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Leveraging mice with diverse
microbial exposures for
advances in osteoimmunology
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MN, United States
The skeletal and immune systems are intricately intertwined within the bone

marrow microenvironment, a field of study termed osteoimmunology.

Osteoimmune interactions are key players in bone homeostasis and

remodeling. Despite the critical role of the immune system in bone health,

virtually all animal research in osteoimmunology, and more broadly bone

biology, relies on organisms with naïve immune systems. Drawing on insights

from osteoimmunology, evolutionary anthropology, and immunology, this

perspective proposes the use of a novel translational model: the dirty mouse.

Dirty mice, characterized by diverse exposures to commensal and pathogenic

microbes, have mature immune systems comparable to adult humans, while the

naïve immune system of specific-pathogen free mice is akin to a neonate.

Investigation into the dirty mouse model will likely yield important insights in

our understanding of bone diseases and disorders. A high benefit of this model is

expected for diseases known to have a connection between overactivation of

the immune system and negative bone outcomes, including aging and

osteoporosis, rheumatoid arthritis, HIV/AIDS, obesity and diabetes, bone

marrow metastases, and bone cancers.

KEYWORDS

dirty mice, inflammatory bone loss, immune cells, skeletal gracilization, osteoporosis,
bone homeostasis
Historical perspectives into osteoimmunology

Osteoimmunology is a field of study concerning the interface between the skeletal and

immune systems (1). Arron & Choi first coined this term in 2000 in a Letter to Nature

discussing then-recently published work by Takayanagi et al. (1, 2) on T-cell mediated

regulation of osteoclasts. At the time, the molecular mechanisms by which immune cells

could regulate bone homeostasis had not yet been elucidated. In 1999, Wong et al. (3)

discovered tumor necrosis factor-related activation-induced cytokine (TRANCE; also

known as RANKL, OPGL) expressed on the surface of activated T cells stimulates

osteoclast differentiation and activity. Wong et al.’s work led Arron & Choi to remark

on an important observation: “T cells are working constantly to fight off the universe of
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foreign particles in which we live … What prevents these T cells

from causing extensive bone loss?” (1, 3). Cue Takayanagi et al. –

their 2000 Letter to Nature dissects a mechanism to prevent

uncontrolled bone loss during inflammatory T-cell responses via

IFNg degradation of tumor necrosis factor receptor-associated

factor 6 (TRAF6) in osteoclasts to prevent osteoclast

differentiation and activity (2). Arron & Choi describe Takayanagi

et al.’s work as “the answer”, but these studies, and the entirety of

rodent research from the 1960s on, have relied on specific

pathogen-free (SPF) mice with little to no exposure to this

“universe of foreign particles.

A year prior to Arron & Choi and Takayanagi et al., Kung et al.

(4) published a novel paradigm demonstrating T-cell-derived RANK

is a crucial mediator of osteoclastogenesis in a rodent model of

rheumatoid arthritis. Nearly a quarter of a century later, it is well

established that T-cells are causal in inflammatory bone loss,

including in HIV/AIDS, inflammatory bowel diseases, and

osteoporosis in addition to rheumatoid arthritis (4–11). Indeed, the

term ‘immunoporosis’ was recently coined in 2018 by Rupesh

Srivastava and colleagues to highlight the importance of the

immune system in the pathophysiology of osteoporosis (7).

Immune cell activity is tightly linked to bone homeostasis and

remodeling (12). This is perhaps best exemplified by osteoclasts,

which are tissue-resident macrophages that resorb bone derived from

the monocyte/macrophage lineage of hematopoietic stem cells. The

monocyte/macrophage lineage is an instrumental component of the

innate immune system, the first responders to invading pathogens

and major producers of inflammatory cytokines.

