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Gluconeogenesis is the main process for endogenous glucose production

during prolonged fasting, or certain pathological conditions, which occurs

primarily in the liver. Hepatic gluconeogenesis is a biochemical process that is

finely controlled by hormones such as insulin and glucagon, and it is of great

importance for maintaining normal physiological blood glucose levels.

Dysregulated gluconeogenesis induced by obesity is often associated with

hyperglycemia, hyperinsulinemia, and type 2 diabetes (T2D). Long noncoding

RNAs (lncRNAs) are involved in various cellular events, from gene transcription to

protein translation, stability, and function. In recent years, a growing number of

evidences has shown that lncRNAs play a key role in hepatic gluconeogenesis

and thereby, affect the pathogenesis of T2D. Here we summarized the recent

progress in lncRNAs and hepatic gluconeogenesis.

KEYWORDS
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1 Introduction

Gluconeogenesis is an important biochemical process for maintaining glucose

homeostasis in mammals, in which glucose is produced from non-carbohydrate

substrates including lactate, pyruvate, propionate, glycerol, and amino acids. In general,

gluconeogenesis will be activated when the blood glucose level is very low, often under

fasting or starvation conditions. In the body of mammals, gluconeogenesis mainly occurs in

the liver, though it may also take place in fewer amounts in the kidney and small intestine.

In normal conditions, hepatic gluconeogenesis is finely tuned by hormones including

insulin and glucagon and thus keeps blood glucose within physiological concentrations (1,

2). Insulin is a negative regulator of gluconeogenesis, while glucagon is a positive regulator

(1, 2). Chronic ectopic increased gluconeogenesis is often associated with metabolic

syndromes such as hyperglycemia, hyperinsulinemia, insulin resistance, and type 2
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diabetes (T2D) (3). On the contrary, impaired gluconeogenesis may

cause hypoglycemia and a shortage of energy supply, leading to

dizziness, memory loss, or coma (4).

Human genomics research data revealed that 84% of the human

genome could be transcribed, only 2% of which can encode proteins

after transcription (5). Therefore, RNAs not only act as carriers of

genetic information but also play a variety of regulatory functions.

RNAs without protein coding capacity are called non-coding RNAs

(ncRNAs), including microRNAs, long-chain noncoding RNAs

(lncRNAs), small nucleolar RNAs (snoRNAs), and circular RNAs

(circRNAs) (6, 7). Traditionally, noncoding RNA molecules with a

length greater than 200 nt have been defined as lncRNAs (8).

Accumulating evidence has shown that lncRNAs play a pivotal role

in many cellular events, such as cell division, differentiation,

migration, and apoptosis (9, 10). Each lncRNA has its own tissue-

specific expression pattern, which defines its respective unique

function (10, 11). For example, lncRNA-Bvht is a heart-associated

lncRNA in mouse, which is enriched in embryonic stem cells

(ESCs) and plays a key role in cardiomyocyte differentiation (12).

Upon starvation or cold stimulation, some lncRNAs in adipose

tissues are transcribed and participate in lipolysis and

thermogenesis, which may hold therapeutic potential for treating

metabolic diseases such as obesity and diabetes (13). Similarly,

hepatocytes also have a unique lncRNA expression profile, which

changes during liver development and regulates liver maturation

(14). RNA-seq revealed 104 differentially expressed lncRNAs in the

liver of T2D rats and bioinformatics analysis suggest these lncRNAs

may correlate with the pathogenesis of T2D by affecting lipid

metabolism, gluconeogenesis, inflammation, and/or endoplasmic

reticulum stress (15). Moreover, metformin treatment induced a

number of differentially expressed lncRNAs in the liver of mice,

implying lncRNAs are involved in hepatic gluconeogenesis since the

promising inhibitory effect of metformin on gluconeogenesis (16).

