,
et al. Bone marrow-derived myofibroblasts contribute functionally to scar formation
after myocardial infarction. J Pathol (2008) 214(3):377–86. doi: 10.1002/path.2281

124. Tuleta I, Frangogiannis N. Diabetic fibrosis. Biochim Biophys Acta Mol Basis
Dis (2021) 1867(4):166044. doi: 10.1016/j.bbadis.2020.166044

125. Li Y, Lui K, Zhou B. Reassessing endothelial-to-mesenchymal transition in
cardiovascular diseases. Nat Rev Cardiol (2018) 15(8):445–56. doi: 10.1038/s41569-
018-0023-y

126. Yuan H, Xu J, Zhu Y, Li L, Wang Q, Yu Y, et al. Activation of calcium−sensing
receptor−mediated autophagy in high glucose−induced cardiac fibrosis in vitro. Mol
Med Rep (2020) 22(3):2021–31. doi: 10.3892/mmr.2020.11277

127. Cook S, Varela-Carver A, Mongillo M, Kleinert C, Khan M, Leccisotti L, et al.
Abnormal myocardial insulin signalling in type 2 diabetes and left-ventricular
dysfunction. Eur Heart J (2010) 31(1):100–11. doi: 10.1093/eurheartj/ehp396

128. Bugger H, Riehle C, Jaishy B, Wende A, Tuinei J, Chen D, et al. Genetic loss of
insulin receptors worsens cardiac efficiency in diabetes. J Mol Cell Cardiol (2012) 52
(5):1019–26. doi: 10.1016/j.yjmcc.2012.02.001

129. Qi Y, Xu Z, Zhu Q, Thomas C, Kumar R, Feng H, et al. Myocardial loss of IRS1
and IRS2 causes heart failure and is controlled by p38a MAPK during insulin
resistance. Diabetes (2013) 62(11):3887–900. doi: 10.2337/db13-0095

130. Fiaschi T, Magherini F, Gamberi T, Lucchese G, Faggian G, Modesti A, et al.
Hyperglycemia and angiotensin II cooperate to enhance collagen I deposition by
cardiac fibroblasts through a ROS-STAT3-dependent mechanism. Biochim Biophys
Acta (2014) 1843(11):2603–10. doi: 10.1016/j.bbamcr.2014.07.009

131. Singh V, Baker K, Kumar R. Activation of the intracellular renin-angiotensin
system in cardiac fibroblasts by high glucose: Role in extracellular matrix production.
Am J Physiol Heart Circ Physiol (2008) 294(4):H1675–84. doi: 10.1152/
ajpheart.91493.2007

132. Tokudome T, Horio T, Yoshihara F, Suga S, Kawano Y, Kohno M, et al. Direct
effects of high glucose and insulin on protein synthesis in cultured cardiac myocytes
and DNA and collagen synthesis in cardiac fibroblasts.Metabolism (2004) 53(6):710–5.
doi: 10.1016/j.metabol.2004.01.006

133. Zhang Y, Wang J, Zhang Y, Wang Y, Wang J, Zhao Y, et al. Deletion of
interleukin-6 alleviated interstitial fibrosis in streptozotocin-induced diabetic
cardiomyopathy of mice through affecting TGFb1 and miR-29 pathways. Sci Rep
(2016) 6:23010. doi: 10.1038/srep23010

134. Cavalera M, Wang J, Frangogiannis N. Obesity, metabolic dysfunction, and
cardiac fibrosis: Pathophysiological pathways, molecular mechanisms, and therapeutic
opportunities. Transl Res (2014) 164(4):323–35. doi: 10.1016/j.trsl.2014.05.001

135. Lönn P, Vanlandewijck M, Raja E, Kowanetz M, Watanabe Y, Kowanetz K,
et al. Transcriptional induction of salt-inducible kinase 1 by transforming growth factor
b leads to negative regulation of type I receptor signaling in cooperation with the
Smurf2 ubiquitin ligase. J Biol Chem (2012) 287(16):12867–78. doi: 10.1074/
jbc.M111.307249

136. Cai Y, Shen X, Zhou C, Wang J. Abnormal expression of Smurf2 during the
process of rat liver fibrosis. Chin J Dig Dis (2006) 7(4):237–45. doi: 10.1111/j.1443-
9573.2006.00275.x

137. Duran J, Troncoso M, Lagos D, Ramos S, Marin G, Estrada M. GDF11
modulates Ca-dependent Smad2/3 signaling to prevent cardiomyocyte hypertrophy.
Int J Mol Sci (2018) 19(5):1508. doi: 10.3390/ijms19051508

138. Tao H, Shi P, Zhao X, Xuan H, Gong W, Ding X. DNMT1 deregulation of
SOCS3 axis drives cardiac fibroblast activation in diabetic cardiac fibrosis. J Cell Physiol
(2021) 236(5):3481–94. doi: 10.1002/jcp.30078

139. Gorski D, Petz A, Reichert C, Twarock S, Grandoch M, Fischer J. Cardiac
fibroblast activation and hyaluronan synthesis in response to hyperglycemia and diet-
induced insulin resistance. Sci Rep (2019) 9(1):1827. doi: 10.1038/s41598-018-36140-6

140. Ritterhoff J, Tian R. Metabolism in cardiomyopathy: every substrate matters.
Cardiovasc Res (2017) 113(4):411–21. doi: 10.1093/cvr/cvx017

