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prediction of uveal melanoma
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Background: Increasing evidence suggests a correlation between glycosylation

and the onset of cancer. However, the clinical relevance of glycosylation-related

genes (GRGs) in uveal melanoma (UM) is yet to be fully understood. This study

aimed to shed light on the impact of GRGs on UM prognosis.

Methods: To identify the most influential genes in UM, we employed the AUCell

and WGCNA algorithms. The GRGs signature was established by integrating bulk

RNA-seq and scRNA-seq data. UM patients were separated into two groups

based on their risk scores, the GCNS_low and GCNS_high groups, and the

differences in clinicopathological correlation, functional enrichment, immune

response, mutational burden, and immunotherapy between the two groups were

examined. The role of the critical gene AUP1 in UM was validated through in vitro

and in vivo experiments.

Results: The GRGs signature was comprised of AUP1, HNMT, PARP8, ARC, ALG5,

AKAP13, and ISG20. The GCNS was a significant prognostic factor for UM, and high

GCNS correlated with poorer outcomes. Patients with high GCNS displayed

heightened immune-related characteristics, such as immune cell infiltration and

immune scores. In vitro experiments showed that the knockdown of AUP1 led to a

drastic reduction in the viability, proliferation, and invasion capability of UM cells.

Conclusion: Our gene signature provides an independent predictor of UM

patient survival and represents a starting point for further investigation of GRGs

in UM. It offers a novel perspective on the clinical diagnosis and treatment of UM.
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1 Introduction

Uveal melanoma (UM), the most common type of intraocular

cancer in adults, originates from melanocytes in the uvea, which

includes the iris, ciliary body, and choroid (1). UM accounts for 3%

to 5% of all melanoma and 79% to 81% of ocular melanoma (2). The

global average incidence of UM ranges from 0.002‰ to 0.008‰,

with significant geographic and ethnic disparities (3). Around 50%

of UM patients experience hematogenous metastasis, with the liver

being the primary and most common site of metastasis (4, 5).

Several studies have been conducted to prevent metastasis in UM,

high-dose interferon is the only adjuvant therapy shown to improve

recurrence-free survival time and control the primary UM.

However, there has been no significant improvement in overall

survival (OS) or metastasis-free survival in any of these studies (1).

Patients with metastatic UM have a median survival time of 6 to

12 months, and their prognosis heavily depends on liver metastasis

and disease progression in the liver (6). Despite the numerous

studies by scholars exploring various immunotherapies, such as

immune checkpoint inhibitors (ICI), cancer vaccines, and T-cell

passaged cell therapy (7, 8), the effects of immunotherapy for UM

have been disappointing (9). Given the limited therapeutic options

for UM, it is crucial to investigate its underlying pathophysiological

pathways and develop a reliable prognostic prediction model for

UM patients.

Glycosylation is a biological process that occurs through the

action of various glycosyltransferases (GTs) and glycosidases (10,

11). This modification changes the protein’s conformation and

structure, which in turn affects its functional activity (12). The

regulation of glycosylation is controlled by glycogenes, which are

genes that encode for glycosidases and sulfotransferases. An

abnormal expression or regulation of these genes is linked to

tumor progression and is considered a hallmark of cancer (13,

14). A translational study showed that the expression levels of 210

GTs genes could differentiate between six types of cancer, including

breast cancer and ovarian cancer. Moreover, glycosylation has the

potential to act as a prognostic indicator, as a signature of

glycosylation-related genes (GRGs) was shown to predict clinical

outcomes in ovarian cancer patients (15). Other post-translational

regulatory mechanisms, such as ubiquit inat ion (16) ,

phosphorylation (17) and epigenetic modifications (18) have also

been reported as potential biomarkers in UM prognostic models.

However, despite being one of the most crucial post-transcriptional

alterations among the 300 protein modifications, few studies have

explored the relationship between GRGs signature and the tumor

microenvironment (TME) of UM.

To address this gap, we leveraged bulk RNA-seq and scRNA-seq

data to establish the GRGs signature in UM and divided UM patients

into GCNS_low and GCNS_high groups using a selected cut-off

value. Our analysis revealed a significant difference in prognosis

between the two groups. The results were validated using the

GSE84976 dataset from the Gene Expression Omnibus (GEO)

database. Furthermore, we examined the utility of the GRGs
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signature in the TME, tumor mutational burden (TMB),

