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Objective: Acute ischemic stroke (AIS) brings an increasingly heavier economic

burden nowadays. Prolonged length of stay (LOS) is a vital factor in healthcare

expenditures. The aim of this study was to predict prolonged LOS in AIS patients

based on an interpretable machine learning algorithm.

Methods:We enrolled AIS patients in our hospital from August 2017 to July 2019,

and divided them into the “prolonged LOS” group and the “no prolonged LOS”

group. Prolonged LOS was defined as hospitalization for more than 7 days. The

least absolute shrinkage and selection operator (LASSO) regression was applied

to reduce the dimensionality of the data. We compared the predictive capacity of

extended LOS in eight different machine learning algorithms. SHapley Additive

exPlanations (SHAP) values were used to interpret the outcome, and the most

optimal model was assessed by discrimination, calibration, and clinical utility.

Results: Prolonged LOS developed in 149 (22.0%) of the 677 eligible patients. In

eight machine learning algorithms, prolonged LOS was best predicted by the

Gaussian naive Bayes (GNB) model, which had a striking area under the curve

(AUC) of 0.878 ± 0.007 in the training set and 0.857 ± 0.039 in the validation set.

The variables sorted by the gap values showed that the strongest predictors were

pneumonia, dysphagia, thrombectomy, and stroke severity. High net benefits

were observed at 0%–76% threshold probabilities, while good agreement was

found between the observed and predicted probabilities.
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Conclusions: The model using the GNB algorithm proved excellent for

predicting prolonged LOS in AIS patients. This simple model of prolonged

hospitalization could help adjust policies and better utilize resources.
KEYWORDS

prolonged hospital stay, stroke, machine learning, prediction model, SHAP (SHapley
Additive exPlanations)
Introduction

With acute ischemic stroke (AIS) being the first leading cause of

disability and the second leading cause of mortality worldwide,

economic burden remains a prominent issue in clinical practice (1).

Length of stay (LOS) is a vital factor of overwhelmed healthcare cost

expenditures. Pellico-Lopez et al. (2) found that 15.8% of the total

cost of stroke cases depended on the cost of prolonged stay.

Reducing unnecessary hospital stays is important to relieve

insurance stress, especially under the policy of diagnosis-related

groups (DRGs) payment. Therefore, it is essential that the risk

model of prolonged LOS be analyzed to relieve economic burden

and optimize the discharge plan for patients with AIS.

The average LOS following stroke onset varied according to

time and country. In the United States, the LOS for stroke

hospitalizations decreased from 2004 to 2018, according to the

data survey of 8 million stroke patients (unadjusted: 6.3 days in

2004 vs. 5.6 days in 2018; adjusted: 7.6 days in 2004 vs. 5.4 days in

2018) (3). A post-hoc analysis (4) based on information from

multiple sources in China found that the median and IQR of LOS

for AIS was 10.0 (7.0–13.0) days. Hao et al. (5) found that

malnutrition estimated by the CONUT score on admission could

increase LOS in elderly AIS patients. Moreover, Neale et al. (6)

found that stroke patients receiving an early supported discharge

model of care spent fewer days in hospital and incurred less cost. In

addition, the mode of treatment could also be related to the LOS

after a stroke. Intravenous tissue plasminogen activator (IV-tPA)

was associated with an increase in LOS in stroke patients treated

with endovascular treatment within 4.5 h (7).

Only a few articles have currently established risk models for

predicting the length of hospital stay in stroke patients. Koton et al.

(8) evaluated the performance of the prolonged length of stay

(PLOS) score in the cohort of stroke, and concluded that the

PLOS score could be clinically useful in different healthcare

systems. However, they only included patients from 2002 to 2007,

and the treatments for stroke have developed dramatically in recent

years. Nowadays, artificial intelligence is able to deduce from

voluminous datasets and to incorporate nonlinear interactions

among a large set of predictors (9–11). For machine learning

predicting prolonged LOS in AIS, Kurtz et al. (12) accurately

predicted the LOS of patients admitted to the ICU with stroke

through machine learning methods, but they did not include stroke-
02
specific data, such as the National Institutes of Health Stroke Scale

(NIHSS) score or neuroimaging findings. Yang et al. (13) found that

the artificial neural network model achieved adequate

discriminative power for predicting prolonged LOS after AIS and

identified crucial factors associated with a prolonged hospital stay.