141. Alex L, Russo I, Holoborodko V, Frangogiannis N. Characterization of a mouse
model of obesity-related fibrotic cardiomyopathy that recapitulates features of human
heart failure with preserved ejection fraction. Am J Physiol Heart Circ Physiol (2018)
315(4):H934–49. doi: 10.1152/ajpheart.00238.2018

142. Qureshi R, Kindo M, Arora H, Boulberdaa M, Steenman M, Nebigil C.
Prokineticin receptor-1-dependent paracrine and autocrine pathways control cardiac
tcf21 fibroblast progenitor cell transformation into adipocytes and vascular cells. Sci
Rep (2017) 7(1):12804. doi: 10.1038/s41598-017-13198-2

143. Lazar M. Resistin- and obesity-associated metabolic diseases. Horm Metab Res
(2007) 39(10):710–6. doi: 10.1055/s-2007-985897

144. Steppan C, Bailey S, Bhat S, Brown E, Banerjee R, Wright C, et al. The hormone
resistin links obesity to diabetes. Nature (2001) 409(6818):307–12. doi: 10.1038/
35053000

145. Chemaly E, Kang S, Zhang S, McCollum L, Chen J, Bénard L, et al. Differential
patterns of replacement and reactive fibrosis in pressure and volume overload are
related to the propensity for ischaemia and involve resistin. J Physiol (2013) 591
(21):5337–55. doi: 10.1113/jphysiol.2013.258731
frontiersin.org

https://doi.org/10.1161/circresaha.116.308139
https://doi.org/10.1038/nature06969
https://doi.org/10.1038/nature06969
https://doi.org/10.1038/nature07060
https://doi.org/10.1161/circresaha.110.235531
https://doi.org/10.1242/dev.079970
https://doi.org/10.1172/jci74783
https://doi.org/10.21037/jtd.2017.03.122
https://doi.org/10.1006/dbio.2000.0106
https://doi.org/10.1161/circresaha.115.303794
https://doi.org/10.1038/ncomms12260
https://doi.org/10.1172/jci.insight.140628
https://doi.org/10.1161/circresaha.115.306565
https://doi.org/10.1146/annurev.pharmtox.45.120403.095802
https://doi.org/10.1152/physrev.00012.2007
https://doi.org/10.1016/j.bbamcr.2020.118703
https://doi.org/10.1016/j.bbamcr.2020.118703
https://doi.org/10.1152/ajpheart.00054.2019
https://doi.org/10.1093/cvr/cvaa265
https://doi.org/10.1186/1755-1536-5-15
https://doi.org/10.1038/nrd.2016.89
https://doi.org/10.1093/cvr/cvu264
https://doi.org/10.1161/circresaha.114.302530
https://doi.org/10.1634/stemcells.2006-0366
https://doi.org/10.1161/circresaha.110.233262
https://doi.org/10.1111/j.1582-4934.2011.01450.x
https://doi.org/10.1038/emboj.2011.418
https://doi.org/10.1172/jci98215
https://doi.org/10.1016/j.jacc.2019.10.036
https://doi.org/10.1002/path.2281
https://doi.org/10.1016/j.bbadis.2020.166044
https://doi.org/10.1038/s41569-018-0023-y
https://doi.org/10.1038/s41569-018-0023-y
https://doi.org/10.3892/mmr.2020.11277
https://doi.org/10.1093/eurheartj/ehp396
https://doi.org/10.1016/j.yjmcc.2012.02.001
https://doi.org/10.2337/db13-0095
https://doi.org/10.1016/j.bbamcr.2014.07.009
https://doi.org/10.1152/ajpheart.91493.2007
https://doi.org/10.1152/ajpheart.91493.2007
https://doi.org/10.1016/j.metabol.2004.01.006
https://doi.org/10.1038/srep23010
https://doi.org/10.1016/j.trsl.2014.05.001
https://doi.org/10.1074/jbc.M111.307249
https://doi.org/10.1074/jbc.M111.307249
https://doi.org/10.1111/j.1443-9573.2006.00275.x
https://doi.org/10.1111/j.1443-9573.2006.00275.x
https://doi.org/10.3390/ijms19051508
https://doi.org/10.1002/jcp.30078
https://doi.org/10.1038/s41598-018-36140-6
https://doi.org/10.1093/cvr/cvx017
https://doi.org/10.1152/ajpheart.00238.2018
https://doi.org/10.1038/s41598-017-13198-2
https://doi.org/10.1055/s-2007-985897
https://doi.org/10.1038/35053000
https://doi.org/10.1038/35053000
https://doi.org/10.1113/jphysiol.2013.258731
https://doi.org/10.3389/fendo.2023.1162754
https://www.frontiersin.org/journals/endocrinology
https://www.frontiersin.org


Cheng et al. 10.3389/fendo.2023.1162754
146. Singh R, Kaundal R, Zhao B, Bouchareb R, Lebeche D. Resistin induces cardiac
fibroblast-myofibroblast differentiation through JAK/STAT3 and JNK/c-jun signaling.
Pharmacol Res (2021) 167:105414. doi: 10.1016/j.phrs.2020.105414

147. Langhi C, Arias N, Rajamoorthi A, Basta J, Lee R, Baldán Á. Therapeutic
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