LincIRS2 is an obesity-repressed lncRNA in the liver, its deficiency

elevated blood glucose, promoted insulin resistance, and induced

glucose output in mice (17). All these data strongly indicate the

potential impacts of lncRNAs on hepatic gluconeogenesis. In this

review, therefore, we summarized the recent progress regarding the

roles of lncRNAs on hepatic gluconeogenesis. Meanwhile, we also

discussed the therapeutic potentials of lncRNAs in ectopic

gluconeogenesis-associated metabolic disorders such as insulin

resistance and T2D.
2 Hepatic gluconeogenesis in health
and diseases

As the main energy source of mammals, glucose is necessary for

maintaining normal physiological functions for the central nervous

system (CNS), retina, and red blood cells (18–20). Adults with

normal body weight consume 160 g of glucose per day. Of them, the

most glucose (∼120 g) was consumed by the brain (21). In addition

to exogenous glucose obtained from food, most the endogenous

glucose is stored as glycogen in various organs such as the liver and

muscle. In humans, only approximately 15 g of glucose is available

for consumption in extracellular fluid, termed blood glucose. The
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balance between endogenous glucose production and peripheral

glucose uptake helps to maintain systemic glucose homeostasis (22).

Under normal physiological conditions, the concentration of blood

glucose is dynamically constant. Low blood glucose concentration

causes fatigue, dizziness, and irreversible damage to the CNS (23,

24). Likewise, long-term high blood glucose is often associated with

metabolic dysfunctions, including hyperglycemia, insulin

resistance, and T2D. Therefore, blood glucose concentration is an

essential indicator of glucose homeostasis, and the dynamic balance

of exogenous glucose supply and endogenous glucose production is

a key node for maintaining normal physiological blood glucose (25).

The liver is an essential organ for keeping blood sugar balance.

Hepatic glucose metabolism includes multiple pathways of

decomposition and anabolism. Glycogen synthesis, glycogenolysis,

gluconeogenesis, and glycolysis jointly determine the stability of

blood glucose. Hepatic cells regulate the dynamic balance of glucose

metabolism in response to environmental and nutritional changes

in an autonomous or involuntary manner. Hepatic gluconeogenesis,

as the main way of endogenous glucose production during

starvation, plays an important role in maintaining blood

glucose balance.
3 Overview of lncRNAs

3.1 Biogenesis and classification
of lncRNAs

LncRNAs are mainly transcribed by RNA polymerase II and

generally contain a 5’-m7G cap and a 3’-poly (A) tail (26, 27).

lncRNAs were traditionally thought not to possess the ability to

encode proteins; however, some lncRNAs, such as LINC00998,

LINC00961, LINC00467, and LINC-PINT, have been found to

encode specific small polypeptides (28–32). Human GENCODE

database shows that more than 173,000 lncRNA transcripts were

identified in the human genome (33). Of them, only a small part of

lncRNAs has been functionally annotated, while a large number of

lncRNAs remain to be determined (34, 35). Most lncRNAs are

localized in the nucleus, while some lncRNAs are located in the

cytoplasm or other sub-organelles, such as ribosomes and

mitochondria (10). Compared with protein-coding genes, lncRNA

genes are generally less conserved with lower expression profiles

(36, 37). Despite sharing similar patterns of splicing, export, and

quality control with mRNAs, most lncRNAs are trapped in the

nucleus. In comparison to mRNAs, lncRNAs have fewer and longer

exons, and for this reason, lncRNAs prefer the NXF1/NXT1

pathway for nuclear export (38). Furthermore, lncRNAs have

lower splicing efficiency but higher splicing frequencies to

increase their numbers (39).

Based on genomic location and functioning mechanism,

lncRNAs are divided into five groups, intergenic lncRNAs

(lincRNAs), intronic lncRNAs, sense lncRNAs, antisense

lncRNAs, and bidirectional lncRNAs (40). A large number of

non-coding regions are distributed among the coding regions of

the human genome, accounting for 98-99%. The lncRNAs

transcribed from these non-coding regions are called intergenic
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lncRNAs. LncRNAs transcribed from introns in the coding region