However, they did not include pneumonia or another important

onset symptom of stroke, which proved to be strong influencing

factors of LOS in AIS patients.

As a result, we set out to gather extensive stroke-specific data

and create a scientific risk model based on an interpretable machine

learning algorithm to predict prolonged hospital LOS in AIS

patients. This simple model of prolonged hospitalization could

help adjust policies and better utilize resources.
Methods

Participant selection

This study continuously enrolled AIS patients who were

admitted to the Department of Neurology at the Second

Affiliated Hospital of Xuzhou Medical University between

August 2017 and July 2019 (Figure 1). The inclusion criteria

were as follows: (1) age ≥ 18 years; (2) a diagnosis of AIS (14,

15)and within 24 h of onset (16, 17). The exclusion criteria were as

follows: (1) patients who needed to be transferred from one

department (or hospital) to another; (2) patients who had in-

hospital strokes; (3) patients who had transient ischemic attack;

and (4) patients who were unable to extract complete data. This

flowchart indicated that our hospital managed about a total of

1,354 patients from August 2017 and July 2019, of whom 745

(55%) AIS participants had complete data (Figure 1). Of these 745

patients, 68 patients were those who needed to be transferred from

one department (or hospital) to another/those who had in-

hospital strokes, leaving a final cohort of 677 patients.

Retrospective review of medical health records for this study

was approved by our Institutional Review Board. Owing to the

retrospective nature of this study, written informed consent was

waived (Number: 2020081603). Moreover, the Transparent

Reporting of a Multivariable Prediction Model for Individual

Prognosis or Diagnosis (TRIPOD) statements were followed for

all data analysis and reporting (18).
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Data collection and definitions

The primary outcome was the prediction of a prolonged LOS

for AIS patients, which was defined as more than 7 days of

hospitalization. The LOS was measured from the admission day

to the death or discharge day. This definition was similar to

previous studies on LOS in stroke patients (8, 19, 20). The main

clinical data included the following categories: baseline

demographics, clinical features, and laboratory data. For baseline

demographics, systolic blood pressure (SBP) and diastolic blood

pressure (DBP) were tested on the right hand and extracted from

the nursing record sheet on admission. For clinical features, stroke

severity was divided into “mild” (NIHSS score < 8) and “moderate

to severe” (NIHSS score ≥9), which was similar to previous clinical

trials (21–23). Sato et al. (22) found that the optimal cutoff score of

the baseline NIHSS for the favorable outcome was 8 for patients

with anterior circulation stroke (sensitivity, 80%; specificity, 82%).

The pneumonia in our study referred to those with development of

pneumonia within 72 h after hospitalization (24). We diagnosed

pneumonia by the CDC criteria because it was the most commonly

used (25). The dysphagia was defined as abnormal swallowing

physiology of the upper aerodigestive tract and as detected from

clinician testing including screening, clinical bedside, or

instrumental tests (26). The thrombolysis, thrombectomy,

antiplatelets, anticoagulation, statins, and proton pump inhibitors

were also collected from medical records. Treatment methods for

AIS were followed by the 2019 American Heart Association/

American Stroke Association (AHA/ASA) guideline (27). For

laboratory data, they were extracted from blood test results

on admission.
Frontiers in Endocrinology 03
Machine learning algorithm and
data analysis