Inflammatory cytokines are the communication molecules of

the immune system – in other words, immune cell production,

activation, and activity is coordinated through release and uptake of

pro- and anti-inflammatory cytokines (13, 14). This means that

production of inflammatory cytokines is a direct result of immune

activation or detection of invading pathogens (13, 14). In relation to

bone, there is an abundance of evidence describing inflammatory

cytokines as key modulators, both positive and negative, of bone

mass (15–29); interleukin (IL) 1, IL-6, IL-17, and TNFa are among

the most commonly studied cytokines associated with

inflammatory bone loss (7, 30, 31). Given the intertwining of the

skeletal and immune systems, understanding and effectively

modeling the immune system is critical for the study of

osteoimmunology, and more broadly, bone biology.
Gracilization of the modern
human skeleton: insights from
evolutionary anthropology

Modern humans have a more gracile, or slender, skeleton than

earlier human ancestors and other apes. This gracility and the

associated reductions in relative strength greatly increase the

lifelong risk of osteoporosis (32). Skeletal gracilization has been
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documented in the cortical shaft of long bones (e.g., Increased

periosteal and endocortical expansion explain increased cortical

thickness, cortical bone volume fraction, estimated polar moment

of inertia; (33)) and in trabecular bone at metaphyses surrounding

joints (34–37). Temporally, skeletal gracilization coincides with the

Neolithic Revolution (33, 38), the transition from hunter-gatherer

societies to agricultural communities (e.g. farming, domestication of

livestock) beginning in approximately 10,000 BCE (see Lewis et al.

(39) for an insightful and detailed explanation of pathogens and the

Neolithic revolution). The Neolithic Revolution signifies an increase

in infectious disease and pandemics globally. This rise in pathogen

burden is attributed to sustained increases in population density,

greater contact between humans and animals, and poor

sanitary conditions.

Much of the literature surrounding skeletal gracilization posits

increased sedentism, defined as living in a fixed residential location

for a long period of time, in modern humans as the primary cause

(see Madimenos (40) for a stellar review on the topic). According to

the literature, increased sedentism implies an increase in sedentary

behavior and thus reductions in biomechanical loading. While the

transition from a nomadic lifestyle to one characterized by

permanent dwellings certainly involved an increase in sedentism,

an important distinction should be made that living in one place for

a long period of time fails to inform physical activity levels, or

biomechanical loading. We know today that agricultural

communities, like the Shuar in Ecuador and Tsimane in Bolivia,

have high rates of physical activity throughout their lives, as well as

modern farmers (41–44). Exercise modes differentially impact

skeletal geometry and microarchitecture (45, 46); here, differential

loading patterns resulting from the transition from endurance-

based distance running and walking to a more strength training-

based agricultural labor is likely more explanatory than reduced

physical activity levels. Indeed, the relative deficits in femoral

strength but not humeral strength documented by Ruff and

colleagues (38) may represent a change in habitual behavior

resulting in greater mechanical loading of the upper limbs (i.e.

through farming, carrying), rather than decreased loading of the

lower limbs. Notably, femoral and humeral strength have stabilized

in the past 2000 years (38), suggesting environmental and/or

behavioral factors associated with the Neolithic revolution

are relevant.

High physical activity levels, relatively frequent periods of

extreme caloric restriction and/or starvation, and increased

pathogen burden are likely all key factors contributing to skeletal

gracilization in modern humans – and particularly to the

acceleration in skeletal gracilization coinciding with the Neolithic

Revolution. While outside the scope of this paper, diet composition

and caloric intake are highly relevant to understanding these

changes and can be generally conceptualized during the Neolithic

Revolution as including a loss of diversity and quality, as well as

increased vulnerability to food shortages and periods of starvation

(39, 47). Nutrition (quantity, quality) is a crucial component of both
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immune function and bone homeostasis, representing an area of

study that would benefit from deep investigation along the same

context described here.

Broad support for the concept that pathogen burden

contributed to skeletal gracilization can be found in life history

theory. Life history theory posits that an unfavorable environment,

like one with hostile factors (e.g. pathogens), leads to defense-

oriented metabolic programming in which energy is prioritized for

protective responses at the expense of growth and reproduction.

Caloric intake and energy availability, particularly when coupled

with physical activity (48, 49), are primary regulators of bone mass

accrual and remodeling – even when omitting pathogen exposure as

a variable. From an evolutionary standpoint, immune defense

would likely be prioritized at the expense of skeletal growth and

bone mass; this is particularly likely when considering bone

structurally remodels in such a way to compensate for size-

induced detriments in bone strength (50). Among the Shuar

(forager-horticulturalists of Ecuador), children re-route energy

expenditure from growth and development to immune defense

during active infections (51). The Tsimane (forager-horticulturalists

of Bolivia) demonstrate significant prevalence of low bone mineral

density despite habitually high physical activity levels and an

absence of risk factors common in industrialized societies (52,

53). The Tsimane demonstrate a greater incidence of osteoporosis

risk (23% Shuar vs. 49% Tsimane vs. 34% US) and fracture (women:

18% Tsimane vs. 9% US; men: 36% Tsimane vs. 11% US) than the

Shuar and US citizens (54, 55). Notably, both the Shuar and

Tsimane maintain moderate to vigorous physical activity levels

across the lifespan and the Tsimane have a higher pathogen burden

than the Shuar or Americans (52–56).
Embracing complexity: diverse
microbial exposures as a basal
feature of our environment

Our modern understanding of osteoimmune interactions and

bone biology is built from studies conducted nearly exclusively with

specific-pathogen free mice. To understand why this matters, let’s

examine the work of Sjögren and colleagues (57) comparing

conventionally raised and germ-free mice. Sjögren et al.

demonstrated commensal (i.e., friendly or non-pathogenic)

microbiota act as key mediators of bone health through

modulation of the immune system (8, 57, 58). Germ-free SPF

mice exhibited significantly greater bone mass at 7 weeks of age

than conventionally raised SPF mice (8, 57, 58). Bone mass was

causally reduced following reconstitution of microbiota in germ-

free mice through expansion of the T-cell compartment and

increased levels of inflammatory cytokines (8). Jones et al. went

on to demonstrate “lack of immune cell activation”, and thereby

decreased immune cell crosstalk via inflammatory cytokines, as the

cause of elevated bone mass in germ-free mice (58). The work of

Sjögren, Jones, and their colleagues led to a burst in research

centering on the role of the gut microbiome in bone health. Still,

the physiologic impact of commensal and pathogenic organisms
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remains untested. Presumably, as pathogenic microbes initiate a

vigorous host immune response, whereas commensal microbes do

not, the impact of pathogenic exposure would cause a more robust

reduction in bone mass, or a greater attenuation in bone

mass accrual.
Dirty mice as a novel translational
model for osteoimmunology

Dirty mice (e.g., wild or pet store mice) are characterized by

diverse commensal and pathogenic microbial exposures. Such

diverse exposures to the “universe of foreign particles” induces

recurrent immune activation (59–61). Recurrent immune activation

stimulates persistent inflammatory signaling resulting in sustained

and elevated production of inflammatory cytokines that suppress

bone formation and enhance resorption (62, 63). Dirty mice can be

produced in a laboratory by several different methods, including co-

housing, fomite bedding exposure from dirty mice, and natural

microbiota transfer or rewilding – the strengths and weakness of

different methods have been reviewed by Hamilton et al. (59).

Regardless of generation method, immune activation can be

confirmed by testing for a wide range of pathogens [see (59) for

common pathogens in dirty mice generated by three different

methods] and analysis of serum (e.g. flow cytometry, blood cell

panel) to confirm expected immune changes in response to

infection (64). Rosshart and colleagues have also demonstrated

significant differences in the microbiome (gut, skin, and vagina), gut

mycobiome, and gut virome of SPF and dirty mice generated using

a wilding model, where SPF C57Bl/6 embryos are transplanted into

wild mice transferring pathogen-free microbiota (65, 66). Here, we

describe the key features distinguishing specific-pathogen free mice

(SPF) and dirty mice, focusing on dirty mouse models transferring

both commensal and pathogenic microbes, and discuss the

relevance to the field of osteoimmunology.
The immune system of specific-pathogen
free mice closely matches human neonates

SPF mice maintain a high population of circulating naïve

(~70%, CD62LhiCD44lo) CD8+ T cells and a low population of

antigen-stimulated (~5%, CD62LloCD44hi) CD8+ T cells (60). This

immune profile is consistent with that found in human neonates

but stands in contrast to adult humans. Pet store mice demonstrate

an immune profile consistent with adult humans; specifically, a low

population of circulating naïve (~19%, CD62LhiCD44lo) and a high

population of antigen-stimulated (~47%, CD62LloCD44hi) CD8+ T

cells (60). Transfer of microbial exposures to SPF C57Bl/6 (B6)

mice, via co-housing with pet store mice or their fomite bedding

(64), induces sustained alterations to the basal immune profile like

that seen in pet store mice and adult humans. While neither the

total number of circulating immune cells nor the total number of

CD4+ and CD8+ T cells differs between SPF and co-housed B6

mice, there are discrete differences in subtype, as in CD62L and
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CD44 expressing cells (60, 67). Co-housed B6 mice, in comparison

to SPF B6 mice, exhibit elevations in circulating effector/effector

memory CD4+ and CD8+ T cells, long-lived effector memory CD8

+ T cells, monocytes, and neutrophils and reductions in B cells and

natural killer cells (67).

