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Background: PANoptosis, a cell death pathway involving pyroptosis, apoptosis,

and necroptosis, is pivotal in the development of malignancy. However, in the

field of breast cancer, the interaction between PANoptosis and tumor cells has

not been thoroughly explored.

Methods: We downloaded breast cancer data and GSE176078 single-cell

sequencing dataset from Gene Expression Omnibus (GEO) and The Cancer

Genome Atlas (TCGA) databases to obtain PANoptosis-associated genes. To

construct prognostic models, COX and LASSO regression was used to identify

PANoptosis-associated genes with prognostic value. Finally, immune infiltration

analysis and differential analysis of biological functions were performed.

Results: Risk grouping was performed according to the prognostic model

constructed by COX regression and LASSO regression. The low-risk group

showed a better prognosis (P < 0.05) and possessed higher levels of immune

infiltration and expression of immune checkpoint-related genes. In addition, the

lower the risk score, the higher the degree of microsatellite instability (MSI).

Meanwhile, radixin (RDX), the gene with the highest hazard ratio (HR) value

among PANoptosis prognosis-related genes, was explicitly expressed in artery

Iendothelial cells (ECs) and was widely involved in signaling pathways such as

immune response and cell proliferation, possessing rich biological functions.

Conclusion: We demonstrated the potential of PANoptosis-based molecular

clustering and prognostic features in predicting the survival of breast cancer

patients. Furthermore, this study has led to a deeper understanding of the role of

PANoptosis in breast cancer and has the potential to provide new directions for

immunotherapy of breast cancer.
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1 Introduction

Breast cancer is the most common malignancy in women. For

women, breast cancer accounts for nearly one-third of all new cancer

diagnoses, according to the 2022 U.S. Cancer Statistics report. Also,

breast cancer is the leading cause of cancer death in young and

middle-aged women aged 20-59 years (1). With the widespread

availability of mammography screening and effective combined

diagnosis and treatment, overall survival and prognosis of early-

stage breast cancer has improved significantly (2). However, for

advanced and metastatic breast cancer patients, the goal remains to

control symptoms and prolong survival while maintaining or

improving quality of life (3). There have been tremendous efforts in

the field of breast cancer in the last decade, but the “war” against

breast cancer continues (4). Since breast cancer is a global problem, it

is increasingly important to look deeper into it to provide a more

reliable basis for its diagnosis and treatment.

Studies over the years have revealed that programmed cell death

(PCD) is involved in various physiopathological processes and is

essential for host defense against pathogens and organismal

development. PCD mainly includes pyroptosis, apoptosis,

necroptosis, iron death, copper death, and PANoptosis. PCD is

closely related to innate immunity and plays a crucial role in

regulating the immunosuppressive tumor microenvironment

(TME) (5, 6). A large number of early studies focused on the

unique regulation of pyroptosis, apoptosis, and necroptosis itself,

and as studies progressed, extensive interactions were found

between different cell death complexes. Therefore, in 2019

Malireddi et al. proposed the new concept of PANoptosis, an

inflammatory PCD regulated by the PANoptosome that requires

the simultaneous involvement of cellular pyroptosis, apoptosis, and

necroptosis to activate (7). Currently, interferon-inducible protein 2

(AIM2), receptor-interacting protein kinases 1 (RIPK1), and Z-

DNA binding protein 1 (ZBP1) have been found to act as upstream

molecules of PANoptosis by sensing specific stimuli and triggering

the assembly of PANoptosome. The AIM2-PANoptosome, whose

constituent molecules include AIM2, ZBP1, pyrin, and apoptosis-

associated speck-like protein containing a CARD (ASC), has been

reported to play a role in functions in innate immunity and

inflammatory cell death (8). The RIPK1-PANoptosome was found

to be composed mainly of RIPK1, ASC, Caspase-1, Caspase-8, and

fas-associated protein with death domain (FADD), whose assembly

is mainly influenced by transforming growth factor b-activated
kinase 1 (TAK1) gene (7). The components of the ZBP1-