Continuous data were presented as median and interquartile

range (IQR), and the Mann–Whitney U-test was used for statistical

comparison between two groups. Categorical data were described as

proportions, and the chi-squared or Fisher’s exact test was used for

comparison between two groups. The least absolute shrinkage and

selection operator (LASSO) regression was applied to reduce the

dimensionality of the data. In total, we utilized eight different

machine learning algorithms, including the extreme gradient

boosting (XGB) classifier, logistic regression, the light gradient

boosting machine (LGBM) classifier, the AdaBoost classifier,

Gaussian naive Bayes (GNB), complement naive Bayes

(Complement NB), the multilayered perceptron (MLP) classifier,

and the support vector (SVC) classifier. The hyperparameter

settings for eight different machine learning algorithms used in

our study are listed in Supplementary Table 1. For the XGB

classifier, learning rate was set as 0.001, and the reg lambda was

0.01. Max depth and min child weight were set as 2. The area under

the receiver operating characteristic (ROC) curve of the model was

calculated by 10 bootstrapping resamples. For each bootstrap

resample, the validation set (135 cases) accounted for 20% of the

total sample, and the training set (542 cases) accounted for 80% of

the total sample. After selecting the best model classifiers for this

dataset, we exploited SHapley Additive exPlanations (SHAP) values

to interpret the outcomes of the classifiers, which was a unified

approach that connected cooperative game theory with local

explanations to explain the output of any machine learning

model. In addition, the decision curve analysis (DCA) was
FIGURE 1

Flowchart of inclusion and exclusion of study patients. This flowchart indicated that our hospital managed about total 1,354 patients from August
2017 and July 2019, of which 745 (55%) AIS participants had complete data (Figure 1). Of these 745 patients, 68 patients were those who needed to
be transferred from one department (or hospital) to another/those who had in-hospital strokes, leaving a final cohort of 677 patients. Abbreviation:
LOS, length of stay.
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applied to present the net benefits at various threshold probabilities.

A calibration plot was used to investigate the degree of agreement

between two groups.
Results

Patient characteristics

A total of 677 patients remained for evaluation of the machine

learning algorithms to predict prolonged LOS in AIS patients,

among whom prolonged LOS was detected in 22.0% (n = 149).

The average of LOS in all 677 participants was 10.78 ± 4.69 days.

The baseline and clinical characteristics between the two groups are

compared in Table 1. Longer LOS was linked to elevated levels of

brain natriuretic peptide (BNP), S100-b, and neuron-specific

enolase (NSE). Moreover, the prolonged LOS group was more

likely to suffer from dysphagia, pneumonia, and a moderate-to-

severe stroke. As for treatment, the prolonged LOS group had more

frequent use of thrombolysis, thrombectomy, anticoagulation, and

proton pump inhibitors (PPIs). Then, least absolute shrinkage and

selection operator (LASSO) regression was used to reduce the

number of factors with an optimal l of 0.002. The candidate

characteristics were narrowed down to the following 28 features

with nonzero coefficients: age, gender, diastolic blood pressure,
Frontiers in Endocrinology 04
anterior or posterior stroke, side of hemisphere, stroke lesion,

single or multiple lesions, cholesterol, triglyceride, low-density

lipoprotein (LDL), glycosylated hemoglobin (HbA1c),

homocysteine (HCY), uric acid (UA), myoglobin (MB), and

fibrinogen. The coefficients of characteristics selected by LASSO

regression are illustrated in Figure 2.
Development and validation of models

As shown in Table 2, the GNBmodel with all characteristics had

a striking AUROC of 0.878 ± 0.007 in the training set and 0.857 ±

0.039 in the validation set, while the other seven representative

models had the highest AUROC of 0.875 ± 0.014 in the training set

and 0.837 ± 0.031 in the validation set. For the GNB model, the

sensitivities were 0.818 (training sets) and 0.804 (validation sets),

while the specificities were 0.814 (training sets) and 0.816

(validation sets). The cross-reference between the full names and

abbreviations in our manuscript is shown in Supplementary

Table 2. The forest plot of each AUROC of eight models is

depicted in Figure 3. Figures 4A, B present the comparison of

AUROC between the GNB model and the other seven models,

respectively, in the training and validation sets. The learning curve

of the GNB model is displayed in Figure 5. Obviously, the GNB

model significantly outperformed the other seven models in both
TABLE 1 The baseline and clinical characteristics in prolonged LOS patients and no prolonged LOS patients.