are named intronic lncRNAs. Sense and antisense lncRNAs are

transcribed from sense and antisense strands coding proteins,

respectively. Currently, most studies are focused on lincRNAs and

antisense lncRNAs. LincRNA shows functional importance due to

its high active transcription, a certain degree of domain

conservation, tissue-specific expression, and stability, whereas

antisense lncRNA accounts for a large amount of human

lncRNA (40).
3.2 Functioning mechanisms for lncRNAs

By various regulation models, lncRNAs can positively or

negatively control coding gene expression, which could be

occurred at different stages of eukaryotic gene expression (41). At

the chromatin level, lncRNAs induce chromatin epigenetic

modification to affect conformational structures of chromatin and

thereby control gene expression. LncRNAs can regulate DNA

methylation by recruiting DNMTs/TETs, sequestering DNMTs,

or regulating the expression of DNMTs/TETs (42). Alternatively,

lncRNAs act as decoys to sequester chromatin modifiers from

specific genomic sites to induce chromatin remodeling (43). At

the transcriptional level, lncRNAs can mediate gene silence or

activation. For example, Airn, an antisense transcript of the

Iinsulin-like growth factor 2 receptor (gf2r) gene, whose

transcription causes Pol II to detach from the Igf2r promoter,

resulting in transcriptional pause and gene silencing (44). At the

post-transcriptional level, LncRNAs are involved in the post-

transcriptional splicing of mRNAs. LncRNA Ctcflos mediates the

selective splicing of PRDM16 to generate short isomers with a

preference for thermogenesis, thereby promoting fat thermogenesis

(45). Moreover, lncRNAs may also regulate gene expression by

other means. For example, lncRNAs fold into higher-order

structure to bind nucleoprotein and assemble ribonucleoprotein

complex to participate in protein nuclear localization, or lncRNAs

pair with other RNAs to recruit protein complexes or adsorb

microRNAs to regulate gene silencing (46).
4 LncRNAs in hepatic
gluconeogenesis

4.1 LncH19

H19 is the first lncRNA originally found in the liver extract,

which is 2.3 kb in length and located on chromosome 11. After

transcription, lncH19 is exported to the cytoplasm after a similar

modification process as mRNAs, such as splicing, capping, and

polyadenylation (47). It is enriched in embryonic stem cells and

remains highly expressed in the adrenal gland, liver, and adipose

tissue after birth (48). LncH19 loses the ability to translate into

small peptides due to the special structure of the 5’-terminal (49).

Therefore, lncH19 plays a role as an independent functional unit. A

clinical study of obese women showed that human linH19

transcription levels were negatively correlated with body mass
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index (BMI) and homeostatic model assessment of insulin

resistance (HOMA-IR) (50). Moreover, H19 has been shown to

regulate glucose homeostasis and b cell function (51).

