
Frontiers in Endocrinology

OPEN ACCESS

EDITED BY

Chider Chen,
University of Pennsylvania, United States

REVIEWED BY

Bingdong Sui,
Air Force Medical University, China
Zhong Zheng,
University of California, Los Angeles,
United States

*CORRESPONDENCE

Natalina Quarto

quarto@unina.it

SPECIALTY SECTION

This article was submitted to
Bone Research,
a section of the journal
Frontiers in Endocrinology

RECEIVED 18 February 2023
ACCEPTED 31 March 2023

PUBLISHED 24 May 2023

CITATION

Huber J, Longaker MT and Quarto N
(2023) Circulating and extracellular
vesicle-derived microRNAs as
biomarkers in bone-related diseases.
Front. Endocrinol. 14:1168898.
doi: 10.3389/fendo.2023.1168898

COPYRIGHT

© 2023 Huber, Longaker and Quarto. This is
an open-access article distributed under the
terms of the Creative Commons Attribution
License (CC BY). The use, distribution or
reproduction in other forums is permitted,
provided the original author(s) and the
copyright owner(s) are credited and that
the original publication in this journal is
cited, in accordance with accepted
academic practice. No use, distribution or
reproduction is permitted which does not
comply with these terms.

TYPE Review

PUBLISHED 24 May 2023

DOI 10.3389/fendo.2023.1168898
Circulating and extracellular
vesicle-derived microRNAs
as biomarkers in
bone-related diseases

Julika Huber1,2,3,4, Michael T. Longaker1,2,3,5

and Natalina Quarto1,2,3*

1Hagey Laboratory for Pediatric Regenerative Medicine, Stanford University School of Medicine,
Stanford, CA, United States, 2Division of Plastic and Reconstructive Surgery, Stanford University
School of Medicine, Stanford, CA, United States, 3Department of Surgery, Stanford University School
of Medicine, Stanford, CA, United States, 4Department of Plastic Surgery, University Hospital
Bergmannsheil Bochum, Bochum, Germany, 5Institute for Stem Cell Biology and Regenerative
Medicine, Stanford University School of Medicine, Stanford, CA, United States
MicroRNAs (miRNA) are small non-coding RNA molecules that regulate

posttranscriptional gene expression by repressing messengerRNA-targets.

MiRNAs are abundant in many cell types and are secreted into extracellular

fluids, protected from degradation by packaging in extracellular vesicles. These

circulating miRNAs are easily accessible, disease-specific and sensitive to small

changes, which makes them ideal biomarkers for diagnostic, prognostic,

predictive or monitoring purposes. Specific miRNA signatures can be reflective

of disease status and development or indicators of poor treatment response. This

is especially important in malignant diseases, as the ease of accessibility of

circulating miRNAs circumvents the need for invasive tissue biopsy. In

osteogenesis, miRNAs can act either osteo-enhancing or osteo-repressing by

targeting key transcription factors and signaling pathways. This review highlights

the role of circulating and extracellular vesicle-derived miRNAs as biomarkers in

bone-related diseases, with a specific focus on osteoporosis and osteosarcoma.

To this end, a comprehensive literature search has been performed. The first part

of the review discusses the history and biology of miRNAs, followed by a

description of different types of biomarkers and an update of the current

knowledge of miRNAs as biomarkers in bone related diseases. Finally,

limitations of miRNAs biomarker research and future perspectives will

be presented.
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1 Introduction

MicroRNAs (miRNAs) are small non-coding RNA molecules,

about 19-24 nucleotides in length, that regulate posttranscriptional

gene expression by targeting messengerRNAs (mRNAs) and thus

repress or alter the translational process (1, 2). Each miRNA targets

more than 100 genes and plays a role in multiple signaling pathways

and biological processes (2). They can be secreted into extracellular

fluids and act as messengers to mediate cell-cell communication (2).

The first miRNA-mRNA interaction has been described by

Victor Ambros and Gary Ruvkun in 1993 (3, 4). They discovered

lin-4 binding to the 3’ untranslated region of lin-14 mRNA and

thereby regulating the level of LIN-14 protein, necessary for

temporal development in Caenorhabditis elegans (3, 4). Since

then, miRNAs have also been detected in flies, fish and mammals

and are generally conserved amongst species (2, 5–10). With the

discovery of miRNAs and target prediction facilitated by whole

genome sequencing and bioinformatic approaches, researchers

sh i f t ed the i r r e sea rch in te re s t s towards func t iona l

characterizations of miRNA-mRNA interactions (11).

Given that miRNAs are tissue-specific and their expression

patterns reflect cellular physiological processes, their importance in

the context of human diseases became more and more apparent (1,

11). For instance, miRNAs can act as tumor suppressors or

oncogenes, regulate cellular proliferation and apoptosis, modulate

intracellular signaling and immune response (1, 11). Specifically, in

oncologic diseases, miRNAs are involved in cell apoptosis, invasion

and metastasis and disease progression and have diagnostic,

prognostic and therapeutic use (11–20). Moreover, miRNAs have

also been implied in viral disease (11, 21, 22), neurodegenerative

disease (11, 23, 24) and immune disease (25, 26).

MiRNAs are also known to play an important role in epigenetic

regulation of osteogenesis (27). By targeting key osteogenic

regulators, e.g. runt-related transcription factor 2 (RUNX2), they

can enhance or repress osteogenesis (27–37). Other miRNAs act by

targeting genes and receptors of osteogenic signaling pathways,

such as the Wnt- or Bone morphogenetic protein (BMP)-signaling

pathway (38–48). Additionally, several miRNAs also regulate

osteoclast differentiation and osteoblast-osteoclast communication

(49, 50).

Considering that miRNAs are reflective of certain cellular and

molecular processes, changes in their expression level are a useful

indicator of disease, thus making them ideal biomarkers for

diagnostic, predictive and prognostic purposes (1, 27, 51, 52).