Variables Category All patients (n =
677)

No prolonged LOS (n =
528)

Prolonged LOS (n =
149)

Statistical
value

p

Demographics

Age NA 57 [45,68] 57 [45,68] 58 [47,68] −1.210 0.226

Gender Female 279 (41.21) 209 (39.58) 70 (46.98) 2.624 0.105

Male 398 (58.79) 319 (60.42) 79 (53.02)

SBP NA 143 [132,156] 142 [132,155] 147 [135,159] −2.302 0.021

DBP NA 87 [74,97] 86 [73,96] 88 [76,98] −1.251 0.211

Clinical features

Stroke severity Mild 385 (56.87) 339 (64.21) 46 (30.87) 52.637 <0.001

Moderate to
severe

292 (43.13) 189 (35.80) 103 (69.13)

Dysphagia No 525 (77.55) 465 (88.07) 60 (40.27) 152.495 <0.001

Yes 152 (22.45) 63 (11.93) 89 (59.73)

Stroke distribution Anterior 270 (39.88) 208 (39.39) 62 (41.61) 0.737 0.692

Posterior 252 (37.22) 201 (38.07) 51 (34.23)

Both 155 (22.90) 119 (22.54) 36 (24.16)

Side of hemisphere Left 283 (41.80) 223 (42.24) 60 (40.27) 0.462 0.794

Right 270 (39.88) 207 (39.21) 63 (42.28)

Both 124 (18.32) 98 (18.56) 26 (17.45)

(Continued)
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TABLE 1 Continued

Variables Category All patients (n =
677)

No prolonged LOS (n =
528)

Prolonged LOS (n =
149)

Statistical
value

p

Site of stroke lesion Cortex 155 (22.90) 109 (20.64) 46 (30.87) 9.095 0.059

Cortex-
subcortex

155 (22.90) 125 (23.67) 30 (20.13)

Subcortex 186 (27.47) 151 (28.60) 35 (23.49)

Brainstem 104 (15.36) 86 (16.29) 18 (12.08)

Cerebellum 77 (11.37) 57 (10.80) 20 (13.42)

Number of stroke
lesions

Single 470 (69.42) 372 (70.46) 98 (65.77) 1.200 0.273

Multiple 207 (30.58) 156 (29.55) 51 (34.23)

Thrombolysis No 473 (69.87) 385 (72.92) 88 (59.06) 10.598 0.001

Yes 204 (30.13) 143 (27.08) 61 (40.94)

Thrombectomy No 644 (95.13) 525 (99.43) 119 (79.87) 95.943 <0.001

Yes 33 (4.87) 3 (0.57) 30 (20.13)

Antiplatelet No 122 (18.02) 101 (19.13) 21 (14.09) 1.994 0.158

Yes 555 (81.98) 427 (80.87) 128 (85.91)

Anticoagulation No 576 (85.08) 467 (88.45) 109 (73.15) 21.411 <0.001

Yes 101 (14.92) 61 (11.55) 40 (26.85)

Statin No 103 (15.21) 84 (15.91) 19 (12.75) 0.898 0.343

Yes 574 (84.79) 444 (84.09) 130 (87.25)

PPI No 535 (79.03) 462 (87.50) 73 (48.99) 103.954 <0.001

Yes 142 (20.98) 66 (12.50) 76 (51.01)

Pneumonia No 512 (75.63) 473 (89.58) 39 (26.17) 253.486 <0.001

Yes 165 (24.37) 55 (10.42) 110 (73.83)