PANoptosome mainly include RIPK3, Caspase-8, Caspase-6,

ZBP1, ASC and nod like receptor protein 3 (NLRP3), etc. The

formation eventually leads to lysis cell inflammatory death

characterized by the activation of Caspase-1, Caspase-3, Caspase-8

and phosphorylation of mixed-lineage kinase domain-like

pseudokinase (MLKL) (9, 10). With the introduction of the

concept of PANoptosis, we realized that a single block or

disruption of one of the modes of death might not produce the

desired therapeutic effect, making the effective blocking of

PANoptosis overactivation by targeting the formation of

PANoptosome a new option for the treatment of human-related

diseases (11).
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Currently, there is growing evidence that PANoptosome

assembly and activation of PANoptosis is a self-protective

response generated by the body for effective defense (12, 13),

which is closely related to various diseases such as infectious

diseases, tumors, autoimmune diseases, and neurological diseases

(14–18). Although its specific regulatory mechanisms in disease are

not yet precise, PANoptosis has shown good promise as a potential

target for intervention. Karki et al. identified interferon regulatory

factor 1 (IRF1) as an upstream regulator of PANoptosis that

induced cell death during the development of colitis-associated

tumorigenesis and significantly reduced the incidence of colorectal

tumors in mice (19). According to our literature search, the

functional role of PANoptosis in the field of breast cancer has not

been explored. However, as breast cancer is the most common

malignancy in women, it is urgent that we investigate its role in

PANoptosis. In this paper, we aim to identify biomarkers associated

with PANoptosis in breast cancer that can provide a relatively

reliable prediction of breast cancer prognosis and explore effective

immunotherapy. Our results complement the studies on the

interaction between PANoptosis and tumors and promise to

explore promising immunotherapeutic targets for breast

cancer patients.
2 Methods

2.1 Data download and processing

The TCGA data was downloaded as a training cohort using the

“TCGA” R package. Since more than 99% of breast cancer patients

were female, we excluded 13 male patients to maintain data

integrity and selected breast cancer patients with survival times

between 3 and 120 months. The GSE21653 breast cancer dataset

was downloaded as a validation cohort through the GEO database

(20). All data were converted to log2 for subsequent analysis.
2.2 Single-cell sequencing data download
and processing

Single-cell dataset of GSE176078 breast cancer was downloaded

from the GEO database. Next, we performed data quality control.

We retained cells with less than 10% of mitochondrial genes, cells

with a total number of genes greater than 200, and genes expressed

between 200 and 7000 and expressed in at least ten cells, removed

samples with less than 1000 cell counts after filtering, and finally

included 20 eligible samples for further analysis. The number of

highly variant genes was set at 3000. These 20 samples were

corrected and integrated by the IntegrateData function. Then, the

dimensionality of the data was reduced using the UMAP method

and the cells were clustered using the “KNN” (K- Nearest Neighbor)

method with a resolution setting of 0.2. Subsequently, annotation

was performed with known cell-specific markers (21). Finally, each

cell’s percentage of PANoptosis-associated genes was obtained by

import ing PANoptos is-associated genes through the

“PercentageFeatureSet” function (22).
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2.3 Single sample gene enrichment analysis

The ssGSEA analysis is commonly used to quantify a sample’s

enrichment fraction of gene sets. First, we selected 66 PANoptosis-

associated genes as gene sets according to the literature (22). Then,

ssGSEA was performed by GSVA R package to quantitatively

elucidate the enrichment fraction of the 66 PANoptosis genes in

each breast cancer sample. The median of the enrichment scores

obtained by ssGSEA analysis was then used to distinguish the

TCGA breast cancer cohort into high PANoptosis and low

PANoptosis groups and to perform subsequent analyses.
2.4 Construction of a PANoptosis-related
prognostic model and external validation

First, univariate Cox regression analysis initially obtained

PANoptosis-related genes with prognostic value. Subsequently, the

genes with prognostic PANoptosis-related genes were further

screened by counting least absolute shrinkage and selection

operator (LASSO) regression analysis. Finally, the genes with

prognostic value were identified by multivariate Cox regression

analysis to identify genes with prognostic value and construct a

prognostic model. This way, PANoptosis scores could be calculated

for each breast cancer sample using coefficients multiplied by

expression followed by accumulation. Based on the median value,

TCGA breast cancer cohort patients were divided into high-risk and

low-risk groups.We then explored the prognostic differences between

the two groups and assessed the accuracy of the model. The

GSE21653 cohort in GEO was selected as the external validation

cohort. In the GSE21653 validation cohort, PANoptosis scores were

calculated for each sample according to the model formula, and

patients were divided into high- and low-risk groups based on the

median. Next, a survival analysis was performed to determine if the

prognosis differed between the validation cohort’s high- and low-risk

groups. ROC curves were used to assess the accuracy of the model.