Additionally, miRNAs are packaged into extracellular vesicles

(EVs) and released into the bloodstream, protected from

degradation (27, 51). These circulating miRNAs and EV-miRNAs

are easily harvested by liquid biopsy and thus represent an

accessible tool to study miRNA signatures as biomarkers,

circumventing the need for invasive tissue biopsy specifically in

bone-related diseases (27, 51). Moreover, EV-miRNAs can also be

harvested locally before being released into the bloodstream, e.g. in

bile or cerebrospinal fluid, or can be linked to their tissue of origin

based on detection of surface marker proteins, thus allowing for

better diagnostic specificity and sensitivity (53). In this review, we

highlight the role of circulating miRNAs as biomarkers in bone-
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related diseases, focusing on osteoporosis and osteosarcoma. To this

end, a comprehensive literature search on PubMed has been

performed. We applied the following search query and a filter for

English language: (((((((((exosomes) OR (microvesicles)) OR

(extracellular vesicles)) OR (circulating)) AND (miRNA)) OR

(microRNA)) OR (miR)) AND (bone)) AND (biomarker)) NOT

(Review). After an initial screening of titles and abstracts (n=1194),

a more in-depth screening of the manuscript text was performed

among the included 396 papers. Studies only discussing miRNA in a

general osteogenesis context, but not disease-specific or studies not

investigating a bone-related disease were excluded. Additionally,

studies that did not discuss circulating or EV-derived miRNA or did

not discuss their biomarker potential were excluded. The following

review encompasses the remaining 117 studies (Figure 1).
2 Disease biomarkers

According to the Biomarkers, EndpointS, and other Tools

(BEST)- glossary by the FDA-NIH Joint Leadership Council

biomarkers are “a defined characteristic that is measured as an

indicator of normal biological processes, pathogenic processes, or

biological responses to an exposure or intervention, including

therapeutic interventions”. They can be categorized into 7

different types, including susceptibility/risk, diagnostic,

monitoring, prognostic, predictive, response and safety biomarker.

The susceptibility biomarker is a risk indicator for developing a

disease before the onset of disease. In clinical practice, it is helpful to

inform preventative care, such as making lifestyle or dietary changes

or increasing the frequency of screening exams. Well known

examples of susceptibility biomarkers are the Breast Cancer Gene

1/2 (BRCA1/2) mutations (54, 55), that indicate the likelihood of

developing breast and ovarian cancer, and low-density lipoprotein

cholesterol levels (56), that are accompanied by an increased risk for

development of cardiovascular disease.

A diagnostic biomarker confirms a disease or a specific subtype

of a disease, which may guide treatment decisions or potential

enrollment in clinical trials. Common examples include the

Glomerular filtration rate (GFR) to identify patients with chronic
FIGURE 1

Flow chart depicting the screening process for studies included in
the review.
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kidney disease (57), sweat chloride to identify individuals with

cystic fibrosis (58) or HbA1c to diagnose diabetes mellitus (59).

A monitoring biomarker assesses the status of a disease or

treatment response and is measured repeatedly. For instance, they

are useful for assessment of disease progression, disease recurrence,

changes in severity status of disease. Measurements are usually taken

during defined periods of the disease, such as from diagnosis to

treatment, e.g. to evaluate progression rate, during intervention, to

assess treatment response or after treatment, to monitor recurrence.

Common examples include Prostate-specific antigen (PSA), which is

used to monitor disease status in patients with prostate cancer (60,

61) and International normalized ration (INR) or prothrombin time

(PT) to evaluate anticoagulative treatment response (62).

A prognostic biomarker indicates the likelihood of a clinical

event, disease recurrence or progression of disease, such as

metastasis or overall survival, after onset of disease. They are

measured at a defined baseline and are dependent on clinical

setting, e.g. ongoing background treatment or stage of disease,

and the endpoint of interest. They can inform decisions about

treatment plans, for instance, plasma fibrinogen is used to identify

patients with high risk for exacerbation of chronic obstructive

pulmonary disease (63).

A predictive biomarker identifies patients who are more likely

to have a defined outcome from a treatment and are useful for

treatment selection. For instance, they can be characteristic to the

patient’s constitution, e.g. a genetic marker, expression level of a

specific protein in tissues or serum or mutations in tumor. On the

other hand, predictive biomarkers can be dependent on the drug,

which is often defined based on empiric evidence and

pathophysiology of the drug. For example, in non-small cell lung

cancer, squamous differentiation is predictive of a negative response

to pemetrexed treatment (64). It is often difficult to distinguish

between a prognostic and a predictive biomarker. In certain cases, a

biomarker can also simultaneously be both, prognostic

and predictive.

A response biomarker, e.g. a pharmacodynamic biomarker,

indicates that a biological response has occurred after exposure to

a treatment. A common example is circulating B lymphocytes to

assess response to a B-lymphocyte stimulator in patients with

systemic lupus erythematosus (65). In a clinical context, response

biomarkers help guide decisions regarding dosing or continuation

of a treatment, e.g. HbA1c to evaluate the response to

antihyperglycemic agent in diabetes mellitus patients. Treatment

plans can be modified according to the level of response.

Last, a safety biomarker is an indicator for toxicity of a

treatment, which can be measured before or after treatment start

and can predict, confirm or evaluate the extent of the adverse effect.

Measurements are often taken repeatedly, to ensure adequate

management of toxicity and adjustment of treatment plans, e.g.

serum creatinine to monitor nephrotoxic effects of certain drugs

(66). Additionally, if taken before start of the treatment, safety

biomarkers can identify patients, who should not be given a specific

treatment due to safety risk, such as deficiencies of metabolizing

enzymes. An example includes the HLA-B* 1502 genotype to

identify patients with an increased risk of developing Steven-

Johnson syndrome upon treatment with carbamazepine (67).
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Figure 2 establishes a timeline from before the onset of disease

until after discovery and marks the timepoints at which a specific

biomarker is measured.