immunotherapy response, and drug sensitivity. Lastly, we explored

the impact of inhibiting AUP1 expression on UM cell proliferation

andmigration in vitro. Our study provides novel insights into the role

of glycosylation in UM and holds promise for improved patient

stratification and targeted therapy development.
2 Materials and methods

2.1 Data acquisition

The scRNA-seq data of UMwas obtained from the GEO (https://

www.ncbi.nlm.nih.gov/geo/), which comprised 59,915 tumor and

non-tumorous cells from eight primary and three metastatic

samples (accession number: GSE139829). The RNA expression

profiles, gene mutations, and relevant clinical information of UM

were extracted from The Cancer Genome Atlas (TCGA) database

(https://tcgadata.nci.nih.gov/), with a sample size of 80 and served as

the training dataset. The FPKM format of the TCGA-UM was

transformed into the TPM format. Additionally, the expression

profiles of GSE84976 were obtained from the GEO database and

used as the validation set. Before any further analysis, all

transcriptome data were log2-transformed. The “sva” package

adjusted for batch effects between TCGA-UM and GSE84976. The

GeneCards database (https://www.genecards.org/) was consulted to

obtain GRGs, and a total of 110 GRGs with a relevance score greater

than 1.0 were selected for further analysis. To assess the prognostic

utility of the risk score in ICI therapy, we utilized the IMvigor 210

Core Biologies database of patients with advanced urothelial cancer

undergoing anti-PD-L1 immunotherapy, which was analyzed using

the R program (19).
2.2 Data processing and annotation

We employed the “seurat” and “singleR” R packages to perform

quality control on scRNA-seq data (20). To ensure the data’s

accuracy, we eliminated genes expressed in less than three single

cells, cells with less than 200 or more than 7,000 genes, and cells with

more than 10% mitochondrial genes. Out of the total, 30,934 cells

were selected for further analysis. These cells underwent scaling after

normalization through a linear regression model that utilized the log-

normalization method. Using the “FindVariableFeatures” function,

we identified the top 3,000 hypervariable genes. To remove batch

effects that may affect downstream analysis, we utilized the

“FindIntegrationAnchors” function of the canonical correlation

analysis (CCA) method. We integrated and scaled the data using

the “IntegrateData” and “ScaleData” functions, determined the

anchor points by principal component analysis (PCA), and

evaluated the top 20 PCs using the t-distributed stochastic neighbor

embedding (t-SNE) algorithm to discover significant clusters. We

used the “FindNeighbors” and “FindClusters” functions (resolution
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=0.8) to obtain 24 cell clusters, which were visualized as a t-SNE

diagram. The “FindAllMarkers” function in the “seurat” package was

applied to identify the differentially expressed genes (DEGs) in each

cluster. The “singleR” package annotated cell types based on the

cluster’s canonical marker genes, which were later manually validated

against published literature (21).
2.3 AUCcell

The “AUCell” R package was utilized to determine the active

status of gene sets in scRNA-data by assigning glycosylation activity

scores to each cell lineage (22). The gene expression rankings of

each cell were calculated based on the AUC value of selected GRGs

to assess the fraction of highly expressed gene sets. Cells with larger

AUC values had higher gene express ion levels . The

“AUCell_exploreThresholds” function was used to identify cells

actively involved in glycosylation gene sets. These cells were then

grouped into high and low G-AUC categories using AUC score

cutoff values and visualized in a t-SNE embedding with the help of

the “ggplot2” R package. A gene set variation analysis (GSVA) was

conducted to uncover enriched biological pathways among the high

and low G-AUC subgroups. The results were represented in a bar

chart, displaying all the significantly different pathways.
2.4 Gene set enrichment analysis (GSEA)

This study determined the absolute enrichment fraction of a

specified gene set in every sample by applying ssGSEA. To assign

glycosylation enrichment values to each participant in the TCGA-

UM cohort, we employed ssGSEA. Based on their glycosylation

enrichment scores, participants were divided into two groups, high-

GSN and low-GSN, for further investigation.
2.5 Weighted gene co-expression network
analysis (WGCNA)

The systems biological method WGCNA was applied to the

gene co-expression network of TCGA-UM (23). The following

outlines the steps are taken: exclusion of genes with missing

values using the “goodSamplesGenes” function, grouping of

tumor samples, deletion of outliers, and establishment of a cut

line of 100. The optimal soft threshold for adjacency calculation was

determined using graphical methods. An adjacency matrix was

generated from the expression matrix to determine the genetic

interconnectedness of the network. The topological overlap matrix

(TOM) was then constructed from the adjacency matrix.

Hierarchical clustering was performed using an average linkage

approach and the differences in TOM. The hierarchical clustering

tree was dynamically pruned to identify similar modules with high

correlation coefficients (r > 0.25). Pearson’s correlation test was

applied to examine the relationship between eigengenes and clinical

characteristics. The modules containing genes with the most
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significant correlations to clinical traits, such as glycosylation

score, survival status, and survival time were selected for

further investigation.
2.6 Construction of the risk scoring

A venn diagram analysis was conducted to pinpoint the

intersection between the DEGs and the target genes in WGCNA.

This was followed by a univariate analysis of the overlapping genes

to select those that showed a statistically significant correlation with

patients’ OS (P < 0.01). The least absolute shrinkage and selection

operator (LASSO) analysis was then employed to narrow down

further the list of genes and risk coefficients strongly linked to

prognosis, creating a risk model using the “glmnet” package. Based

on the coefficients obtained from the LASSO analysis, a risk score

was assigned to each UM patient. The patients in the TCGA-UM

dataset were divided into two groups, GCNS_low and GCNS_high,

using the median risk score as the cutoff. The Kaplan–Meier (K-M)

method was utilized to generate prognostic survival curves. The

performance of the predictive model was evaluated employing

receiver operating characteristic (ROC) curves, with a good

performance defined as an area under the curve (AUC) value of >

0.8. The accuracy of the signature in predicting outcomes was

demonstrated by using survival analysis and AUC value in an

independent dataset (GSE84976). PCA was carried out to reduce

dimensionality and visualize the differences between the two risk

groups. The same analysis was performed on the GSE84976 cohort.
2.7 Assessment of the prognostic model’s
independence and validity

A nomogram combining GCNS, age, gender, and the

pathological stage was developed to estimate the 1-, 2-, and 3-

year OS probability (24). The accuracy of the nomogram was

assessed through ROC curves and calibration curves. The net

benefit of the nomogram and individual clinical features was also

evaluated through decision curve analysis (DCA). Subgroup

analysis was performed to determine the prognostic value of the

GCNS among subpopulations defined by specific clinical

characteristics, including age, gender and clinical stage.
2.8 Assessment of the relationship
between prognostic models and tumor
immunity and its impact on
immunotherapy