Principal component analysis (PCA) was used to explore whether the

model could better group high- and low-risk.
2.5 Immune-infiltration analysis

Immune-infiltration analysis was performed by the R package

IOBR (23), using the CIBERSORT, QUANTISEQ, and ESTIMATE

algorithms for immune infiltration analysis of breast cancer samples

and explored the differences in immune cell infiltration between

different risk score groups. We explored the differences in MSI

between different risk score groups to explore the sensitivity of

different subgroups of patients to immunotherapy. MSI was

analyzed by the PreMSIm package (24), and the data were

normalized from 0-1 during the analysis.
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2.6 Enrichment analysis

Based on the median risk score, 945 breast cancer patients were

divided into high-risk and low-risk groups. GO/KEGG, GSEA

enrichment analysis was performed using the clusterProfile R

package to further validate the differential functional enrichment

pathways between the high- and low-risk groups. Functional

enrichment pathways and marker gene sets associated with

different cell type subpopulations in single-cell datasets were

explored using the irGSEA package (25), and marker gene sets

were obtained from Molecular Signatures Database (MSigDB,

http://software.broadinstitute.org/gsea/msigdb/) were obtained,

enrichment analysis was performed and heat maps were drawn

by the AUCell method.
2.7 Cell culture and transfection

The human breast cancer cell line used in this study was BCAP-

37, which was provided by the Medical Experiment Center of

Yan’an University. The cells were cultured in DMEM medium

(BI, Israel) with 10% fetal bovine serum (FBS) (BI, Israel) and

placed in a constant temperature incubator at 37°C with 5% CO2

concentration. The siRNA sequence used in this study was RDX 5′-
UAGUUUGUGUUGUUCCAAUACACGC -3′ (GenePharma,

China) (26). According to the transfection manual, the previously

synthesized siRNA targeting the RDX was transfected into cells

using Lipo 2000 (Invitrogen, USA).
2.8 RNA isolation and quantitative
real-time PCR analysis

In this study, Quantitative RT-PCR was used to detect the

knockdown potency of siRNA. Total cellular RNA was extracted

and the concentration of RNA was examined using TRIzoI reagent

(Thermo Fisher Scientific, USA) according to the manufacturer’s

instructions. Reverse transcription was performed using Hifair®
III 1st Strand cDNA Synthesis SuperMix for qPCR (gDNA

digester plus) (Yeasen Biotechnology, China). Hieff® qPCR

SYBR Green Master Mix (No Rox) (Yeasen Biotechnology,

China) was used for qPCR. GAPDH was used as an internal

reference gene. The primers used in this experiment were as

follows: RDX(forward,5′-TGCACCTCGTCTGAGAATCA-3′;
reverse,5′-CTCTAATTGTGCCCTTTCCAAC-3′); GAPDH

(forward,5′-ACCACAGTCCATGCCATCAC-3′; reverse,5′-
TCCACCCTGTTGCTGTA-3′). The reaction conditions were

95°C, 5min; 95°C, 10s; 60°C, 30s. After 40 cycles of

amplification, the amplification curves and lysis curves were

confirmed to be correct and then analyzed.
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2.9 CCK8 assay

In this study, the viability of BCAP-37 cells was assayed using

the Cell Counting Kit-8 (CCK8) (IC-1519, InCellGene, Tx. USA)

method. Cells were inoculated in 96-well cell culture plates

according to 1500 cells/well, followed by siRNA transfection.