In the following, we aim to review current knowledge about

miRNAs as biomarkers for bone-related diseases, specifically in

osteoporosis and osteosarcoma.
3 MiRNA biomarkers in osteoporosis

Osteoporosis is the most common bone disease and affects over

10 million people in the United States and over 200 million women

worldwide (68). An increase in osteoclast activity and a decrease in

osteoblast activity leads to an imbalance in bone homeostasis and

causes bone loss. The resulting decrease in bone density and bone

mass results in bone fragility and increased risk of fracture (52, 68–

70). In 2006, an estimated 8.9 million of osteoporotic fractures were

recorded worldwide and 1 in 3 women and 1 in 5 men will

experience a fracture after the age of 50 years (71, 72). Risk

factors include postmenopausal estrogen deficiency, low physical

activity, smoking, hormonal factors, genetic factors, nutrition and

the use of specific drugs, e.g. glucocorticoids. Given our aging

population and changing lifestyle habits, osteoporosis-related

morbidity is expected to increase, which represents a major

burden for the global health system (68, 72, 73). Thus, early

identification of individuals at high risk for osteoporosis is

important to allow for preventative care in the form of lifestyle

interventions or pharmacologic treatments (68, 74). Current

diagnostic methods include bone mineral density (BMD)

measurements by dual-energy X-ray absorptiometry (DXA),

which is recommended for all women 65 years and older (68).

Bone turnover markers, such as alkaline phosphatase (ALP),

osteocalcin (OCN) or parathyroid hormone (PTH), are valuable

in risk assessment in combination with BMD measurements (68,

74). The US Preventive Services Task force (USPSTF) suggests

questionnaire-based screening tools, e.g. Fracture Risk Assessment

(FRAX), Osteoporosis Risk Assessment Instrument (ORAI) or

Osteoporosis Index of Risk (OSIRIS), to assess increased

osteoporotic risk in postmenopausal women younger than 65

years old.

However, DXA is expensive and comes with radiation exposure

and bone turnover markers are unreliable, thus better screening

methods are highly sought after. In the past decade, miRNA
FIGURE 2

Schematic depicting different biomarker types in the context of
disease development over time. Created with BioRender.com.
frontiersin.org

https://BioRender.com
https://doi.org/10.3389/fendo.2023.1168898
https://www.frontiersin.org/journals/endocrinology
https://www.frontiersin.org


Huber et al. 10.3389/fendo.2023.1168898
signatures have emerged as potential biomarkers for the early

diagnosis of osteoporosis and risk prediction for fragility fractures.

Multiple authors have explored the potential of individual or a

panel of miRNA as diagnostic biomarkers in postmenopausal

osteoporosis (PMO) (52, 69, 75–84), in general patient cohorts

including PMO and idiopathic osteoporosis (85–93) and in specific

secondary osteoporosis cases, e.g. severe childhood-onset

osteoporosis in patients with mutations in the Plastin 3 (PLS3)

gene (94). Among the most investigated miRNAs are members of

the miR-21-, miR-23-, miR-320-, miR-203- and miR-19-families.

miR-203 is a known suppressor of bone formation by negatively

regulating BMP-2 and distal-less homeobox 5 (DLX5) which are

activators of key transcription factors for osteoblast differentiation

like runt RUNX2 and Osterix (SP7) (79, 80, 94). miR-23 is also

known to negatively regulate RUNX2 (92). miR-21 is one of the

most studied microRNAs. Among its direct targets are members of

the Transforming Growth Factor ß (TGFß)- and BMP-signaling

pathways, RUNX2, osteocalcin, osteopontin, phosphatase and

tensin homolog (PTEN) and SMAD7 (95). miR-21 is also

involved in osteoclastogenesis by targeting osteoclast suppressor

programmed cell death protein 4 (PDCD4) and osteoclast marker

cathepsin K (CTSK) and receptor activator of nuclear factor ĸB

ligand (RANKL) (92, 95), promoting osteoclast differentiation. miR-

19b directly targets PTEN resulting in an increase of RUNX2 and
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phosphorylation of AKT (protein kinase B) and thus enhancing

osteoblastogenesis (96, 97). Targets of miR-320 include BMP2,

CTNNB1 (ß-catenin) and RUNX2 , promoting osteoblast

differentiation (98) (Table 1).

Other authors sought to find biomarkers enabling diagnosis of

osteoporotic fragility fractures. Previous studies aimed at

identifying miRNA-biomarkers differentiating between patients

with osteoporotic fragility fractures and patients without fractures

(79, 85, 100, 106, 110, 111), patients with osteoporotic fractures

versus (vs) patients with non-osteoporotic fractures (99, 101) and

patients with osteoporotic fractures vs osteoarthritic controls

without fractures (105) (Table 1).

Few authors studied a population over time in a prospective

study to investigate potential predictive biomarkers for osteoporotic

fragility fracture. Heilmeier et al. (97) assessed 168 postmenopausal

diabetic women over a mean follow-up of 5.8 ± 2.7 years. They

demonstrated increased fracture risk in women with upregulated

miR-203a and miR-31-5p serum levels, whereas low expression of

miR-19b-1-5p was associated with lower fracture risk. The

predictive potential of this 3 miRNA-signature was increased

when combined with BMD measurements (97). Ladang et al.

(102) evaluated the predictive potential of a signature set of 19

miRNAs in a longitudinal study with an osteopenic/osteoporotic

patient cohort. They successfully demonstrated a positive predictive
TABLE 1 MiRNA biomarkers in osteoporosis.

Bone-
related
disease

Author MiRNA Target genes of
interest

Type of biomarker Species MiRNA
source

Osteoporosis Al-Rawaf
et al. (69)

miR-148a
miR-122-5p

Diagnostic biomarker for PMO
vs controls

Human Serum

Baloun et al.
(52)

miR-1278
miR-24-1-5p
miR-422a

Diagnostic biomarker for PMO
vs controls

Human Serum

Bedene et al.
(75)

miR-148a-3p MAFB, PPAR, WNT1 Diagnostic biomarker for PMO
vs controls

Human Plasma

Chen et al.
(76)

miR-21-5p
miR-23a-3p
miR-125-5p

PDCD4, ASL, EIF4E3
(miR-21)
RUNX2 (miR-23)
PDGF (miR-125b)

Diagnostic biomarker for PMO
vs controls

Human Serum

Ciuffi et al.
(85)

miR-23a-3p
miR-21-5p
miR-320a-3p

Diagnostic biomarker for
osteoporosis vs osteopenia vs
healthy controls (miR-23a-3p,
miR-21a-5p)
Diagnostic biomarker for
osteoporosis with fracture vs
osteoporosis without fracture
(miR-320a-3p)

Human Serum

Ding et al.
(77)

Panel: miR-194-5p and five medical items
(weight, age, left ventricular end systolic
diameter, alanine aminotransferase, urine
epithelial cell count)