We analyzed the immune infiltration level of UM patients in the

TCGA database using data from the TIMER 2.0 database, which

comprises seven evaluation methods. We then conducted a ssGSEA

analysis of genes in the prognostic model with the “GSEABase”

package to determine immune-related properties. The “estimate” R

package facilitated the calculation of the relative proportions of
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stromal cells, immune cells, tumor cells and their comparison across

different GCNS categories. A higher score indicates a greater

presence of components in the TME. Furthermore, several

immune cell-expressed molecules serve as immunological

checkpoints that regulate the level of immune activation and

prevent excessive immunological activation (25). We compared

the expression levels of both groups of well-known immune

checkpoint genes (ICGs) extracted from the literature. To assess

their potential in predicting immunotherapy response, tumor

immune dysfunction and exclusion (TIDE) was applied. Finally,

we evaluated the IMvigor210 cohort to confirm the ability of the

GCNS model to predict immunotherapy outcomes.
2.9 Mutational landscape and drug
sensitivity

From the TCGA database, gene mutation profiles of UM

patients were obtained, and the “maftools” software was used to

display them. The GCNS and the comprehensive gene mutation

files were combined. GCNS_low and GCNS_high groups’ signaling

pathways were compared using GSEA, and the essential active

pathways in the GCNS_high group were identified. To establish

the half-maximal inhibitory concentrations (IC50) of common

chemotherapeutic drugs, we also used the R package

“pRRophetic,” which allowed us to look into the relationship

between the GCNS and drug sensitivity (26). Wilcoxon signed-

rank tests compared the IC50 values between the two GCNS groups.
2.10 Cell culture and transfection

The Cell Resource Center at Shanghai Life Sciences Institute

provided the human uveal melanoma cells (MuM-2B, OCM-1)

used in this study. The cells were cultured in DMEM (Dulbecco’s

Modified Eagle’s Medium) (Gibco, USA) with 1% penicillin/

streptomycin and 10% fetal bovine serum (FBS) (Gibco, USA) in

a humid incubator (37°C and 5% CO2). Cells were sown in six-well

plates and cultured at 37°C to 80% confluence before transfecting.

Ribobio created the si-AUP1 and si-NC (control) (Ribobio,

Guangzhou, China). Then, following the manufacturer’s

instructions, they were transfected into MuM-2B and OCM-1

cells using Lipofectamine 3000 (Invitrogen, Carlsbad, CA, USA).

After the transfection had been going on for 48 h, more research

was done. AUP1 siRNA sequences were given in Supplementary

Table S1.
2.11 Real time-polymerase chain reaction
(RT-PCR)

Using TRIzol reagent (15596018, Thermo, Waltham, MA,

USA), total RNA was extracted from MuM-2B and OCM-1 cells,

and RNA purity and concentrations were measured using the

manufacturer’s recommendations. When creating cDNA using

the PrimeScriptTM RT reagent Kit (R232-01, Vazyme, Nanjing,
Frontiers in Endocrinology 04
China), the following settings were made: 15 min at 37°C, then 5 s at

85°C, and finally storage at -20°C. The PCR procedure was

performed using a 10 mL volume in 40 cycles of 95°C for 10 s

and 60°C for 30 s. Three times each operation was carried out.

GAPDH was used as a reference standard, and the relative gene

expression was analyzed using the 2-DDCt technique. Tsingke

Biotech company created specific primers (Tsingke, Beijing,

China). In Supplementary Table S1, used primers were supported.
2.12 Cell proliferation

CCK-8 was used to determine how AUP1 affected the ability of

UM cells to proliferate. UM cells were grown in triplicate in 96-well

microplates with a cell density of 5,000 per well. Following

transfection, the cells were treated at 37°C for 2 h with 10 mL of

CCK-8 solution (A311-01, vazyme, Nanjing, China) mixed with 90

mL of complete media in each well at 0, 24, 48, 72, or 96 h. Finally,

the absorbance of each well was measured at 450 nm using a

microplate reader. The EdU test was used as an additional

technique to quantify cell proliferation using the EdU

proliferation detection kit (Ribobio, Guangzhou, China). In a

nutshell, EdU was applied to MuM-2B and OCM-1 cells (2×105

cells per well) for 2 h before they were stained with DAPI (Thermo

Fisher Scientific, USA). A fluorescent microscope (Olympus, Japan)

was used to take pictures of the EdU-positive cells, which were then

processed in ImageJ.
2.13 Transwell migration

The Transwell migration test was used to detect cell migration

in a 24-well transwell plate with 8 m-pore membrane filters. In a

nutshell, 10% FBS was added to the media in the bottom chamber,

and 2×105 cells in serum-free medium were coated on the top

chamber. After a 48-hour incubation period, the cells that had

migrated to the chamber’s bottom were bathed in 4% methanol for

10 minutes before being stained for 15 min with 0.1% crystal violet

(Solarbio, Beijing, China). The images were taken using a

microscope’s eyepiece, and the number of migrating cells was

counted using ImageJ software.
2.14 Wound-healing assay

The wound healing experiment reflects the MuM-2B and

OCM-1 cells’ migratory patterns. 80% confluence was obtained by

the transfected cells after they had been cultured in a six-well plate

and incubated at 37°C. A sterile 200 mL pipette tip left a liner scrape

in cell monolayers. The medium was changed to one without serum

following two PBS washes to remove cell debris. Under an inverted

microscope, the distance that cells traveled into the wound surface

was gauged at 0 h and 48 h (Olympus, Japan). Lastly, we examined

the wound region using ImageJ software. Data were shown as the

rate of relative cell migration.
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2.15 Animal models

All animal studies were authorized by the Nanjing Medical

University Animal Experiment Ethics Committee. Null BALB/c mice

that were five weeks old were utilized as the xenotransplantationmodel.