After transfection was completed, the cells were continued to be

incubated in the incubator, and 10ul of CCK-8 reagent was added at

the same time every day and assayed at 0 h, 24 h, 48 h, and 72 h,

respectively. Finally, the absorbance at 450 nm was detected using

an enzyme marker (Molecular Devices, USA).
2.10 Statistical analysis

R software was used for statistical analysis, and univariate and

multivariate analyses were performed using COX regression

methods. All data are expressed as the means ± SD of the three

experimental groups. *p<0.05, **p<0.01, ***p<0.001 were

considered statistically significant.
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3 Results

3.1 Single-cell dataset analysis

We first analyzed the single-cell sequencing dataset of breast cancer

to integrate the different samples. Then all cells were clustered into 13

clusters by the KNN clustering algorithm (Figure 1A). PANoptosis-

related genes were entered using the “PercentageFeatureSet” function,

and finally, the percentage of PANoptosis genes in each cell was

obtained. The cells were divided into low PANoptosis cells and high

PANoptosis cells according to the median and displayed in a UMAP

plot (Figure 1B). The expression of the surface marker genes in

different clusters was observed by different cell types (Figure 1C),

and six cell types were finally identified. B cells, endothelial cells,

epithelial cells, macrophages, T cells, and fibroblasts, respectively

(Figure 1D), and the calculation of cell type ratios between samples

was performed (Figure 1E). Finally, by GSVA analysis, we enriched

mainly to immune response-related pathways such as “TNFA-

SIGNALING-VIA-NFKB”, “IL2-STAT5-SIGNALING”, and

“COMPLEMENT”, etc.; cell proliferation and apoptosis-related
FIGURE 1

Sequencing analysis of PANoptosis at the single cell level. (A) Cells from 20 samples were clustered into 13 subclasses. (B) The distinction between
high PANoptosis and low PANoptosis groups is based on the median expression of PANoptosis-related genes. (C) Expression of known cellular
markers in different subclasses. (D) Differentiation of cells into B cells, endothelial cells, epithelial cells, macrophages, T cells, and fibroblasts based
on different cellular markers. (E) Percentage of each cell among the samples. (F) Functional differences between the high PANoptosis and low
PANoptosis groups.
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signaling pathways include: “G2M-CHECKPOINT”, “PI3K-AKT-

MTOR-SIGNALING”, “APOPTOSIS”, etc., and cell metabolism-

related pathways like “FATTY-ACID-METABOLISM” ,

“OX I D A T I V E - P H Y S I UM ” , e t c . “OX I D A T I V E -

PHOSPHORYLATION”, “GLYCOLYSIS”, etc., as well as

“EPITHELIAL-MESENCHYMAL-TRANSITION”, “DNA-REPAIR”

and “ANGIOGENESIS” pathways (Figure 1F). The results of this

study showed that compared with the low PANoptosis group, the

high PANoptosis group mediated enhanced immune response,

complement system, rejection and inflammation, and the activation

of cellular apoptosis and other signaling pathways. Therefore, we can

stop the progression of malignant tumors by activating multiple

programmed death modes such as apoptosis, pyroptosis, and

necroptosis (27).
3.2 Construction and validation of a
PANoptosis-related prognostic model

First, we obtained DEGs from single-cell sequencing data

analysis. 763 genes were then acquired by matching TCGA, GEO,
Frontiers in Endocrinology 05
and single-cell sequencing dataset coexisting genes for subsequent

analysis. In the TCGA cohort, univariate Cox regression analysis

initially obtained genes associated with patient prognosis. Then

LASSO regression analysis was performed. The results showed that

gene contraction tended to stabilize with minimal partial likelihood

deviation and optimal LAMDA of 0.05 when the number of

included genes was 29 (Figures 2A, B). Finally, multivariate Cox

regression analysis was performed, using p-values less than 0.05 to

construct the prognostic model (Figures 2C, D). Risk-

score=CXCL16*-0.22815+DST*-0.26169+IKZF3*-0.22145

+NFKB IA * - 0 . 3 2 0 3+PSMD7 * 0 . 3 1 55 5+RDX * 0 . 4 2 29 2 9

+RPA3*0.393654+UBE2L6*-0.18363. Next, we used the median to

divide the patients into high-risk and low-risk groups. In Figure 2E,

the prognosis was worse in the high-risk group in the TCGA

training cohort (P<0.0001). Similarly, in the GEO validation

cohort, we observed that patients in the high-risk group had a

significantly worse prognosis than those in the low-risk group

(P<0.05, Figure 2F). Meanwhile, we assessed the predictive

efficacy of the model with ROC curves, and the results showed

that the AUCs of the TCGA cohort were 0.782, 0.715, 0.731, and

0.712 at 1, 2, 3, and 5 years, respectively (Figure 2G). The AUCs of
FIGURE 2

Construction of prognostic models and evaluation. (A, B) LASSO regression analysis to screen predictive genes. (C) Multivariate Cox regression
analysis to screen prognostic genes. (D) Modeling the expression of genes in different risk groups. (E) Kaplan-Meier survival curves in different risk
groups in the TCGA training cohort. (F) Kaplan-Meier survival curves in different risk groups in the GEO validation cohort. (G, H) ROC curves in TCGA
and GEO cohorts. (I, J) PCA analysis in TCGA cohort and GEO cohort. **** p<0.0001 was considered statistically significant.
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the GSE21653 cohort were 0.537, 0.602, and 0.638 at 1, 2, and 5