By RNA-seq, Goyal N et al. found that H19 was largely

decreased in the liver of diabetic db/db mice, suggesting its

potential role in glucose metabolism. In the following

experiments, their functional studies showed that the knockdown

of H19 stimulates gluconeogenic gene expression and hepatic

glucose output in HepG2 cells and primary mouse hepatocytes

(52). In vivo studies have shown that, in healthy mice, H19 absence

results in dysregulated glucose metabolism including

hyperglycemia, hyperinsulinemia, and intolerant insulin, glucose,

and pyruvate tests (53). Mechanistically, H19 silencing increases the

occupancy of P53 in the promoter of Foxo1, which promotes the

transcription of Foxo1, a master regulator of gluconeogenic gene

expression (52, 53). However, this view regarding the roles of H19

in gluconeogenesis has been challenged. Deng J et al. have shown

that overexpression of H19 in a human liver cell line activates the

gluconeogenic program, which is likely due to increased expression

of HNF4a (54). Most recently, one report confirmed that

overexpression of H19 in Hepa1-6 cells increases Pck1 expression

and gluconeogenesis by inducing the nuclear retention of FOXO1

(55). Also, in this study, H19 was identified as an imprinted gene for

transducing hyperglycemia from paternal obesity to female

offspring (55). Therefore, due to these inconsistent findings, the

precise functions of H19 on gluconeogenesis are not clear. More

studies are required to clarify this issue.
4.2 LncSHGL

Mouse lncSHGL is located on chromosome 17, and its

homologous in humans is lncRNA B4GALT1-AS1. LncSHGL was

low expressed in the liver of obese mice, and similarly, lncRNA

B4GALT1-AS1 was significantly decreased in patients with

nonalcoholic fatty liver disease (56). It has been shown that

restoration of hepatic lncSHGL plays a beneficial role against

hyperglycemia, insulin resistance, and hepatic steatosis in diabetic

mice, while inhibition of lncSHGL worsens hyperglycemia and lipid

deposition in livers (56). Mechanistic studies revealed that lncSHGL

increases calmodulin (CaM) mRNA translation by recruiting

heterogeneous nuclear ribonucleoprotein A1 (hnRNPA1). As a

result, increased CaM suppresses gluconeogenic and lipogenic

pathways in hepatocytes (56).
4.3 LncMEG3

Maternal expression gene 3 (MEG3) is an imprinted gene

located on the human chromosome 14q32. It is the ortholog of

the gene trap locus 2 (Gtl2) on mouse chromosome 12. LncMEG3 is

generally considered to be a tumor suppressor, which is expressed

in a variety of tissues and encodes lncRNAs associated with liver

disease. Different from lncH19, the transcript ofMEG3 is positively

correlated with obesity index and HOMA-IR in humans. In

accordance, lncMEG3 is highly expressed in high-fat diet-induced
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obese mice and ob/ob mice (57). In primary hepatocytes,

overexpression of lncMEG3 results in increased expression of

Foxo1, G6pc, Pck1; meanwhile, insulin-stimulated glycogen

synthesis was suppressed by lncMEG3 (57). These alterations

could be reversed by lncMEG3 interference (57). In another

study, lncMEG3 is found to be a glucagon-inducible lncRNA in

mouse primary hepatocytes, where it interacts with miR-302a-3p as

a competing endogenous RNA (ceRNA) (58). By this way,

lncMEG3 increases CREB-regulated transcriptional coactivator 2

(CRTC2), which is a target of miR-302a-3p. Consequently,

upregulated CRTC2 stimulates gluconeogenesis by activating the

axis of PGC-1a/Pck1/G6pc in hepatocytes (58). Furthermore, as a

ceRNA, miR-214 is another substrate of lncMEG3. In hepatocytes,

lncMEG3 sequesters miR-214 to favor transcription factor 4 (ATF4)

expression (59). ATF4 is capable of inducing the gluconeogenic

program by affecting the transcriptional activity of FOXO1 (60).

Therefore, lncMEG3 promotes gluconeogenesis in hepatocytes by

targeting the axis of miR-302a-3p/CRTC2 or miR-214/ATF4.
4.4 LncBhmt-AS

Betaine homocysteine methyltransferase (BHMT) is an enzyme

that catalyzes the synthesis of methionine from homocysteine and is

associated with insulin resistance and diabetes (61, 62). BHMT is

highly expressed in the liver of rodents, which may play a role in

gluconeogenesis by interacting with L-serine dehydratase/L-

threonine deaminase to affect the use of the amino acid for

gluconeogenesis (63). Recently, a new lncRNA was discovered

during fasting, which is an antisense RNA of Bhmt, therefore,

named lncBhmt-AS (64). LncBhmt-AS is located on chromosome

13 in mice with 1464 bp in length. Deficiency of lncBhmt-AS

restricts gluconeogenesis in primary hepatocytes and inhibits liver

glucose production and gluconeogenic gene expression in vivo (64).

In contrast, Bhmt overexpression restores gluconeogenesis induced

by lncBhmt-AS knockdown (64). These evidences indicate that

lncBhmt-AS plays an important role in regulating hepatic

gluconeogenesis by targeting Bhmt.
4.5 LncGm10768

Gm10768 is a lncRNA specifically enriched in the liver. Cui et al.

found an abnormal increase of lncGm10768 in mouse livers after

fasting by RNA-seq (65). In addition, lncGm10768 is positively

correlated with glucose production in mouse primary hepatocytes

(65). Liver-specific knockout of lncGm10768 alleviates hyperglycemia

and insulin resistance in db/dbmice (65). LncGm10768 is localized in

the nucleus and cytoplasm, therefore, lncGm10768 may regulate gene

expression at both transcriptional and post-transcriptional levels. As

endogenous competitive suppressors of microRNAs, LncRNAs can

reverse gene silencing induced by microRNAs. miR-214 has a high

affinity binding site with lncGm10768, and it decreases in response to

lncGm10768 overexpression (65). As mentioned above, miR-214 can
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target and activate transcription factor 4 (ATF4) to inhibit the