MuM-2B cells that were stably transfected with AUP1 and control cells

were implanted intomice’s left and right groins to conduct tumorigenic

studies. The tumor volume was calculated every five days. The tumor

from the xenograft was removed and weighed 25 days after injection.
2.16 Statistical analysis

R software, namely version 4.2.0, was used to conduct our

analyses. Student t-tests or one- or two-way ANOVAs with

Bonferroni’s multiple comparison post hoc tests were used to

determine statistical significance in GraphPad Prism 8 (La Jolla,

CA, USA). Three times each operation was carried out. The mean
Frontiers in Endocrinology 05
and standard deviation (SD) of the data were shown. With a p-value

of 0.05, the result was considered statistically significant.

3 Results

3.1 scRNA profiling of uveal melanoma

Figure 1 shows the process used in this investigation. 28,981

cells were deleted after quality screening using the aforementioned

standards. The eleven samples included in the investigation had no

observable batch effects since the distribution of cells within each

piece was pretty uniform (Figure 2A). Then, using the t-SNE

approach, all cells were divided into 24 more specific clusters

depending on all levels of gene expression (Figure 2B). We used

differential expression analysis to find DEGs—cluster marker genes

—for several clusters. These clusters were recognized as known cell

lineages using “singleR” package annotation and previously

reported marker genes (Figure 2C). An image of the expression of
FIGURE 1

The technical roadmap of this study.
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cell type-specific marker genes is shown in Figure 2D. There are

eight kinds of cells, including tumor cells, monocytes/macrophages,

and endothelial cells/fibroblasts. We could examine the GRGs

expression patterns by measuring each cell line’s GRGs activity

using the “AUCell” package (Figure 2E). The AUC values were
Frontiers in Endocrinology 06
higher in cells that expressed more genes, and in this study, most of

these cells were orange-colored B cells and plasma cells (Figure 2F).

According to the AUC score threshold values, all cells were given an

AUC score for the associated GRGs, and they were then split into

two groups (high and low G-AUC subgroups). To understand the
A B

D

E G

F

C

FIGURE 2

Overview of the single-cell landscape of UM tumor samples of GSE139829. (A) The t-SNE plot shows the integration of 11 samples. Cells were
evenly distributed among all samples, suggesting no significant batch effects among the UM clusters. (B) After quality control and standardization, all
cells in 11 samples revealed 24 cell clusters marker with unique colors. (C) The cells were annotated into eight categories of cell types according to
the composition of the marker genes, namely B cells, endothelial cells, monocytes/macrophages, NK/T cells, photoreceptor cells, plasma cells,
retinal pigment epithelium, and tumor cells. (D) Dot plot of cell type marker genes. Cell-specific marker genes were selected according to previous
studies. The color of the dots represents the average expression, and the size represents the average percentage of cells expressing the desired
gene. (E) Visualization of the percentage of GRGs in each cell via the AUCell package. The cells were divided into high and low groups, namely high
G-AUC and low G-AUC subgroups. (F) t-SNE plots of the AUC score in all clusters. B cells and plasma cells express more GRGs and exhibit higher
AUC values. (G) GSVA analysis revealed significant enrichment pathways between the high G-AUC and low G-AUC groups; blue represents the
enrichment pathway in the high G-AUC group, and the green represents the pathway involved in the low G-AUC group.
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likely biological processes behind these variations, we conducted

differential and functional analyses. According to GSVA data, we

discovered apoptosis, MYC targets V1, and the PI3K/AKT/mTOR

signaling pathway were particularly prevalent in the high G-AUC

subgroups (Figure 2G).
3.2 WGCNA

Each TCGA-UM sample received a glycosylation score from

ssGSEA, as shown in Figure 3A. Patients were split into high-GSN

and low-GSN groups depending on the median glycosylation score.

The survival analysis discriminated between the high-GSN and low-

GSN groups. Glycosylation may be a risk factor for UM since we

discovered that patients in the high-GSN group had increased

mortality (P < 0.001). WGCNA was utilized to narrow the

possible GRGs strongly associated with UM prognosis

(Figure 3B). 19 non-gray modules were produced with these

settings (soft domain value = 7, minimum number of modules =

100, deepSplit = 3, similarity threshold = 0.25) (Figures 3C, D). The

relationships between phenotypic traits and each module’s

expression were evaluated. The DEGs and MEgreen module’s 79
Frontiers in Endocrinology 07
overlapping genes were then chosen to be examined in the

subsequent phases (Figure 3E).
3.3 Establishment of GRGs signature for
prognosis prediction

We sought to create a GRGs prognostic signature based on the

previously mentioned 79 intersected genes to investigate further the

connection between GRGs and the prognosis of UM patients. When

we initially used the TCGA-UM cohort as our training set for

univariate Cox analysis, we discovered 63 genes to be substantially

(P < 0.01) linked with the OS of UM patients. Next, the prognostic

model was created using LASSO Cox regression analysis

(Figures 4A, B). Finally, seven GRGs (AUP1, HNMT, PARP8,

ARC, ALG5, AKAP13, and ISG20) were filtered out with optimal

regularization settings. Patients in the TCGA cohort were divided

into GCNS_high and GCNS_low groups based on their median risk

ratings. According to K-M analysis, individuals in the GCNS_high

group served a lower survival time than those in the GCNS_low

group (P < 0.001) (Figure 4C). We also assessed the connection

between GCNS and OS in GSE84976 to demonstrate the predictive
A B

D EC

FIGURE 3

ssGSEA and WGCNA. (A) The glycosylation score for each UM patient in the TCGA database was calculated. UM patients in the high-GSN group had
worse outcomes (P<0.001), suggesting that glycosylation is a risk factor for UM. (B) We applied WGCNA to construct the gene co-expression
networks of UM patients. The distribution and trends of scale-free topological model fit, mean connectivity and soft threshold. (C) The clustering of
genes among different modules by the dynamic tree cut and merged dynamic method. (D) Heatmap shows the average correlations among module
eigengenes and clinical features. The correlation coefficient and p-value (in parentheses) are shown. The MEgreen module is closely related to
glycosylation and survival time, marked with red frames. (E) The Venn diagram shows the intersection of the DEGs identified between high G-AUC
and low G-AUC groups and MEgreen module genes obtained from WGCNA.
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FIGURE 4