In addition to circulating CD8+ T cells, Beura and colleagues

demonstrate extensive changes to many innate and adaptive

immune cell lineages in an array of tissues (60). To add further

evidence, over 18,000 genes are differentially expressed between SPF

and co-housed B6 mice; these data support gene expression profiles

closely matching between immune naïve (i.e., SPF mice and

neonates) and immune experienced (i.e., co-housed and pet store

mice, adult humans) organisms (60). The transformation of the

immune profile of the SPF B6 mouse following co-housing toward

the profiles of pet store mice and adult humans, despite the differing

genetic backgrounds, provides compelling causal evidence that

immune system changes are due to environmental exposures.
A mature immune system alters the basal
inflammatory environment

As we know, inflammatory cytokines are the communication

molecules of the immune system; therefore, given the immune cell

changes in co-housed B6 we could reasonably expect altered levels

of inflammatory cytokines. Indeed, co-housed B6 mice demonstrate

robust elevations in over 20 inflammatory cytokines (Table 1), even

two months after microbial exposure (67). These inflammatory
Frontiers in Endocrinology 04
cytokines largely promote osteoclast differentiation and activity

while suppressing osteoblast differentiation and activity, either

directly or indirectly; though elevated circulating levels of IL-5,

IL-10, IL-13, and CCL5 were also detected in co-housed and pet-

store mice, with these cytokines inhibiting osteoclastogenesis (102)

or promoting osteogenesis (103, 104). Still, such robust and

comprehensive elevation in systemic inflammation is significant,

particularly given that it is a basal environmental feature in dirty

mice as it is in humans (105). Our scientific understanding of how

complex cytokine profiles affect bone homeostasis in health and

disease would benefit from utilization of the dirty mouse

model (Figure 1).

It is difficult to believe that the basal inflammatory environment

in an organism with a mature immune system would not impair

bone mass accrual prior to skeletal maturity and enhance bone

resorption in aging. Even if no skeletal detriments occur from co-

housing, this research will be valuable, potentially revealing novel

osteoprotective therapeutic targets. In this event, one possible

mechanism is in line with Takayanagi et al. (2): following T cell-

mediated activation of the RANKL-TRAF6-NFkB-cSRC-JNK

pathway that enhances osteoclast differentiation, activation, and

survival, IFNy degrades TRAF6 within osteoclasts, preventing

uncontrolled bone loss during inflammatory T-cell responses.

Still, the work of Takayanagi et al. was performed in an organism

with a naïve immune system, which we know demonstrates

profound differences in gene expression and circulating immune

cells and cytokines compared to an organism with a mature

immune system. Much remains to be understood about the
TABLE 1 Inflammatory cytokines directly and indirectly stimulate bone resorption and suppress bone formation.

Cytokine Effect of Cytokine on Bone

IFNg Indirectly stimulates bone resorption and bone loss via T-cell activation and secretion of RANKL* (15, 16)

TNFa Increases RANKL expression and osteoclastogenesis (17–19), indirectly suppresses osteogenesis (20)

IL-1b Enhances osteoclastogenesis, RANKL expression, and bone resorption (21, 22)

IL-2 Increases osteoclast acid production (68), though IL-2 deficiency leads to severe bone loss (69)

IL-6 Induces bone resorption (70, 71), involved in inflammatory bone loss, osteoporosis (23, 24)

IL-9 Enhances osteoclast number and activity, and implicated in rheumatoid arthritis (72, 73)

IL-15(R) Increases osteoclast number and activity, upregulates RANKL expression, and implicated in rheumatoid arthritis, inflammatory bone loss (74–78)

IL-17A Activates signaling cascades resulting in upregulation of TNFa, IL-1b, IL-6, RANKL, and M-CSF** (25–27)

IL-18
Enhances osteoclast number and activity, upregulates TNF and IL-6, and implicated in rheumatoid arthritis (79–81), but can indirectly inhibit
osteoclastogenesis via osteoblast-derived GM-CSF (82)

IL-22 Induces osteoclastogenesis, upregulates RANKL expression, and implicated in rheumatoid arthritis (83, 84), but can indirectly stimulate osteogenesis (85)