Diagnostic biomarker for PMO
vs osteopenia vs healthy
controls

Human Plasma

Ding et al.
(86)

miR-100 Diagnostic biomarker for
osteoporosis vs healthy control

Human Plasma

(Continued)
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TABLE 1 Continued

Bone-
related
disease

Author MiRNA Target genes of
interest

Type of biomarker Species MiRNA
source

Garg et al.
(99)

miR-23b-3p
miR-140-3p
miR-21-5p
miR-122-5p
miR-125-5p

SMAD7, FGF18,
SKP2, SPRY1/2,
PDCD4, PTEN, RECK,
GDF-5, SOX2, PLAP-
1, ACVR2B (miR-21-
5p)
RUNX2, MRC2,
CCND1, PTEN (miR-
23b-3p)
BMP2, IGF1R,
RUNX2,SPARC,
TSC22D3, VDR, PCP4
(miR-122-5p)
BMPR1B, TRAF6
(miR-125b-5p)
MCF2L, PTEN, BMP2
(miR-140-3p)

Diagnostic biomarker for
osteoporotic hip fractures vs
non-osteoporotic hip fractures

Human Plasma

Heilmeier
et al. (97)

Panel: miR-203a, miR-31-5p, miR-19b-1-5p,
BMD measurements

FOS, RUNX2, SMAD1
(miR-203a)
PTEN, RUNX2 (miR-
19b-1-5p)
FZD3, RUNX2, SP7,
SATB2 (miR-31-5p)

Predictive biomarker for
fracture risk in diabetic
osteoporosis

Human Serum

Heilmeier
et al. (100)

miR-382-3p, miR-188-3p, miR-942 Diagnostic biomarker for PM
osteoporotic fragility fracture
vs postmenopausal patients
without fractures

Human Serum

Ismail et al.
(78)

miR-208a-3p
miR-155-5p
miR-637

ETS1, ACVR1 (miR-
208a-3p)
SOCS1 (miR-155-5p)
SP7 (miR-637)

Diagnostic biomarker for PMO
vs premenopausal osteoporosis
vs healthy controls (miR-208a-
3p) and for PMO vs healthy
controls (miR-155-5p, miR-
637)

Human Serum

Kerschan-
Schindl et al.
(79)

OsteomiR™ panel RUNX2, LRP5, ß-
catenin (miR-375)
Osteocalcin, CTX
(miR-550a-3p)
WNT10B (miR-152-
3p)
BMP2, DLX5,
Osteocalcin (miR-
203a)

Diagnostic biomarker for PMO
vs controls (miR-375)
Diagnostic biomarker for
postmenopausal osteoporotic
fragility fractures vs
osteoporosis without fracture
(miR-203a)

Human Serum

Kocijan et al.
(101)

Panel: miR-152-3p, miR-30e-5p, miR-324-3p,
miR-19b-3p, miR-335-5p, miR-19a-3p, miR-
550a-3p, miR-186-5p, miR-532-5p, miR-93-5p,
miR-378-5p, miR-320a, miR-16-5p, miR-215-
5p, let-7b-5p, miR-29b-3p, miR-7-5p, miR-
365a-3p

DKK1 (miR-152-3p,
miR-335-3p)
LRP6 (miR-30e-5p)
BMP2 (miR-140-5p)
HDAC4, TGFß3,
ACVR2A, CTNNBIP1,
DUSP2 (miR-29b-2p)

Diagnostic biomarker for
idiopathic and postmenopausal
osteoporotic fractures vs non-
osteoporotic fracture controls

Human Serum

Kocijan et al.
(80)

miR-203a DLX5, RUNX2 Diagnostic biomarker for PMO
vs controls
Monitoring biomarker for
treatment response for
zoledronate and teriparatide in
PMO

Human Serum

Ladang et al.
(102)

OsteomiR™ panel Predictive biomarker for
fragility fracture risk

Human Serum

(Continued)
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TABLE 1 Continued

Bone-
related
disease

Author MiRNA Target genes of
interest

Type of biomarker Species MiRNA
source

Li et al. (81) miR-21
miR-133a

SPRY1 (miR-21) Diagnostic biomarker for PM-
osteopenia/osteoporosis vs
controls

Human Plasma

Lincoln et al.
(103)

miR-148a-3p WNT1, WNT10B,
KDM6B, DNMT1,
IGF1, MAFB

Predictive biomarker for
development of osteoporosis in
patients with acute spinal cord
injury

Human Plasma

Lu et al. (87) miR-206 HDAC4 Diagnostic biomarker for
osteoporosis vs control

Human Serum

Ma et al. (82) miR-181c-5p
miR-497-5p

Diagnostic biomarker for PMO
vs controls
Monitoring biomarker for
bisphosphonate and calcitriol
treatment response in PMO

Human Serum

Mäkitie et al.
(94)

Panel: miR-93-3p, miR-532-3p, miR-133a-3p,
miR-301b-3p, miR-181c-5p, miR-203a-3p,
miR-590-3p

WNT1, LRP6, PTEN
(miR-301b)
DLX5, RUNX2 (miR-
203a-3p)
RANKL, MMP9, NF-
ĸB, DKK1 (miR-218-
5p)
DKK1 (miR-203)

Diagnostic biomarker for X-
linked primary osteoporosis

Human Serum

Mandourah
et al. (88)

miR-122-5p and/or miR-4516 BMP2K, FSHB,
IGF1R, RUNX2,
SPARC, TSC22D3,
TSC22D3, VDR (both)
CNR2, ALPL, ANKH,
ESR1, LRP6 (miR-
122-5p)
CNR1, AR (miR-4516)

Diagnostic biomarker for
osteoporosis vs osteopenia vs
control

Human Serum
and
Plasma

Meng et al.
(83)

miR-194-5p COUP-TFII
TGFß-signaling
pathway
Wnt-signaling
pathway

Diagnostic biomarker for PM-
osteopenia/osteoporosis vs
controls

Human Whole
blood

Messner
et al. (104)

miR-454-3p, miR-584-5p, miR-101-3p, miR-
191-5p, miR-26-5p, miR-32-5p, miR-4508

Wnt- signaling
pathway
TGFß- signaling
pathway

Monitoring biomarker for
denosumab treatment response
in PMO

Human Serum

Nakashima
et al. (89)

miR-195
miR-150

GIT1, BMP (miR-195)
MMP14 (miR-150)