Construction and validation of the 5 GRGs model in TCGA-UM cohort and GSE84976. (A) 10-fold cross-validation for tuning parameter selection in
the LASSO model. (B) The Y-axis shows LASSO coefficients and the X-axis is −log (lambda). Dotted vertical lines represent the minimum and one
standard error values of lambda. Differences in OS in different risk subgroups in TCGA-UM cohort (C) and GSE84976 cohort (D) were assessed using
the log-rank test. Compared to low-risk UM patients, a shorter OS is found in high-risk UM patients. (E) Time-dependent ROC curve depicting the
predictive accuracy of the risk model for OS at 1-, 3- and 5-year in the training set (AUC = 0.876, 0.929, and 0.889, respectively). (F) The AUC value
of the risk score for predicting 3-, 5- and 10-year survival in the validation cohort (GSE84976) were 0.857, 0.818 and 0.888, respectively. The PCA
demonstrates that the model can distinguish patients into GCNS_high and GCNS_low groups well in the training set (G) and validation set (H).
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power of GCNS. Using the same technique, we assigned each

patient a GCNS and divided them into two groups. The two

groups showed a clear difference in survival analyses, with the

GCNS_high groups showing a worse prognosis than the GCNS_low

groups, which is consistent with earlier findings (Figure 4D). The

training cohort’s AUC at 1, 3, and 5 years was 0.876, 0.929, and

0.889, respectively, showing that our model was incredibly

influential in predicting UM patients’ prognosis (Figure 4E). In

the validation set, similar outcomes were attained. Additionally,

ROC analysis revealed that the AUC of the model value varied

between 0.81 and 0.88, demonstrating the outstanding predictive

accuracy of our GCNS model (Figure 4F). PCA well-distinguished

patients in the various GCNS groups, showing that the model can

stratify risk subtypes in both the training and validation cohorts

(Figures 4G, H).
3.4 Development and validation of
prognostic nomogram

An integrated GCNS and clinical parameters prognostic

nomogram was created to forecast the prognosis of UM patients.

Clinical results at 1, 2, and 3 years were used to calculate the

patients’ survival rates (Figure 5A). The calibration plot

demonstrated that the GRGs signature offered exact estimates of

UM patients’ OS (Figure 5B). The nomogram has more

extraordinary predictive ability than any clinical trait, as shown

by the ROC curve’s AUC of 0.939. (Figure 5C). DCA plots showed

that adding clinical variables to GCNS might increase the precision

of survival prediction (Figure 5E). The clinical stage and survival

status showed a favorable link to a heatmap of clinical variables and

prognostic indicators of GRGs. However, other clinical

characteristics did not vary statistically (Figure 5D). A percentage

bar plot was used to compare the distributions of certain stages

among the groups. According to our research, stage II patients make

up the majority of patients in the GCNS_low group, whereas stage

III patients are in the GCNS_high group (Figure 5F). UM patients

were divided into subgroups based on unique clinical

characteristics, and the GCNS’s ability to predict outcomes was

evaluated in each group. Additionally, we saw that patients with

GCNS_high consistently had reduced survival chances in all

categories, which suggests that the prognostic model applies to

all situations.
3.5 Tumor microenvironment components

Given the significant differences in OS amongst GCNS

subgroups, we anticipated that the immune milieu would be

critical in tumor formation and clinical outcomes. Therefore, we

looked for distinctive immunological characteristics in the TCGA-

UM patients. Figure 6 illustrates how patients with GCNS_high

exhibited higher immune cell infiltration, including M2

macrophage cells and B cells. According to the estimating

methodology, patients with high GCNS had significantly higher

immune scores, stromal scores, and estimate scores (stromal score
Frontiers in Endocrinology 09
plus immune score) than those with low GCNS. According to the

data, a relationship exists between GCNS and the amount of

immune cell infiltration and TME components. Various rates of

disease onset and immunotherapeutic efficacy may result from

different immune infiltration levels. We assessed somatic

mutation profiles of UM patients based on GCNS in light of the

intrinsic link between genetic mutation and tailored treatment for

cancer patients. The top three mutant genes were GNAQ, GNA11,

and SF3B1, as shown in Figure 6. Combining the mutational gene

distributions with GCNS, we found the most prevalent mutation in

GCNS_low patients in GNAQ, whereas the most frequent mutation

in GCNS_high patients was in GNA11. This discrepancy may help

to explain why these groups respond to immunotherapy

so differently.
3.6 Immunotherapy and chemotherapy
response prediction

To support these findings, we used ssGSEA to compare the

immune cell makeup of two GCNS groups (Figure 7A). Those with

high GCNS had significantly more partial innate immune cells (like

macrophages and DC cells) and adaptive immunity cells (like B cells

and T cells) than patients with low GCNS. The GCNS_high

subgroup also had higher enrichment scores for functions created

linked to the immune system. These results imply that

immunological glycosylation-related characterization is more

prevalent in the GCNS_high group. We looked at the possibility

of this prognostic model to forecast UM patients’ responses to ICI

therapy. We examined the relationship between the TCGA-UM

cohort’s GCNS and the most common immunotherapeutic targets.