years, respectively (Figure 2H), so the model possessed a better

predictive efficacy. Finally, PCA analysis of the eight genes in the

model’s training and validation sets revealed that the model could

group breast cancer patients well in the training and validation

cohorts (Figures 2I, J).
3.3 Immune-infiltration analysis

As shown in the above analysis, there were significant

differences in patient outcomes between the different risk groups.

In order to investigate the etiology and to provide a corresponding
Frontiers in Endocrinology 06
reference for immunotherapy, we analyzed the differences in the

level of immune infiltration between the different groups by the

CIBERSORT algorithm. The results showed that only M0 and M2

macrophage infiltration was relatively high in the high-risk group.

In contrast, immune cell infiltration was more significant in the

low-risk group, including B cells, T cells, NK cells, and M1

macrophages (Figure 3A). Next, we investigated the expression of

genes associated with immune checkpoints. As shown in Figure 3B,

most of the immune checkpoint-related genes, such as CD274,

PDCD1, BTLA, and CTLA4, were expressed in higher amounts in

the low-risk group. Subsequently, we continued to evaluate the level

of immune infiltration between different risk groups by

QUANTISEQ and ESTIMATE algorithm (Figures 3C, D). Similar
FIGURE 3

Immunocorrelation analysis. (A) CIBERSORT algorithm to evaluate the level of immune infiltration in different risk groups. (B) The expression of
immune checkpoints in different risk groups. (C) ESTIMATE algorithm to evaluate the level of immune infiltration in different risk groups. (D) QUANTISEQ
algorithm to evaluate the level of immune infiltration in different risk groups. (E) Differences in microsatellite status between different risk groups.
(F) Modeling genes in TCGA cohort by ConsensusClusterPlus. (G) Relationship between different clusters and risk scores. (H) Expression of modeled
genes in different clusters. (I) Levels of immune infiltration between different clusters. (J) Predictive analysis between different clusters. (K) Differences in
HRD between different clusters. *p<0.05, **p<0.01, ***p<0.001, **** p<0.0001 were considered statistically significant.
frontiersin.org

https://doi.org/10.3389/fendo.2023.1164930
https://www.frontiersin.org/journals/endocrinology
https://www.frontiersin.org


He et al. 10.3389/fendo.2023.1164930
to the previous results, the low-risk group possessed a higher level of

immune infiltration. Many previous studies have shown that

microsatellite status can reflect the sensitivity to immunotherapy

(28–30), so in this study, we quantified the microsatellite

status among the TCGA breast cancer dataset, distinguishing

MSI-H, MSI-L/MSS. The results showed that a lower risk score

represented a higher degree of MSI, i.e., a higher sensitivity to

immunotherapy (Figure 3E). Immediately after, we performed

ConsensusClusterPlus on the expression levels of the modeled

genes, showing that the best can be classified into 3 categories

(Figure 3F). The Sankey diagram analyzed the relationship between

different clusters and risk scores, and the results showed that cluster

C mainly corresponded to the high-risk group. In contrast, cluster B

mainly corresponded to the low-risk group (Figure 3G). Similar to

the above results, cluster A and B had relatively high levels of

immune infiltration and higher expression of immune checkpoint-

related genes (Figures 3H, I). In addition, cluster A and B, with

higher levels of immune infiltration, also had a better prognosis

than cluster C (Figure 3J). Finally, we found that cluster B had a

higher homologous recombination deficiency (HRD) score

(Figure 3K), and previous studies have shown that tumors

with high HRD scores exhibit immunosensitive TME and that

high HRD scores are potential predictors for identifying effective

immunotherapy in breast cancer patients (31). In addition, it has

been shown that tumors with high HRD scores are susceptible to

treatment with poly (ADP-ribose) polymerase (PARPi) inhibitors

(PARPis) but are prone to resistance (32), while combination

therapy with immune checkpoint inhibitors (ICIs) can induce

PARPi sensitization, while antitumor activity is superior to that of

either agent alone (33). Thus, our modeled genes showed good

predictive efficacy whether compared by risk score grouping

constructed by Cox regression analysis or by grouping by

ConsensusClusterPlus.
3.4 Cellular localization and
prognostic significance of RDX
and its biological functions