Laboratory data

S-100b NA 275 [224,290] 273 [221,288] 281 [237,297] −3.057 0.002

NSE NA 16.24 [12.69,18.60] 15.73 [12.61,18.43] 17.61 [14.05,18.92] −3.196 0.001

BNP NA 93 [73,162] 89 [73,158] 103 [77,168] −2.213 0.027

D-dimer NA 174 [133,221] 174 [134,219] 175 [132,224] −0.239 0.812

FIB NA 4.35 [3.96,4.75] 4.35 [3.95,4.71] 4.440 [4.04,4.79] −1.488 0.137

CRP NA 12.56 [7.72,17.63] 12.21 [7.63,17.19] 13.90 [8.11,19.06] −1.956 0.050

MB NA 97.66 [75.12,147.84] 98.77 [76.43,147.84] 94.85 [72.32,144.45] 0.864 0.388

UA NA 349.80 [309.80,408.10] 353.20 [310.50,408.50] 343 [307.80,406.30] 0.595 0.552

HCY NA 15.77 [12.74,19.37] 16.12 [12.54,19.31] 15.51 [13.04,20.01] −0.525 0.600

HbA1c NA 5.60 [5.30,5.90] 5.60 [5.40,5.90] 5.60 [5.30,6.00] 0.462 0.643

FBG NA 5.28 [4.63,5.83] 5.28 [4.67,5.83] 5.22 [4.55,5.79] 1.099 0.272

LDL NA 4.75 [4.33,4.94] 4.75 [4.31,4.95] 4.75 [4.37,4.90] 0.131 0.896

Triglyceride NA 2.17 [1.93,2.37] 2.19 [1.93,2.37] 2.16 [1.93,2.37] 0.568 0.570

Cholesterol NA 5.33 [4.43,6.15] 5.33 [4.40,6.11] 5.40 [4.54,6.25] −1.075 0.283
F
rontiers in Endocrinolog
y
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 frontie
LOS, length of stay; DBP, diastolic blood pressure; PPI, proton pump inhibitor; NSE, neuron-specific enolase; BNP, b-type natriuretic peptide; FIB, fibrinogen; CRP, C-reaction protein; MB,
myoglobin; UA, uric acid; HCY, homocysteine; HbA1c, glycosylated hemoglobin; FBG, fasting blood glucose; LDL, low density lipoprotein; NA, not available.
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the training and validation sets. Despite the narrow gap, De Long’s

test showed that the difference between the GNB and XGB model

remained significant (p = 0.04).
SHAP values depending on variables

The SHAP values for the GNB model and the importance of the

variables sorted by the gap values are shown in Figures 6A, B. Red

bars indicated an increase in the probability of prolonged LOS,

whereas blue bars demonstrated a decrease in the probability of

prolonged LOS for AIS patients. As Figure 6B shows, pneumonia,

dysphagia, thrombectomy, and stroke severity all substantially

increased the probability of prolonged LOS. In addition, we

performed a decision curve analysis (Figure 7A) and a calibration

plot (Figure 7B) to illustrate the performance of the GNB model.

High net benefits could be observed in 0%–76% threshold

probabilities, while good agreement could be found between the

observed and predicted probabilities of prolonged LOS.
Discussion

This study generated a simple clinical risk model that can be

used to determine patients at increased risk of prolonged LOS. Our

risk model had a promising AUC of 0.878 and 0.857 in the training
TABLE 2 The predictive capacity of eight different machine learning algorithms.

Model AUC (SD) Accuracy (SD) Sensitivity (SD) Specificity (SD) PPV (SD) NPV (SD) Kappa (SD)

XGB 0.863 (0.011) 0.862 (0.009) 0.799 (0.027) 0.845 (0.033) 0.671 (0.045) 0.923 (0.008) 0.609 (0.021)

logistic 0.875 (0.014) 0.837 (0.019) 0.752 (0.042) 0.863 (0.032) 0.608 (0.046) 0.924 (0.009) 0.561 (0.034)

LGBM 0.817 (0.009) 0.782 (0.008) 0.739 (0.016) 0.895 (0.007) NA 0.782 (0.008) 0.000 (0.000)