Nearly all ICGs showed noticeably greater expression in the

GCNS_high group, including PDCD1 (PD-1), CD274 (PD-L1),

CTLA4 and LAG3 (Figure 7B). As shown in Figure 7C, the

immunotherapy responses in the GCNS groups were contrasted.

One of the key characteristics of cancer that depends on the tumor’s

ability to survive in the human body is immune system evasion.

TIDE is a valuable biomarker for predicting the response to

immunotherapy in patients with diverse malignancies,

particularly those treated with ICI. This evaluation measures the

immune escape capability of tumors (27). In patients taking anti-

PD-1 and anti-CTLA-4 therapy, the poorer the ICI response, the

higher the tumor TIDE score. We found that patients with high

GCNS had significantly lower TIDE scores and a negative

association between GCNS and TIDE values (P < 0.001, | r | > 1).

The risk of a tumor immune escape increased as the TIDE value

increased. However, the effectiveness of immunotherapy has

decreased. We could infer from this that those with high GCNS

are better candidates for immunotherapy. Subsequently, we

evaluated the ability of our model to predict the efficacy of

immunotherapy using the IMvigor210 cohort to confirm the

validity of this discovery. The number of patients receiving anti-

PD-1 therapy who saw an objective and partial response increased

as the risk score rose (Figures 7D, E). According to our findings,

patients in the GCNS_high group had a higher chance of benefiting
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from immunotherapy. The GCNS may be a biomarker to pinpoint

the right patient population for immunotherapy.

To examine the differences in route enrichment between the

GCNS_high and GCNS_low groups, GSEA was used. We discovered

that allograft rejection, IL-6/JAK/STAT3 signaling, and the

inflammatory response were enriched in the GCNS_high group,

suggesting that GCNS_high patients are intimately connected to

immune regulation-related and inflammatory pathways

(Figure 7F). In order to broaden the practical application of the
Frontiers in Endocrinology 10
prognostic model, we forecast how susceptible patients in the GCNS_

high and GCNS_low groups would be to chemotherapeutic drugs.

Lapatinib, foretinib, LY317615 and 17-AAG all had lower IC50

values in the GCNS_high group, indicating that GCNS_high

patients respond better to these medications (Figure 7G). There

was a strikingly negative correlation between drug sensitivity and

GCNS for cytarabine, SN-38, PD-0332991 and cisplatin, suggesting

that these drugs may be more effective in treating GCNS_low people

identified by our model (Figure 7H).
A B
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FIGURE 5

Development and evaluation of prognostic nomogram integrating GCNS and conventional clinical traits. (A) A nomogram was generated to evaluate
the 1, 2, and 3-year survival rates of UM patients based on the TCGA cohort. The red line shows an example of how to predict the prognosis. (B) The
calibration curve depicted the consistency between nomogram predicted 1-, 2-, and 3-year survival rates of patients and actual survival rates.
(C) The AUC value predicted by the nomogram for patient prognosis remains about 0.939, which is significantly higher than other clinical features.
(D) Differences in clinicopathologic features and expression levels of GRGs between the GCNS_high and GCNS_low subtypes. (E) DCA curve was
drawn to compare the clinical efficacy of the nomogram based on the threshold probability. The upper lines indicate more net benefit. (F) UM stage
III and IV patients accounted for the largest proportion in the GCNS_high group and increased significantly compared to the GCNS_low group.
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3.7 AUP1 promoted the proliferation,
migration, and invasion abilities of UM cells

Using univariate and multivariate Cox analysis, the predictive

value of AUP1 was contrasted with that of other clinicopathological

factors. Forest plots showed that AUP1 had the highest HR among

the clinical features, suggesting that AUP1 constituted a separate

risk factor for predicting the prognosis of UM patients (Figures 8A,

B). Patients with high AUP1 expression had a significantly poorer
Frontiers in Endocrinology 11
prognosis than those with low AUP1 expression (Figure 8C). In

light of these results, AUP1 was chosen for further in vitro testing to

confirm its role in UM. GO analysis showed that high AUP1

expression groups were mainly focused on immunoglobulin

production, immunoglobulin complex and antigen binding,

suggesting the expression of AUP1 was related to immune

regulation and metabolism (Figure 8D). According to GSEA,

high-AUP1 groups were significantly enriched in allograft

rejection, IL6/JAK/STATA3 signaling and inflammatory response
FIGURE 6

The landscape of immune and stromal cell infiltrations in the GCNS_high and GCNS_low groups. The heatmap shows the normalized scores of
immune and stromal cell infiltrations according to the evidence from the TIMER database. The Wilcoxon Test compared the two groups’ statistical
differences in immune cell infiltration. For the GCNS_high group, blue-gray represents cells with lower infiltration, while yellow represents cells with
higher infiltration. The GCNS_high group tended to have higher levels of immune cell infiltration. The TMB calculated by package “maftools” was
also displayed. Patient’s clinical features and gene mutation patterns were also illustrated as an annotation.
frontiersin.org

https://doi.org/10.3389/fendo.2023.1163046
https://www.frontiersin.org/journals/endocrinology
https://www.frontiersin.org