expression of G6pc and Pck1 (59). Therefore, the positive impact of

lncGm10768 on hepatic gluconeogenesis is likely due to the

interaction with miR-214 (65). In this regard, lncGm10768 and

lcnMEG3 play a similar role in hepatic gluconeogenesis by

targeting miR-214, indicating different lncRNAs may have

synergistic effects to regulate gluconeogenesis jointly.
4.6 LncGomafu

LncGomafu is a conserved lncRNA in mammalian species, which

was localized in the nucleus in most cases. It has been well documented

that lncGomafu plays a key role in neuronal development and involves

in the pathogenesis of neuropsychiatric disorders (66, 67). Similar to

lncMEG3, lncGomafu is highly expressed in the livers of ob/ob mice

and mice on a high-fat diet (HFD) (68). Knockdown of lncGomafu in

the liver inhibits hepatic glucose production and improves insulin

sensitivity in obese mice. On the contrary, overexpression of

lncGomafu increases blood glucose levels in lean mice.

Mechanistically, lncGomafu competitively sponge miR-139 to

increase Foxo1 expression, increasing gluconeogenic gene expression

and hepatic gluconeogenesis (68).
4.7 LncMALAT1

Metastasis associated lung adenocarcinoma transcript 1

(MALAT1) is a conserved lncRNA located on human

chromosome 11q13 with a length of 8.5 kb (26). LncMALAT1 is

considered a biomarker for tumor diagnosis and has been proven to

be involved in the regulation of several signaling pathways,

including PI3K/AKT, NF-kB, MAPK/ERK (69). Knockdown of

lncMALAT1 in HepG2 and FLC4 cells leads to increased glucose

secretion and expression of gluconeogenic genes such as G6pc and

Pck1 (70). Meanwhile, this study revealed that the negative

regulation of lncMALAT1 on gluconeogenesis is due to the

upregulation of TCF7L2 (70). TCF7L2 has been shown to interact

with the promoters of G6pc and Pck1, this interaction impedes the

transcriptional activities of CREB/CRTC2 and FOXO1, thereby

repressing gluconeogenic gene expression (71).
4.8 LncGm10804

LncGm10804 is highly enriched in high glucose-treated

hepatocytes and livers of non-alcoholic fatty liver disease

(NAFLD) model mice. Both in vitro and in vivo studies have

shown that the knockdown of lncGm10804 reduces the

expression of Pck1 and G6pc in cultured hepatocytes and NAFLD

mice. Meanwhile, lncGm10804 silencing alleviates hepatic steatosis

and lipid accumulation by decreasing the expression of sterol

regulatory element-binding protein-1c (SREBP-1c) and fatty acid

synthase (FAS) in NAFLD mouse livers (72).
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4.9 LincIRS2

LncRNA 4833411C07Rik was named LincIRS2 by Marta

Pradas-Juni et al. for its location at 80 kb of 5’ Irs2 (17). LincIRS2

is induced upon fasting or glucagon stimulation and responds to

cAMP signaling (17), suggesting lincIRS2 might be involved in

hepatic gluconeogenesis. Indeed, in lean mice, the knockdown of

lincIRS2 in the liver induces enhanced blood glucose, insulin

resistance and ectopic glucose output. Meanwhile, deficiency of

Mafg in hepatocytes evokes a fasting-like gene expression profile as

evidenced by elevated expression of Fbp1, G6pc and Pck1 (17).

Later, they found that MAFG controls the expression of lincIRS2

and thereby regulates glucose metabolism in the liver (17).
5 Conclusion and perspectives

Hepatic gluconeogenesis is an essential bio-process to keep

blood glucose in normal physiological scope. Dysregulated hepatic

gluconeogenesis may course various metabolic disorders. For

instance, ectopic upregulated gluconeogenesis is a causative factor

for inducing hyperglycemia, hyperinsulinemia, insulin resistance,

and T2D. In this regard, gluconeogenesis also is a target for

developing anti-T2D drugs. Metformin is such an anti-T2D drug
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which has achieved great success in clinical. Therefore, in-depth

studies on hepatic gluconeogenesis regulation and its molecular

mechanisms are important for developing novel strategies for

treating disorders induced by malfunctioned gluconeogenesis. The

current evidences have shown that lncRNAs play a crucial role in

hepatic gluconeogenesis, although just 9 lncRNAs have been

examined in this field to date. Of note, these lncRNAs exhibited

different functions on hepatic gluconeogenesis, lncH19, lncMEG3,

lncGm10768, lncGomafu, and lncBhmt-AS function as positive

regulators, whereas lncMALAT1 and lncSHGL act as negative

regulators (Table 1). As for involved mechanisms, each lncRNA

has its own working model (Figure 1).