Diagnostic biomarker for
osteoporosis vs control

Human Serum

Panach et al.
(105)

miR-122-5p
miR-125b-5p
miR-21-5p

Diagnostic biomarker for
osteoporotic bone fracture vs
osteoarthritic control

Human Serum

Pepe et al.
(90)

miR-1246
miR-1224-5p

Tetraspanin 5 (miR-
1224-5p)

Diagnostic biomarker for
osteoporosis vs osteopenia and
control

Human Plasma-
exosomes

Quillen et al.
(98)

miR-197-3p
miR-320a
miR-320b
miR-331-5p
miR-423-5p

FGB, IGFBP5, SOD1,
SOD2 (miR-197-3p)
SOD2 (miR-331-5p)
GAPDH, MIF, MMP9,
CTNNB1, RUNX2
(miR-320a)
GAPDH (miR-423-5p)
BMP2 (miR-320b)

Susceptibility biomarker for
bone loss

Baboon Plasma

(Continued)
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TABLE 1 Continued

Bone-
related
disease

Author MiRNA Target genes of
interest

Type of biomarker Species MiRNA
source

Ramıŕez-
Salazar et al.
(91)

miR-140-3p
miR-23b-3p

AKT1, AKT2, AKT3,
BMP2 FOXO3,
GSK3B, IL6R,
PRKACB, RUNX2,
WNT5

Diagnostic biomarker for
osteopenia/osteoporosis vs
control

Human Serum

Seeliger et al.
(92)

Panel: miR-21, miR-23a, miR-24, miR-100,
miR-125b

PDCD4 (miR-21)
RUNX2 (miR-23a,
miR-24)
BMPR2 (miR-100)

Diagnostic biomarker for
osteoporosis vs control

Human Serum

Shi et al.
(106)

miR-324-3p
miR-766-3p
miR-1247-5p
miR-330-5p
miR-3124-5p

WNT8B, FZD2,
CSNK1E, DVL1,
RAC3 (miR-324-3p)
WNT1-A, FZD10,
SENP2, VANGL1,
WNT5B, PRKCA,
NFATC2 (miR-776-
3p)
WNT9B, DVL3,
CSNK2A2, APC2,
MYCBP2, RNC1
(miR-1247-5p)
WNT2B, FZD4,
DVL3, PRKACA,
APC2, BTRC, DVL1,
PPP3CB (miR-330-5p)
WNT10B, LRP6,
CXXC4, CSNK2A1,
GSK3B, CSN1A1L,
FZD1, WNT5a,
PLCB1, PRKCA (miR-
3124-3p)

Diagnostic biomarker for
postmenopausal osteoporotic
fragility fracture vs non-
fracture control

Human Serum-
exosomes

Shuai et al.
(93)

5 miRNA panel: miR-30c-2-3p, miR-199a-5p,
miR-424-5p, miR-497-5p, miR-877-3p
4 miRNA panel: miR30c-2-3p, miR-877-3p,
miR-199a-5p, miR-424-5p

HIF1a pathway (miR-
199a-5p)
RUNX2 (miR-30c)
BMP signaling
pathway (miR-497)
Smad7 signaling
(miR-877-3p)

Diagnostic biomarker for
osteoporosis vs osteopenia and
control

Human Serum

Weigl et al.
(107)

miR-34a-5p, miR-31-5p, miR-30d-3p, miR-
378a-5p (teriparatide and zolendronate)
miR-375-3p, miR-183-5p, miR-203a-3p, miR-
203b-3p (teriparatide)

AGO3, MYC,
SPRED1, MYCN,
SON, NUFIP2, MDM4
Wnt signaling
pathway
Notch signaling
pathway

Monitoring biomarkers for
teriparatide and zoledronate
treatment response in
ovariectomized Sprague-
Dawley rats vs control

Rat Serum

Xu et al.
(108)

miR-491-5p
miR-485-3p

Diagnostic biomarker for
postmenopausal osteoporotic
vertebral fracture vs
postmenopausal controls
without fracture

Human Plasma

Xu et al.
(109)

miR-27a-3p SP7 Diagnostic biomarker for
osteoporosis vs controls

Human Serum

Yavropoulou
et al. (110)

miR-124-3p
miR-2861
miR-21-5p
miR-23a-3p
miR-29a-3p

SPRY, PDCD4 (miR-
21)
RUNX2 (miR-23-3p)

Diagnostic biomarker for
postmenopausal osteopenic/
osteoporotic vertebral fractures
vs postmenopausal controls
without fracture

Human Serum

Zarecki et al.
(111)

miR-375
miR-532-3p

ESR1, ADCY1, ATF2,
CALM1, PIK3R3,

Diagnostic biomarker for
postmenopausal osteoporotic

Human Serum
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value of 68% and a sensitivity of 76% in predicting fragility fracture

within three years before the event occurred. They concluded that

the miRNAs panel might be more valuable than the ordinarily used

FRAX (Fracture Risk Assessment Tool) in predicting fragility

fractures (102) (Table 1).

In a clinical setting, a monitoring biomarker may enable us to

evaluate the status of treatment response. In 2020, Kocijan et al. (80)

demonstrated upregulation of miR-203a in femoral head tissues and

peripheral blood of ovariectomized Sprague-Dawley rats, which was

reverted after 12 weeks of either resorptive treatment with zoledronate

or osteo-anabolic treatment with teriparatide. Thus, besides being a

diagnostic biomarker differentiating between ovariectomized rats and

controls, miR-203a may also be a potential minimally invasive

monitoring biomarker for treatment response (80). In 2021, the

same group investigated the time dependent changes of miRNA

serum expression levels during treatment in the same animal model

(107). They presented two panels of miRNA biomarkers, miR-34a-5p,

miR-31-5p, miR-30d-3p, miR-378a-5p and miR-375-3p, miR-183-5p,

miR-203a-3p, miR-203b-3p, with upregulated serum expression levels

over time, which was prevented by treatment with teriparatide or

zoledronate and zoledronate only, respectively. In contrast to their

previous study, the authors did not include miR-203a-3p in the

zoledronate treatment response panel after demonstrating that the

miR-203a-3p expression initially decreased during treatment, however,

it increased again starting at 16 weeks of treatment (107). Ma et al. (82)

investigated the biomarker potential of circulating miR-181c-5p and

miR-497-5p, which were upregulated in the osteoporotic/osteopenic

patient cohort vs healthy controls but decreased after anti-osteoporotic

treatment with bisphosphonate and calcitriol, thereby representing a

potential monitoring biomarker for treatment response. To assess

denosumab treatment response in postmenopausal women, Messner

et al. (104) demonstrated upregulation of a panel of 7 miRNAs,

measured repeatedly over a period of 2 years, which was associated

to increasing BMD and thereby representing a valuable monitoring

biomarker set (Table 1).
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In most studies, miRNAs are evaluated after onset of a disease.