Liu et al. 10.3389/fendo.2023.1163046
A

B

D E

F

G

H

C

FIGURE 7

Analysis of immune infiltration, immunotherapy and enrichment pathways. (A) The differences of tumor-infiltrating of 16 cell types and the score of
immune pathways between the GCNS groups by ssGSEA. Between-group differences were evaluated using the Wilcoxon test. The black dots
represent the median values, and asterisks indicate significance. (B) The differences in expression levels of ICGs between the GCNS_high and
GCNS_low subtypes. The lines inside the boxes represent the median values, and the lines outside indicate the 95% confidence interval.
(C) Prediction of response to immunotherapy. TIDE score was low in the GCNS_high group. Pearson correlation analysis showed a negative
correlation between GCNS and TIDE. (D) Comparing risk scores in groups with different anti-PD-L1 treatment response statuses in the IMvigor210
cohort. R represents complete response (CR)/partial response (PR); NR represents progressive disease (PD)/stable disease (SD). (E) The comparison
of the proportion of non-responders and responders to anti-PD-L1 immunotherapy between the two GCNS groups in the IMvigor210 cohort. (F)
GSEA showed that allograft rejection, IL-6/JAK/STAT3 signaling, and inflammatory response pathways related to immune regulation were activated
in the GCNS _high group. (G, H) Comparison of the IC50 values of chemotherapy agents in the two GCNS groups. The predicted IC50 values of 17-
AAG, LY317615, lapatinib and foretinib were generally lower in the GCNS_high group, whereas cytarabine, SN-38, PD-0332991 and cisplatin had a
lower IC50 in the GCNS_low group. *P < 0.05; **P < 0.01; ***P < 0.001.
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FIGURE 8

The results of univariate (A) and multivariate (B) Cox regression indicated that the AUP1 was an independent prognostic factor for OS in UM patients.
(C) Survival analysis of AUP1 in TCGA database. High expression of AUP1 is associated with a poor prognosis of UM. (D). GO analysis of AUP1 high
expression group. (E) GSEA enrichment plots represented enriched biological pathways in high AUP1 groups. (F) The role of the critical gene AUP1 in
uveal melanoma cell lines was verified in vitro. Both siRNAs significantly down-regulated AUP1 expression in MuM-2B and OCM-1 cell lines. (G, H)
The CCK-8 assay showing the proliferation ability of MuM-2B and OCM-1 cells decreased significantly after silencing AUP1. (I) EdU staining assay
indicated that downregulation of AUP1 expression repressed MuM-2B and OCM-1 cell proliferation. **P < 0.01; ***P < 0.001.
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signaling pathways (Figure 8E). The AUP1 knockdown system was

created in MuM-2B and OCM-1 cells (Figure 8F). The CCK-8 and

EdU assays revealed that AUP1 silencing decreased the

proliferation rate of UM cells (Figures 8G–I). Clonal formation

experiments simultaneously showed that the MuM-2B and OCM-1

cell lines’ capacity to form colonies was significantly diminished

(Figure 9A). Additionally, the transwell test and wound healing

experiment revealed a lower tendency for UM cell migration and

invasiveness following the reduction of AUP1 compared those

transfected with si-NC (Figures 9B, C). Comparing AUP1

knockdown to controls, tumor growth, size, and weight were all
Frontiers in Endocrinology 14
reduced (Figure 9D). These results suggest that AUP1 was involved

in regulating pro-oncogenic processes in UM.
4 Discussion

About 50% of patients with UM die from metastatic UM, the

leading cause of mortality in this population (28). Due to the unique

characteristics of the ocular anatomy, systemic medication

administration in UM patients is frequently suboptimal (29).

Because of this, researchers in the UM area are motivated to
A

B

D

C

FIGURE 9

Related experiments for AUP1. (A) Colony formation assays revealed that the ability of the MuM-2B and OCM-1 cell lines to produce colonies was
considerably reduced following AUP1 knockdown. (B, C) AUP1 knockdown dramatically reduced the migration and invasion capacity of MuM-2B and
OCM-1 cell lines in the wound healing and transwell experiment. (D) Experiments using naked mice. AUP1 knockdown decreased tumor growth, and
tumor volume and weight were lower in the knockdown group than in the control group. All tests were performed in two UM cell lines (MuM-2B
and OCM-1) to verify the accuracy and reproducibility of the results. *P < 0.05; **P < 0.01; ***P < 0.001.
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provide more accurate approaches for identifying and managing

metastatic illness. A more profound comprehension of the complex

ecology of UM is necessary to define the therapy goals for

UM patients.

Over 60 years ago (30), the first report of glycosylation

variations connected to oncogenic transformation appeared. The

disruption of crucial functions within cancer cells and the TME by

various types of glycoconjugates is thought to contribute to the

growth and spread of cancer (31). Several physiopathological

processes may be controlled through glycosylation, which

incorporates a number of enzymes, organelles, and other elements

to produce post-translational alterations linked to carbohydrates

(11). Due to glycosylation’s susceptibility, even minor pathogenic

alterations or metabolic stress can cause it to malfunction, creating

abnormal glycochains and glycoproteins (14). Understanding the

causes and consequences of glycosylation changes linked to tumor

illness will offer priceless insights into tumor development (11). The

complete picture of glycosylation in UM could be more intricate.

Therefore, more studies must be done.

Single-cell sequencing technology has made it possible to

examine the diverse tumor environment and extract gene

expression from UM tumor cells at the individual cell level,

essential for identifying the treatment targets for UM patients (32,

33). In this study, using bulk RNA-seq and scRNA data, we built a

GCNS model for UM patients and examined the expression

patterns of the GRGs. We first identified numerous cell

subpopulations inside UM and discovered that the activity of

GRGs differed throughout cell lineages, focusing on increased

glycosylation activity in B cells and plasma cells. The high G-

AUC subgroup was strongly enriched in apoptosis, MYC targets

V1, and PI3K/AKT/mTOR signaling pathways, all of which deserve

in-depth research in the future, according to GSVA algorithm.