It should be mentioned that these gluconeogenesis-associated

lncRNAs are mainly enriched in the liver. It is reasonable to predict

that other tissues-derived lncRNAs may also be involved in hepatic

gluconeogenesis, although no direct evidences support this

prediction. It has been shown that lncRNAs are often carried by

exosomes (73). Hence, lncRNAs derived from other tissues, such as

muscle, pancreas, and fat, could be transferred into the liver via

exosomes, where they might affect the gluconeogenic program. For

this reason, exosomal lncRNA-mediated crosstalk between other

tissues and hepatic gluconeogenesis could be investigated as a future

direction. Therefore, we predicted that more lncRNAs potentially

involved in the hepatic gluconeogenesis will be identified by RNA-
TABLE 1 LncRNAs involved in control of hepatic gluconeogenesis.

LncRNAs Location* Expression Function Mechanisms References

H19
The imprinted region of
chromosome 11

Placenta, liver, adrenal
gland

down-
regulate

The interaction with p53 reduces the occupancy of p53 on
Foxo1 promoter and inhibits Foxo1 transcription

(52, 53)

up-regulate It maintained Hnf4a hypomethylation level (54)

up-regulate
Induces Foxo1 nuclear retention to increase gluconeogenic
gene expression

(55)

B4GALT1-
AS1(SHGL)

Chromosome 9 - NC
000009.12

Testicles, kidneys, liver
down-
regulate

HnRNPA1 is recruited to increase calmodulin levels,
activating Akt pathway and nuclear rejection of Foxo1

(56)

MEG3
Chromosome 14 -NC
000014.9

Placenta, adrenal gland,
brain

up-regulate
By competitively binding to miRNA214 to reduce its
repression on Foxo1

(59, 60)

up-regulate
MEG3 adsorbs miRNA302A-3p to release locked CRTC2,
resulting in synergistic effect with CREB

(58)

Bhmt-AS
Chromosome 5 - NC
000005.10

liver, kidney up-regulate
BHMT-AS plays a key role in regulating hepatic
gluconeogenesis by targeting Bhmt

(64)

Gm10768
Chromosome 19 -NC
000085.7 (Mouse origin)

liver up-regulate Competition with miRNA214 (65)

Gomafu
Chromosome 22 - NC
000022.11

Brain, adrenal glands,
lymph nodes

up-regulate
Acting as a molecular sponge for miRNA139, the inhibition
of Foxo1 by miRNA139 was eliminated

(68)

MALAT1
Chromosome 11 - NC
000011.10

Bone marrow, thyroid
and other 24 tissues

down-
regulate

MALAT1 increases SRSF1 expression and activates the
MTORC1-4EBP1 axis to regulate TCF7L2

(70, 71)

Gm10804
Chromosome 2-NC
000068.8(Mouse origin)

Kidney, placenta up-regulate
Gm10804 overexpression is involved transcriptional
activation of Pck1 and G6pc

(72)

LincIRS2
Chromosome 8 - NC
000074.7 (Mouse origin)

Liver, stomach,
mammary gland

down-
regulate

LincIRS2 responds to cAMP signaling by inhibiting
transcriptional activation of G6pc, Pck1 and Foxo1

(17)
*All unlabeled loci are of human origin.
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seq technologies in non-liver tissues under stress, such as fasting or

a high-fat diet. Engineered exosomes with specific lncRNAs with

inhibitory effects on hepatic gluconeogenesis might hold great

therapeutic potential for treating T2D. In addition, exosomal

lncRNAs in blood might be diagnostic markers of dysregulated

hepatic gluconeogenesis.
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