Interestingly, Quillen et al. (98) investigated the expression levels of

5 miRNAs in a cohort of 147 healthy adult baboons. All miRNAs

were negatively correlated with BMD, thus increased miRNA levels

correlated with decreased BMD. Target prediction highlighted their

role in extracellular matrix regulation, apoptosis and cell

proliferation. The authors suggest the investigated miRNA panel

might be indicative of a pre-metabolic shift in bone homeostasis,

thus showing promise as a susceptibility biomarker for

development of osteoporosis (98) (Table 1).

Using a panel of biomarker vs single biomarkers increases

specificity and sensitivity and allows for some variation, thus

current trends in biomarker potential of miRNA go towards

identification of disease-signature sets. Seeliger et al. (92) were

among the first to identify a signature panel of circulating

miRNA able to differentiate between osteoporotic and non-

osteoporotic patients. They first performed miRNA PCR arrays in

serum samples from patients with hip fractures, which were further

classified in osteoporotic and non-osteoporotic sample. They

identified 83 miRNAs, which were validated in a separate analysis

using serum samples from osteoporotic and non-osteoporotic

patients. Amongst those, 9 miRNAs were significantly

upregulated in osteoporotic conditions. The authors proceeded in

further validating these candidates in osteoporotic bone tissue. They

conclude their study presenting a panel of 5 miRNAs (miR-21, miR-

23a, miR-24, miR-25, miR-100, miR-125b) accurately diagnosing

osteoporosis (92). The company TAmiRNA developed an

osteomiR™ kit, that allows measurements of serum/plasma

expression levels of 19 miRNAs, that have been extensively tested

and validated in bone pathophysiology and bone-related diseases

(80, 89, 100, 105, 111, 112). Kerschan-Schindl et al. (79) identified 4

clusters of miRNAs within the osteomiR™ set. Combining

individual miRNA from different sets was shown to be relevant to

the classification of osteoporosis according to the WHO definition

and fracture-based classification (Major osteoporotic Fractures
TABLE 1 Continued

Bone-
related
disease

Author MiRNA Target genes of
interest

Type of biomarker Species MiRNA
source

miR-19b-3p
miR-152-3p
miR-23a-3p
miR-335-5p
miR-21-5p

GNAQ, PIK3CA
(miR-19b-3p)
ITGA9, ITGA5,
ITGA11, COL2A1,
COL4A1, JARID2,
INHBB, APC,
WNT10B, IGF1,
KLF4, MEIS1 (miR-
152-3p)
YAP1, SMAD7,
LATS1, BMPR2 (miR-
21-5p)

vertebral fracture vs
postmenopausal controls
without fracture

Zhao et al.
(84)

miR-144-5p
miR-506-3p
miR-8068
miR-6841-3p

YY1, VIM, YWHAE Diagnostic biomarker for PMO
vs control

Human Serum
fron
OsteomiR™ panel: let-7b-5p, miR-127-3p, miR-133b, miR-141-3p, miR-143-3p, miR-144-5p, miR-152-3p, miR-17-5p, miR-188-5p, miR-19b-3p, miR-203a, miR-214-3p, miR-29b-3p, miR-31-
5p, miR-320a, miR-335-5p, miR-375, miR-550a-3p, miR-582-5p; PMO: postmenopausal osteoporosis
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MOFx), with miR-375 as a main contributor for the former and

miR-203 for the latter, respectively (79). Kocijan et al. (101) isolated

a set of 19 miRNAs in osteoporotic patients vs healthy controls.

Within the set, a panel of 8 miRNAs (miR-152-3p, miR-30e-5p,

miR-140-5p, miR-324-3p, miR19b-3p, miR-335-5p, miR-19a-3p,

miR-550a-3p) represent potential diagnostic biomarkers

discriminating between patients with osteoporotic fractures vs

non-osteoporotic fracture controls, regardless of age or sex. 7 of

the 19 tested miRNAs are included in the osteomiR™

signature (Table 1).
4 MiRNA biomarkers in osteosarcoma

Osteosarcoma is the most common primary bone tumor

occurring predominantly in children and young adults. Primary

sites include the metaphyses of long bone, e.g. distal femur,

proximal tibia or proximal humerus. By the time of diagnosis,

about 15-25% of patients present with distant metastasis mostly to

the lung, but also in bone and rarely in lymph nodes. Symptoms

include local pain, swelling and limitation of movement. Diagnostic

methods rely on traditional x-ray imaging techniques, often

accompanied by magnetic resonance imaging (MRI) to detect soft

tissue invasion and skip lesions, followed by bone tissue biopsy

(113–116). Treatment requires a multidisciplinary approach

including combination chemotherapy and complete surgical

resection. Osteosarcoma is an aggressive tumor with a 5-year

survival rate of 60-70%, which is drastically reduced to 10-40% in

patients with relapsing disease or metastatic status at time of

diagnosis (114, 117). Due to the difficulty in early assessment of

relapse or diagnosis of minimal residual disease by conventional

imaging techniques, biomarkers for monitoring of tumor response

and surveillance of recurrence are highly sought after (115).