Next, using LASSO algorithm on the TCGA dataset, a

prognostic model based on seven OS-related GRGs was created

and validated using GSE84976. UM patients were classified into

GCNS_high and GCNS_low groups, with those in the GCNS_high

group displaying a worse prognosis independent of clinical

parameters. We investigated the underlying mechanism after the

prognostic signature showed a robust predictive capacity for

prognosis in both the training and validation groups. As

anticipated, there were differences in the levels of immune

infiltration, TMB and immunotherapy response between the

GCNS_high and GCNS_low groups, which may cause the

heterogeneity of UM tumors.

A growing number of studies have shown that TME is

intimately connected to carcinogenesis and can, to some degree,

predict tumor prognosis and the effectiveness of immunotherapy.

The immune system is suppressed, and lymphatic circulation is

restricted in the eye, which eventually causes the CD8+ T cell

population to decline (34, 35). High levels of M2-type macrophages

and CD8+ T cells are found in the UM immune milieu in the

GCNS_high group. CD8+ T cells emerge as a critical player in the

tumor immunosurveillance system, indicating a bad prognosis for

UM patients. The two G subunit genes, GNAQ and GNA11, which

are mutually exclusive, frequently have to activate mutations in UM

(36). Notably, the GNAQ mutation was more widespread in the
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GCNS_low group, whereas the GNA11 mutation was more

prevalent in the GCNS_high group. Mutations in GNAQ and

GNA11 activate pathways that might serve as a foundation for

using MEK or Akt inhibitors in clinical settings (37, 38), thus

providing a reference for optimizing targeted therapy in

UM patients.

Tumor immunotherapy has quickly advanced, and it is now

becoming clear that its primary goals are to stop tumor cells from

evading the immune system, boost the body’s immunological

reaction to tumor cells, and cause immune-received tumor cells

to die (39, 40). James P Allison and Tasuku Honjo disclosed

numerous immunological checkpoints’ immunosuppressive

modes and created ICI based on this to block PD-L1/PD-1/

CTLA4 (41, 42). ICI in clinical trials have significantly improved

cancer treatment in some cancer types, including melanoma.

Contrary to previous study’s findings, we concluded that

immunotherapy would be successful for those in the GCNS_high

group using the TIDE algorithm and data from the IMvigor210

cohort. To obtain exact and individualized treatment, we propose

giving each UM patient a risk score based on a prognostic model,

ascertaining whether they fall into the GCNS_high or GCNS_low

group, and treating UM patients in the GCNS_high group with

immunotherapy. Rather than PD-1 and CTLA4, the critical sign of

failure in UM is the suppressive immunological checkpoint of

LAG3 (43). This partially explains why anti-PD-1 and anti-

CTLA4 treatments are ineffective. LAG3 is highly expressed in

tumor-infiltrating lymphocytes in UM, as Triozzi et al. discovered

in 2014 (44). There are several clinical studies evaluating the

therapeutic effectiveness of LAG3 inhibitors in treating various

malignancies, one of which (NCT02519322) uses relatlimab to

treat advanced UM (45).

Clarifying the function of modeling genes in controlling

glycosylation in UM is necessary to offer new treatment options for

malignancy. Our analysis of seven modeled genes showed that AUP1

had the greatest HR value. A subsequent survival study showed

elevated AUP1 expression levels were significantly associated with a

poorer clinical outcome in UM patients. Of note, suppressing AUP1

expression significantly inhibited the proliferation and invasiveness of

UM cells. Based on the studies, AUP1 is a prospective clinical

biomarker for UM. Meisler first recognized and defined AUP1,

which contains 410 amino acids and is found on human

chromosome 2p13 in a conserved linkage region (46). AUP1 has

an “ancient conserved area” in proteins from unrelated organisms

(47). Due to its age and high level of sequence conservation, the

protein encoded by AUP1 is essential for cell biology (48). However,

the function of AUP1 in UM has yet to be determined. The AUP1

high and low expression groups were compared using GSEA to

determine which biochemical pathways were significantly enriched in

either group. The results of GSEA identified 5 AUP1-associated

enriched pathways, and the IL-6/JAK/STAT3 signaling pathway

was part of the activated signaling pathway. To our knowledge, the

IL-6/JAK/STAT3 signaling pathway is aberrantly hyperactivated in

individuals with chronic inflammatory diseases, hematopoietic

malignancies and solid tumors (49). Several cell types within the

TME release IL-6, activating JAK/STAT3 signaling in both tumor

cells and immune cells infiltrating the tumor, promoting tumor-cell
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proliferation, survival, invasiveness and metastasis (49).

Consequently, we speculated that AUP1 is involved in the IL6/

JAK/STAT3 signaling pathway to drive the proliferation, invasion

and migration of UM cells. However, the crosstalk and mechanism of

the above bioinformatics prediction need verification with well-

designed experiments.

Despite the favorable results, the research nevertheless

contained several flaws. Since UM had a significant degree of

heterogeneity and our signature was built and validated using

cohorts in relatively small sample sizes, it is crucial to confirm the

GCNS propensity for prognostication in a big multicenter cohort

before applying the model in clinical practice. Additionally, we were

only concerned with how AUP1 silencing affected UM cell

proliferation, invasion, and migration. The description of the

potential relationship between the expression of AUP1 and the

prognosis for UM. More research is still needed to determine how

AUP1 contributes to the development and progression of UM

tumors through glycosylation alteration. The predictive biomarker

potential of our risk model creates fresh treatment options for UM.
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