In the Cox and LASSO regression analysis, radixin (RDX) had

the highest hazard ratio (HR) value, so we performed a survival

analysis for RDX. The results showed that patients with high RDX

expression had a significantly worse prognosis than those with low

RDX expression (Figure 4A). In addition, the PAM50 classification

showed that RDX was highly expressed in the basal-like subtype of

breast cancer and showed a tendency to increase malignancy with

the subtype (Figure 4B). After that, we continued to explore the

cellular localization of RDX and found that RDX was explicitly

expressed in endothelial cells (Figure 4C), so we further subdivided

the endothelial cells and identified a total of 8 clusters according to

the decision tree showing that the KNN method with a resolution

setting of 0.4 was the best differentiation (Figures 4D, E). These

subtypes were annotated as angiogenic, lymphatic, artery I, artery II,

capillaries, vein and Mitochondria-associated capillaries ECs

according to published endothelial cell markers (34, 35)

(Figures 4F, G). Next, our analysis revealed that RDX was
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specifically expressed among the artery I ECs (Figure 4H). Thus

presumably RDX has the potential to serve as its specific marker.

Then we performed GSVA enrichment analysis and found that

artery I ECs were enhanced by “INTERFERON-ALPHA-

RESPONSE”, “KRAS-SIGNALING-DN”, and “ESTROGEN-

RESPONSE-LATE”, “ WNT-BETA-CATENIN-SIGNALING “

pathways while inhibiting the activity of “ COMPLEMENT “,

“MYOGENESIS”, “ KRAS-SIGNALING-UP “ and other signaling

pathways and thus participate in regulating cell proliferation,

differentiation and immune response. Meanwhile, aberrant

proliferation, cell metabolism, apoptosis and enhanced immune

response mediated by angiogenic ECs; activation of pathways such

as epithelial-mesenchymal transition (EMT) and myogenesis exist

in capillaries ECs; and Mitochondria- associated capillaries,

lymphatic, vein and artery II ECs were enriched to metabolic,

proliferative, immune, apoptosis and other related signaling

pathways (Figure 4I). Next, we used the median expression of

RDX in the TCGA breast cancer dataset to distinguish the high RDX

group from the low RDX group and took the DEGs with at least

more than 1-fold change between the two groups for pathway

enrichment. Among them, “humoral immune response”, “gamma-

aminobutyric acid signaling pathway”, “GABA-A receptor complex

“, “collagen-containing extracellular matrix”, “intermediate

filament cytoskeleton”, “endopeptidase inhibitor activity”,

“Estrogen signaling pathway “ were identified as differentially

enriched pathways in GO/KEGG (Figure 4J). Previous studies

have shown that B cells activate immune responses through their

mediated humoral immunity (36); g- aminobutyric acid (GABA)

has immunomodulatory functions that activate cytokine secretion,

regulate T cell proliferation and alter T cell migration (37); and

activation or enhancement of GABA-A receptor activity can

sensitize cancer cells to ICIs (38). In addition, the estrogen

pathway is a regulator of the immune response (39); extracellular

mesenchyme can influence immune function by suppressing

antitumor immune responses (40, 41). Thus, we know that the

signaling pathways enriched by GO/KEGG are widely involved in

immune regulation and cell proliferation. Finally, the differential

pathways between high and low RDX groups were identified by

GSEA analysis and enriched to “ EPITHELIAL-MESENCHYMAL-

TRANSITION “, “INFLAMMATORY-RESPONSE “, “ G2M-

CHECKPOINT “, “HYPOXIA”, “IL6-JAK-STAT3-SIGNALING “

and “OXIDATIVE-PHOSPHORYLATION” pathways (Figures 4K,

L). The above studies showed that the expression level of RDX could

mediate signaling pathways such as immune response, cell

migration and proliferation, which possesses rich biological

functions and is promising as a new target for breast

cancer immunotherapy.
3.5 RDX knockdown leads to reduced
viability of BCAP-37 cells in vitro