Multiple authors identify singular miRNAs as diagnostic

biomarkers differentiating between osteosarcoma patients and a

control group (118–141). Selection of miRNAs is based on

previously established associations to different cancer types (118,

120–128, 131, 133, 135, 136, 139), which is an approach that

drastically limits the potential candidate miRNAs. Other authors

have focused on more comprehensive screening methods for

potential biomarker selection, followed by validation by

quantitative RT-PCR (138, 142, 143). Using this approach,

Fujiwara et al. (142) demonstrated superiority of miR-25-3p as a

diagnostic biomarker compared to the conventional biomarker

ALP. Other authors created miRNA-mRNA regulatory networks

using pre-screened miRNAs and their predicted targets. Candidate

miRNAs were selected based on targeted hub genes [miR-199a-5p

(137)] (Table 2).

High biovariability and small sample sizes due to the rarity of the

disease make biomarker identification in osteosarcoma difficult.

Multiple authors have focused on multi-panel miRNA signatures to

increase biomarker accuracy and allow for individual variations (1,

115, 116, 148, 150, 152–154). Asano et al. (1) screened serum

miRNAs in over a 1000 sarcoma samples, including osteosarcoma.

They identified a classifier Index VI differentiating between sarcomas

and benign tumors and healthy controls. The group validated their
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findings in a smaller subset of patients and also comparing to patients

with other malignancies, e.g. lung cancer. Although the

discriminatory ability of Index VI was high in bone sarcomas,

especially in the early stages, the authors point out that the Index

does not discriminate between histological subtypes and that without

confirmatory studies, it should only be used for diagnosis of

malignant vs benign tumors (1). In 2015, Allen-Rhoades et al.

(115) developed a mouse model for osteosarcoma and chose a

signature set of four candidate miRNAs differentiating between

affected mice and their healthy controls. The authors validated

their findings in human plasma samples and thereby demonstrated

cross-species application of their model (115) (Table 2).

Additionally, multiple miRNAs have been suggested as

prognostic biomarkers in osteosarcoma. High/low expression

levels of specific miRNAs have been associated with advanced

tumor stage, positive metastasis, higher recurrence and/or shorter

overall survival (115, 124–136, 139, 141, 142, 144, 145, 147, 151,

152, 154–156). Similarly, multiple authors demonstrated superiority

of using a miRNA panel with or without combination with clinical

markers for prognostic accuracy compared to individual miRNAs

(146, 149, 153) (Table 2).

Monitoring biomarkers in osteosarcoma are useful to assess

adequate response to surgical resection or chemotherapy and to

screen for recurrence. Some authors identified upregulated miRNA

expression levels preoperatively, that decreased upon surgical tumor

resection (138, 142, 152) and vice versa, respectively (129, 135, 153).

Considering that these miRNAs react to changes in tumor status,

they represent valuable candidates for monitoring surgical

treatment response and detecting residue and recurrence. In

addition to surgery, combination chemotherapy is required for a

curative approach in treating osteosarcoma (114). Fujiwara et al.

(142) evaluated the potential of miR-25-3p to monitor tumor

response in a case series and were able to show decreasing

expression levels after surgical tumor resection and during/after

neoadjuvant combination chemotherapy, unlike ALP levels, which

plateaued during treatment. In a mouse model of osteosarcoma,

Allen-Rhoades et al. (115) demonstrated detectable changes in

expression levels of a previously identified 4-miRNA signature set

coinciding with tumor formation 14 weeks after transplantation of

osteosarcoma cells. Additionally, they measured expression level of

a 4-miRNA set in placebo treated and Doxorubicin-treated mice

with osteosarcoma and were able to demonstrate reduced

magnitude of alteration in miRNA plasma expression levels in the

treated mice, suggesting that these miRNAs may be a valuable

monitoring marker for tumor development and chemo-

response (Table 2).

Predictive biomarkers may guide treatment decisions in

osteosarcoma as certain preconditions, e.g. specific miRNA up- or

downregulation, may indicate the likelihood of a patient to respond

well or poorly to a chemotherapy. For instance, patients with lower

levels of certain miRNAs before chemotherapy, such as miR-34

(124) demonstrated good treatment response compared to patients

with initially high miRNA expression levels. In contrast, patients

with low levels of miR-375 (125), miR-497 (128), miR-491 (131) or

miR-21 (136) before neoadjuvant chemotherapy showed a poor

treatment response (Table 2).
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TABLE 2 MiRNA biomarkers in osteosarcoma.

Bone-
related
disease

Author MiRNA Target genes of
interest

Type of biomarker Species MiRNA
source

Osteosarcoma Allen-
Rhoades
et al.
(115)

Panel: miR-205-5p, miR-335-5p,
miR-574-3p, miR-214

LZTS1 (miR-214)
Wnt-signaling pathway,
SOX9 (miR-335-5p, miR-
574-3p)

Diagnostic biomarker (all)
Prognostic biomarker for overall
survival (miR-214)
Monitoring biomarker for disease
development (all)

Mouse
and
human

Plasma

Asano
et al. (1)

Panel: Index VI (miR-4736,
miR-6836-3p, miR-4281, miR-
762, miR-658, miR-4649-5p,
miR-4665-3p)

Diagnostic biomarker for sarcomas
(including bone sarcomas)

Human Serum

Cao et al.
(118)

miR-326 BCL2 Diagnostic biomarker
Prognostic biomarker for distant
metastasis

Human Serum

Cong
et al.
(119)

miR-124 Diagnostic biomarker
Prognostic biomarker for overall
survival

Human Serum

Cuscino
et al.
(116)

8 novel candidate miRNA Diagnostic biomarker Human Osteosarcoma
cell line-derived
exosomes

Dailey
et al.
(144)

Panel: miR-23a-3p, miR-30c-5p Prognostic biomarker for disease-
free interval

Canine Serum

Diao et al.
(120)

miR-22 Diagnostic biomarker
Prognostic biomarker for outcome
(large tumor size, advanced clinical
stages, distant metastasis)
Predictive biomarker for
chemosensitivity

Human Plasma

Dong
et al.
(121)

miR-223 Diagnostic biomarker
Prognostic biomarker for distant
metastasis, advanced clinical stage
and overall survival

Human Serum

Fujiwara
et al.
(142)

miR-25-3p Diagnostic biomarker
Prognostic biomarker for distant
metastasis

Human
Mouse

Serum

Gong
et al.
(145)

miR-675 CALN1 Prognostic biomarker for distant
metastasis

Human Plasma

Heishima
et al.
(146)