Train AdaBoost 0.817 (0.009) 0.782 (0.008) 0.739 (0.016) 0.895 (0.007) NA 0.782 (0.008) 0.000 (0.000)

set GNB 0.878 (0.007) 0.813 (0.020) 0.818 (0.030) 0.814 (0.030) 0.551 (0.039) 0.939 (0.007) 0.533 (0.037)

CNB 0.706 (0.028) 0.613 (0.075) 0.747 (0.145) 0.577 (0.133) 0.337 (0.036) 0.896 (0.031) 0.222 (0.046)

MLP 0.519 (0.045) 0.626 (0.147) 0.401 (0.287) 0.690 (0.266) 0.314 (0.098) 0.809 (0.018) 0.072 (0.045)

SVM 0.503 (0.033) 0.658 (0.112) 0.304 (0.227) 0.761 (0.207) 0.274 (0.051) 0.798 (0.019) 0.052 (0.030)

XGB 0.837 (0.031) 0.862 (0.023) 0.759 (0.052) 0.877 (0.052) 0.682 (0.091) 0.917 (0.019) 0.606 (0.090)

logistic 0.833 (0.035) 0.813 (0.034) 0.750 (0.080) 0.840 (0.102) 0.575 (0.105) 0.906 (0.022) 0.501 (0.095)

LGBM 0.815 (0.040) 0.774 (0.031) 0.730 (0.073) 0.900 (0.028) NA 0.774 (0.031) 0.000 (0.000)

Validation AdaBoost 0.815 (0.040) 0.774 (0.031) 0.730 (0.073) 0.900 (0.028) NA 0.774 (0.031) 0.000 (0.000)

set GNB 0.857 (0.039) 0.791 (0.036) 0.804 (0.035) 0.816 (0.075) 0.527 (0.098) 0.926 (0.022) 0.487 (0.098)

CNB 0.680 (0.053) 0.582 (0.073) 0.740 (0.173) 0.609 (0.181) 0.316 (0.047) 0.862 (0.052) 0.166 (0.037)

MLP 0.515 (0.028) 0.599 (0.157) 0.463 (0.308) 0.680 (0.300) 0.274 (0.145) 0.787 (0.039) 0.039 (0.050)

SVM 0.498 (0.059) 0.636 (0.142) 0.559 (0.338) 0.560 (0.330) 0.243 (0.122) 0.772 (0.040) 0.014 (0.064)
AUC, area under the curve; SD, standard deviation; PPV, positive predictive value; NPV, negative predictive value; XGB, extreme gradient boosting; LGBM, light gradient boosting machine;
GNB, Gaussian naive bayes; CNB, complement naive Bayes; MLP, multilayered perceptron; SVM, support vector machine; NA, not available.
FIGURE 2

The coefficients of characteristics selected by LASSO regression.
LASSO, least absolute shrinkage and selection operator; SAP,
stroke-associated pneumonia; SS, stroke severity; PPI, proton pump
inhibitor; NSE, neuron-specific enolase; BNP, b-type natriuretic
peptide; FIB, fibrinogen; MB, myoglobin; UA, uric acid; HCY,
homocysteine; HbA1c, glycosylated hemoglobin; LDL, low-density
lipoprotein; NOS, number of stroke lesions; SOS, site of stroke
lesion; SOH, side of hemisphere; SD, stroke distribution; DBP,
diastolic blood pressure.
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and validation sets, respectively. The main outcomes of the current

study were that pneumonia, dysphagia, thrombectomy, and stroke

severity were the strongest clinical parameters for prolonged LOS

following AIS after recursive feature elimination. Moreover, the

artificial intelligence algorithms developed by these parameters

showed excellent model performance on discrimination,

calibration, and decision curve analysis. The strengths of our

clinical risk score included the use of simple demographic and

common biochemical parameters, and we collected enough

candidate variables to develop this model. To our knowledge, this

is the first study to predict prolonged LOS for common AIS patients

based on an interpretable machine learning algorithm. The

difference from previous studies was that we developed an

integrated machine learning model with high performance, which

could help adjust the policies to better utilize resources, especially
Frontiers in Endocrinology 07
under the DRG payment policy and the increasingly serious aging

problem in the global world.