We assessed the knockdown ability of RDX siRNA in the

BCAP-37 breast cancer cell line using the qRT-PCR method and

after 24 hours of transfection, we tested the expression level of RDX
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mRNA (Figure 5A) and found that siRNA sequences could lead to a

significant reduction in RDX mRNA expression (p<0.05). Next, we

performed CCK8 analysis, and cell viability was significantly

reduced after RDX knockdown (Figure 5B). The experimental

results suggest that RDX may play an important role in the

malignant proliferation of breast cancer cells.
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4 Discussion

Previous studies have shown that pyroptosis, apoptosis and

necroptosis each play a crucial role in anti-cancer immunity (42–

44). For example, in breast cancer, cellular pyroptosis enhances

antitumor immunity (45); cellular apoptosis inhibits cancer cell
FIGURE 4

Cellular localization, the prognostic significance of RDX, and its biological functions. (A) The survival curve of RDX. (B) Expression of RDX in different
PAM50 isoforms. (C) Expression of modeled genes in different cell types. (D) Selecting the best classification threshold using decision trees.
(E) Distinguishing endothelial cells into 8 subtypes based on the optimal point. (F) Identification of 8 subtypes as angiogenic, lymphatic, artery I, artery II,
capillaries, vein, and Mitochondria-associated capillaries ECs based on published endothelial cell subtype markers. (G) Endothelial cell subtype Expression
of annotation markers. (H) Expression of modeled genes among endothelial cell subtypes. (I) Enrichment pathways of different endothelial cell subtypes.
(J) GO/KEGG analysis of DEGs’ biological functions and signaling pathways between the high and low RDX groups. (K, L) GSEA analysis to identify
differential pathways between high and low RDX groups. **p<0.01, ***p<0.001 were considered statistically significant.
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proliferation (46); activation of the necroptosis signaling pathway

can exert antitumor effects (47). However, as research progresses,

we understand that they can have synergistic effects among

themselves and act further. Therefore, in recent years, several

studies have focused on gaining insight into the potential role of

PANoptosis in tumor therapy and its regulatory mechanisms in

infectious diseases (viral, bacterial, fungal, parasitic) (11, 12, 48, 49).

Several pieces of evidence targeting pyroptosis and necroptosis may

be a new option for the next stage of tumor therapy (50) and a

preliminary elucidation of the significance of PANoptosis in
Frontiers in Endocrinology 09
treating a variety of tumors. For example, Pan et al. found that

PANoptosis demonstrated a better predictive ability of

immunotherapy response in gastric cancer (22). Lin et al. showed

that PANoptosis triggered by inhibition of cysteine desulfurase

(NFS1) could improve the antitumor efficacy of oxaliplatin-based

chemotherapy in colorectal cancer treatment (51). Song et al.

showed that PANoptosis could improve the antitumor efficacy of

oxaliplatin-based chemotherapy in colorectal cancer treatment by

combining Song et al. triggered PANoptosis by co-delivery of

metformin and adriamycin into melanoma cells, which in turn
B

A

FIGURE 5

Cell Experiment. (A) qRT-PCR assessment of RDX mRNA levels after 24 hours of transfection. siRNA sequence could lead to a significant decrease in
RDX mRNA expression (P<0.05). (B) CCK8 assay. the viability of the cells was significantly reduced after RDX. knockdown. All data are expressed as
the means ± SD of the three experimental groups. *p<0.05, **p<0.01, ***p<0.001 were considered statistically significant.
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prevented melanoma progression (52). Therefore, it becomes

attractive to explore the role of PANoptosis in breast cancer, not

only to inform the study of programmed death in breast cancer but

also to help provide new directions for the treatment of breast

cancer patients. In this study, we obtained the percentage of

PANoptosis-related genes in each breast cancer cell through an

in-depth analysis of breast cancer profiles in the TCGA and GEO

databases. The cells were distinguished into high PANoptosis and

low PANoptosis groups based on the median of their expression.