IL-23 Increases RANKL expression and indirectly stimulates osteoclastogenesis via IL-17 (86–89)

G-CSF Enhances osteoclastogenesis, indirectly suppresses osteogenesis, and implicated in osteoporosis (90–92)

GM-CSF Extends the proliferation phase of pre-osteoclasts, enhancing osteoclastogenesis and bone resorption (28)

CCL3 Enhances osteoclastogenesis, suppress osteogenesis, and implicated in osteolytic lesions and aging-related osteoporosis (93–95)

CCL4 Promotes pre-osteoclast viability and migration to bone surfaces (96, 97)

CXCL10 Promotes osteoclast differentiation and migration to bone surfaces, and implicated in osteolytic lesions, osteoporosis, and rheumatoid arthritis (98–100)
*IFNg directly stimulates anti-osteoclastogenic factors, but in infection the net balance is in favor of osteoclastogenesis (15).
**Macrophage colony stimulating factor (M-CSF) is requisite, with RANKL, for differentiation of osteoclasts (29, 101).
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contributions of differing immune cell populations and immune

cell-dependent inflammatory cytokine secretion in the context of

bone biology and the bone marrow microenvironment.

Experiments comparing bone homeostasis and remodeling

between SPF and dirty mice are needed. Research areas linked to

overactivation of the immune system, including aging and

osteoporosis, rheumatoid arthritis, HIV/AIDS, obesity and

diabetes, bone marrow metastases and bone cancers, will likely

benefit from insights derived from the dirty mouse model.
Conclusions

Adoption of the SPF model was intended to reduce the

complexity of in vivo experimental systems, but the complexity
Frontiers in Endocrinology 05
arising from diverse microbial exposures isn’t noise. In the words

of Maizels and Nussey, it “represents the genetic and

environmental framework in which the immune system evolved

and functions” (106). While the decades of experimental research

using SPF mice have undoubtedly been valuable, it is time to

embrace the complex i ty . Drawing on ins ights f rom

osteoimmunology, evolutionary anthropology, and immunology

in the above sections, we argue that the dirty mouse model will

improve our understanding and treatment of bone loss caused by

inflammation and immune activation. With rates of osteoporosis

exceeding 1 in 3 women and 1 in 5 men globally, as well as the

steep economic and health costs of an osteoporotic fracture, new

therapeutic targets and interventions are needed (107). To identify

these new targets, novel paradigms and models will need to

be considered.
FIGURE 1

Hypothesized mechanisms and skeletal outcomes of osteoimmune interactions in SPF and Co-housed B6 mice. (A) Visual summary of effects of
inflammatory cytokines outlined in Table 1 on the differentiation and activity of osteoclasts and osteoblasts. I – IFNg promotes immune cell
activation. TNFa, IFNg, IL-1b, IL-15, IL-17A, IL-18, IL-22, and IL-23 augment immune cell-dependent RANKL secretion. IL-17A and IL-18 upregulate
immune cell-dependent secretion of inflammatory cytokines [see Immune Cell Released Cytokines in (B)]. II –TNFa, IL-1b, IL-9, and IL-15 enhance
osteoclastogenesis induced by immune cell-dependent cytokines, including RANKL. GM-CSF, G-CSF, CCL3, and CCL4 increase differentiation of
macrophage-monocyte progenitors (MMP) into osteoclasts, which requires M-CSF and RANKL. III – CCL4 and CXCL10 promote migration of
osteoclasts to bone surfaces. At the bone surface, IL-1b and IL-6 promote bone resorption. IV – IL-1b and IL-2 increase acid (H+) production by
osteoclasts. V – G-CSF and CCL3 inhibit mesenchymal stem cell (MSC) differentiation into osteoblasts. (B) Visual summary of effect of diverse
microbial exposures in co-housed (CoH) B6 mice compared to SPF B6 mice. CoH B6 mice have an expanded T cell compartment and greater levels
of immune cell-dependent inflammatory cytokines (see Immune Cell Released Cytokines). We expect this to impair bone mass accrual during
adolescence and accelerate bone loss during aging leading to an osteoporotic phenotype via mechanisms outlined in (A). We contrast CoH B6 mice
with SPF B6 mice, which demonstrate a reduced T cell compartment and minimal production of inflammatory cytokines.
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