Su et al. (28) included 129,444 patients with AIS and found that

the inpatient cost was $1,020 ($742–$1,545) in China. In an attempt

to decrease patients’ risk of prolonged LOS following AIS, previous

retrospective studies have identified some factors. Many studies

define prolonged LOS as more than 7 days (8, 19, 20). However,

when it comes to patients with severe strokes or those admitted to

an intensive care unit, some studies define it as more than 30 days

(12, 29). Common factors affecting stroke hospitalization duration

included quality of care, hospital-acquired infection, stroke severity

and type, level of consciousness, history of heart failure and atrial

fibrillation, and receiving reperfusion therapy (19, 29–33).

Interestingly, during adolescence, low stress resilience,

underweight, and higher systolic blood pressure were associated
FIGURE 3

The forest plot of the each AUROC of eight models. AUROC, area under the receiver operating characteristic curve; XGB, extreme gradient
boosting; LGBM, light gradient boosting machine; GNB, Gaussian naive Bayes; CNB, complement naive Bayes; MLP, multilayered perceptron; SVM,
support vector machine.
A B

FIGURE 4

The comparison of AUROC between the GNB model and the other seven models. (A) The comparison of AUROC between the GNB model and the
other seven models in the training sets. (B) The comparison of AUROC between the GNB model and the other seven models in the validation sets.
ROC, area under the receiver operating characteristic curve; XGB, extreme gradient boosting; LGBM, light gradient boosting machine; GNB,
Gaussian naive Bayes; CNB, complement naive Bayes; MLP, multilayered perceptron; SVM, support vector machine.
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with longer hospital stays in AIS, with adjusted relative hazard

ratios of 1.46, 1.41, and 1.01, respectively (34), whereas these prior

studies did not show the weight of each parameter on the

probability of prolonged LOS. An interpretable machine learning

algorithm has the ability to analyze big datasets with high accuracy

through automated analysis of non-linear relationships between

numerous variables (35). Machine learning algorithms apply

various statistical methods from past experience to select useful

patterns in large and complex datasets, which involves extreme

gradient boosting (XGB) classifier, GNB, SVC classifier, and so on

(36). Raizada et al. (37) concluded the advantages and limitations of

different algorithms and found that GNB produced results that were
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statistically robust and were replicates across two independent

datasets. An additional advantage of GNB classifiers was that

GNB produced an accuracy similar to more sophisticated

classifiers but with a substantial gain in speed (38). Therefore, we

selected the GNB model from eight different machine learning

algorithms that showed excellent performance in predicting

prolonged LOS in AIS patients.

In this study, pneumonia, dysphagia, thrombectomy, and stroke

severity were the leading clinical parameters in our interpretable

machine learning algorithm. Pneumonia is an early complication of

stroke and usually leads to prolonged LOS. The prevalence of

pneumonia in patients with dysphagia after stroke was reported to
A B

FIGURE 6

The SHAP values for the GNB model and the importance ranking of the variables. (A) The SHAP values for the GNB model. (B) The importance of the
variables sorted by the gap values. SHAP, SHapley Additive exPlanations; GNB, Gaussian naive Bayes; SAP, stroke-associated pneumonia; SS, stroke
severity; PPI, proton pump inhibitor; MB, myoglobin; NSE, neuron-specific enolase; BNP, b-type natriuretic peptide; FIB, fibrinogen; SOS, site of
stroke lesion; HbA1c, glycosylated hemoglobin; DBP, diastolic blood pressure; LDL, low-density lipoprotein; NOS, number of stroke lesions.
FIGURE 5