Subsequently, GSVA enrichment analysis revealed the activation of

signaling pathways such as immune response, metabolism, and

cellular apoptosis in the high PANoptosis group, so we venture to

speculate that high PANoptosis expression is beneficial for reducing

the incidence of breast cancer. Next, we first performed univariate

Cox regression analysis, LASSO regression analysis, and

multivariate Cox regression on the differentially expressed genes

obtained from the single-cell sequencing data analysis and screened

eight genes (CXCL16, DST, IKZF3, NFKBIA, PSMD7, RPA3,

UBE2L6, RDX) that were associated with prognosis. CXCL16 (C-

X-C motif chemokine ligand 16) belongs to the CXC chemokine

family and plays an important role in human immunity. In TNBC,

CXCL16 promotes the recruitment of NK cells (natural killer cells)

and enhances their cytotoxicity, thereby inhibiting the growth and

metastasis of primary tumors and enhancing anti-tumor immunity

(53). DST (dystonin) is a member of the plakin family of proteins

that connects the cytoskeletal network. It is significantly associated

with a variety of immune infiltrating cells, immune checkpoints,

and chemokines, and is a potential tumor suppressor by altering the

tumor immune microenvironment and thus influencing the

development of breast cancer (54). IKZF3 (ikaros family zinc

finger 3) belongs to the ikaros family of zinc finger proteins,

hematopoietic-specific transcription factors involved in the

regulation of lymphocyte development, also known as Aiolos,

which influence tumor development by enhancing the expression

of genes involved in cytokine signaling and cytotoxicity (55).

NFKBIA (NFKB inhibitor alpha) is a classical repressor of the

NF-kB signaling pathway. In TNBC, overexpression of NFKBIA

significantly inhibits NF-kB activity and cancer cell proliferation

and invasion, and it is a tumor suppressor that inhibits breast cancer

progression (56). PSMD7 (proteasome 26S subunit, Non-ATPase 7)

is a core component of the 26S proteasome and is essential for the

degradation of ubiquitinated proteins in the proteasome. PSMD7 is

significantly upregulated in breast cancer tissues and its

overexpression is strongly associated with poorer tumor subtypes,

larger tumors, later TNM staging, and poorer prognosis (57). RPA3

(replication protein A3) belongs to DNA damage repair genes and

is considered a risk factor for breast carcinogenesis (58). UBE2L6

(ubiquitin conjugating enzyme E2 L6) is actively involved in fatty

acid metabolism and its overexpression can prevent breast cancer

(59). RDX is a cytoskeletal protein, which together with ERZ (ezrin)

and MSN (moesin) is called scaffolding proteins (ERM proteins).

RDX promotes cancer cell migration by regulating the degree of

macrophage infiltration in the tumor microenvironment by

anchoring other proteins to the cell membrane and thus

regulating their localization and function (60). We then examined
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the efficacy of the prognostic model constructed with these eight

genes, dividing patients into high-risk and low-risk groups and

observing significant differences in patient outcomes between the

groups. Therefore, we analyzed the differences in the level of

immune infiltration between the different risk groups using the

CIBERSORT, QUANTISEQ, and ESTIMATE algorithms. The

results suggested that the low-risk group was closely associated

with immune checkpoints and reflected a high degree of MSI, so we

reasonably hypothesized that the low-risk group might benefit from

immunotherapy. Since RDX had the highest HR values in COX

regression and LASSO regression analysis, and we also found that

RDX was significantly highly expressed in the most malignant

basal-like subtype, we explored RDX further. The results showed

that patients with high RDX expression had a significantly worse

prognosis than those with low RDX expression, and RDX was

specifically expressed among artery I ECs. In addition to their

physiological roles, endothelial cells are actively involved in innate

and adaptive immune responses. They also have many innate

immune functions, including cytokine secretion, phagocytosis,

and antigen presentation (61). Then we found that RDX is also

widely involved in immune regulation and cell proliferation by

enrichment analysis of GSVA, GO/KEGG, GSEA, etc. Finally, we

demonstrated in an in vitro cellular assay that RDX knockdown in

human breast cancer BCAP-37 cell line significantly inhibited the

proliferation of breast cancer cells, indicating that RDX plays an

important role in the development of breast cancer. It is expected to

be a potential therapeutic target for breast cancer in the future.

Although there are still some doubts about PANoptosis, its related

research progress has undoubtedly opened up a new field for

researchers. We expect to clarify the specific role and regulatory

mechanism of PANoptosis in the disease soon.
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