The learning curve of the GNB model.
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range from 7% to 33%, and the prevalence of dysphagia has been

reported as between 28% and 65% (39, 40). Aspiration without a

cough, known as “silent aspiration,” further increased the incidence

of pneumonia to 54% (40). A systematic review of stroke-associated

pneumonia reported that the overall incidence of pneumonia ranged

from 0% to 23.6% (41), which was a little lower than the incidence in

our study. In our study, the incidence of pneumonia in all

participants is 24.37%. It may be because of the varied definitions

and diagnosis criteria of stroke-associated pneumonia. The Centers

for Disease Control and Prevention (CDC) criteria (25), the PISCES

SAP diagnostic criteria (42), and the combination of the clinical

symptoms and auxiliary examination results criteria were all used to

diagnose stroke-associated pneumonia in previous studies (41). In

our study, we diagnosed pneumonia by the CDC criteria because it

was the most commonly used, using clinical (lung auscultation and

percussion, presence of fever, and purulent tracheal secretion),

microbiological (tracheal specimens and blood cultures), and chest

radiography findings. For dysphagia, the incidence in all participants

was 22.45%, while in the “prolonged LOS group”, it was 59.73%, and

in the “no prolonged LOS group”, it was 11.93% (Table 1). The

incidence of dysphagia varied greatly between studies (ranged from

20% to 80%), depending on the definition of dysphagia, which can

range from failing a dysphagia screen, to prescribed diet

modifications, to measures of physiology on an instrumented

swallowing study (26, 41, 43). Ogawa et al. (40) found that patients

who underwent a flexible endoscopic evaluation of swallowing and

received optimal nutritional intervention were more likely to have a

shorter hospital stay (p = 0.005). The complications of dysphagia

include the consequences of modifications to dietary intake:

compromised nutrition and hydration, prolonged LOS, and

reduced quality of life. As a result, the optimal treatments and

measures for dysphagia should be performed. Many studies have

investigated a variety of interventions, including therapist-delivered,

behavioral, acupuncture, and electrical or magnetic stimulation to

treat dysphagia (39). As for stroke severity, it was the most consistent

factor among the factors contributing to LOS in AIS patients, and

those who received reperfusion therapy were more likely to have
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prolonged LOS, which was similar to the previous study (29). Patients

with more severe strokes may require more intensive medical care,

including medication treatment and rehabilitation. Thrombectomy is

a procedure used to remove a blood clot from a blood vessel, and is

typically used in the treatment of acute ischemic stroke. While

thrombectomy can be effective in reducing the severity of stroke

and improving patient outcomes, it is also a relatively invasive

procedure that can carry some risks and complications. As a result,

patients who undergo thrombectomy may require longer hospital

stays than those who do not. In summary, both thrombectomy and

stroke severity are independent risk factors for prolonged LOS

following AIS.

Our study has several limitations. First, its retrospective study

design and only including patients from one single tertiary central

hospital may limit the generalizability of the machine learning

algorithm in clinical practice. Second, owing to the availability of

the data, we were not able to consider more detailed factors, such as

specific steps of reperfusion therapy, infarction or penumbra

volume, and the collateral circulation status. More valuable and

dynamic predictors could improve the performance. Third, some

special reasons that might affect hospitalization time, such as

economic stress or medical disputes, were not analyzed. Fourth,

the sample size and certain bias limited the predictive ability of the

model. We just internally validated our interpretable machine

learning algorithms by bootstrap resample and multi-center large-

sample studies are warranted to verify this conclusion in the future.
Conclusion

We developed a model for predicting the prolonged LOS for

AIS patients using the GNB algorithm. This model included 20

potential clinical factors and performed well in terms of

discrimination, calibration, and clinical utility, but it needs to be

validated in larger multicenter cohorts. In this model, pneumonia,

dysphagia, thrombectomy, and stroke severity might be strong

predictors of prolonged LOS. We explained these main variables
A B

FIGURE 7

The decision curve analysis and calibration plot to illustrate the performance of the GNB model. (A) The decision curve analysis for the GNB model.
(B) Calibration plot for the GNB model. GNB, Gaussian naive Bayes.
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and analyzed the effects of their changing trends on prolonged LOS.

Timely prevention and intervention for complications, as well as

high quality standard of care, may be prospects worthy of clinicians’

promising efforts.
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