Panel: miR-214, miR-126 and
ALP

Prognostic biomarker for
metastasis, disease free survival
and overall survival

Canine Plasma

Hong
et al.
(147)

miR-29a
miR-29b

Prognostic biomarker for disease
free survival and overall survival

Human Serum

Hua et al.
(122)

miR-Let7A Diagnostic biomarker
Prognostic biomarker for overall
survival

Human Blood

Hua et al.
(123)

miR-21 PDCD4 Diagnostic biomarker
Predictive biomarker for
chemosensitivity

Human Serum

Huang
et al.
(143)

miR-663 Diagnostic biomarker Human Plasma

(Continued)
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TABLE 2 Continued

Bone-
related
disease

Author MiRNA Target genes of
interest

Type of biomarker Species MiRNA
source

Huang
et al.
(148)

Panel: miR-487a, miR-493-5p,
miR-501-3p, miR-502-5p)

Diagnostic biomarker Human Serum

Jerez et al.
(149)

miR-21-5p
miR-143-3p
miR-148a-3p
miR-181-5p

MAPK1, NRAS, FRS2,
PRCKE, BCL2, QKI

Prognostic biomarker for
metastasis

Human Osteosarcoma
cell line-derived
extracellular
vesicles

Kosela-
Paterczyk
et al.
(150)

Panel: miR-133a, miR-223-3p,
miR-450b-5p, miR-548q

Diagnostic biomarker Human Serum

Li et al.
(151)

miR-542-3p Prognostic biomarker for tumor
progression and overall survival

Human Serum

Lian et al.
(152)

Panel: miR-195-5p, miR-199a-
3p, miR-320a, miR-374-5p

FASN (miR-195-5p)
p53 signaling pathway
(miR-199-3p)

Diagnostic biomarker (4 miRNA
set)
Prognostic biomarker for
metastasis (miR-195-5p, miR-
199a-3p)
Monitoring biomarker for tumor
response after surgery

Human Plasma

Lian et al.
(124)

miR-34a Diagnostic biomarker
Prognostic biomarker metastasis,
recurrence and overall survival
Predictive biomarker for
chemosensitivity

Human Serum

Liu et al.
(125)

miR-375 Diagnostic biomarker
Prognostic biomarker for tumor
stage and metastasis
Predictive biomarker for
chemosensitivity

Human Serum

Luo et al.
(153)

miR-337-3p
miR-484
miR-582
miR-3677

Diagnostic biomarker
Prognostic biomarker for tumor
stage, metastasis and overall
survival
Monitoring biomarker for surgical
treatment response

Human Serum

Ma et al.
(126)

miR-148a Diagnostic biomarker
Prognostic biomarker for tumor
size, metastasis, overall survival
and disease-specific survival

Human Plasma

Monterde-
Cruz et al.
(140)

miR-215-5p
miR-642-5p

RAB2A, RB1, BLCAP,
CCNT2 (miR-215-5p)
MAPK-signaling pathway,
TGFß-signaling pathways
(miR-642a-5p)

Diagnostic biomarker Human Serum

Nakka
et al.
(141)

miR-21
miR-221
miR-106a

RECK, PTEN (miR-21)
HDAC6, DNMT3b,
NOSTRIN, E-cadherin,
uPAR7b, PTEN, KIP1,
CDKN1B (miR-221)

Diagnostic biomarker Human Plasma

Niu et al.
(127)

miR-95-3p Diagnostic biomarker
Prognostic biomarker for overall
survival

Human Serum

Ouyang
et al.
(154)

Panel: miR-21, miR-199a-3p,
miR-143

Diagnostic biomarker Human Serum
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TABLE 2 Continued

Bone-
related
disease

Author MiRNA Target genes of
interest

Type of biomarker Species MiRNA
source

Pang et al.
(128)

miR-497 Diagnostic biomarker
Prognostic biomarker for advanced
stage, distant metastasis
Predictive biomarker for
chemosensitivity

Human Serum

Shi et al.
(129)

miR-194 Multiple oncogenic target
genes, e.g. HIF-1a, YAP1,
AKT2

Diagnostic biomarker
Prognostic biomarker for advanced
clinical stage, metastasis and
overall survival
Monitoring biomarker for
treatment response (surgery)

Human Serum

Tian et al.
(130)

miR-34b Diagnostic biomarker
Prognostic biomarker for
metastasis

Human Plasma

Wang
et al.
(131)

miR-491 CRYAB Diagnostic biomarker
Prognostic biomarker for lung
metastasis and overall survival
Predictive biomarker for
chemosensitivity

Human Serum

Wang
et al.
(132)

miR-191 Diagnostic biomarker
Prognostic biomarker for advanced
clinical stage, distant metastasis,
disease-free survival and overall
survival

Human Serum

Xie et al.
(133)

miR-26a-5p ITGB8, HOXA5 Diagnostic biomarker
Prognostic biomarker for advanced
stage, metastasis and overall
survival

Human Serum

Yang et al.
(155)

miR-429
miR-143-3p

Diagnostic biomarker
Prognostic biomarker for advanced
stage, distant metastasis and
overall survival

Human Serum

Yang et al.
(134)

miR-221 RECK, ARHI, DVL2 Diagnostic biomarker
Prognostic biomarker for distant
metastasis, advanced clinical stage,
disease-free survival and overall
survival

Human Serum

Yao et al.
(135)

miR-101 RAC1, USP22, VEGF-C,
Girdin, COX-2, EZH2,
SOCS-2, ZEB1, ZEB2

Diagnostic biomarker
Prognostic biomarker for advanced
clinical stage, distant metastasis,
disease-free survival and overall
survival
Monitoring biomarker for
treatment response in non-
metastatic patients

Human Serum

Yuan
et al.
(136)

miR-21 Prognostic biomarker for advanced
stage and overall survival
Predictive biomarker for
chemosensitivity

Human Serum

Zhang
et al.
(156)

miR-133b
miR-206

EGFR, MCL1, FSCN1, c-
Met, BCL2L2 (miR-133b)

Diagnostic biomarker
Prognostic biomarker for high
tumor grade, metastasis,
recurrence, disease-free survival
and overall survival

Human Serum

Zhang
et al.
(137)

miR-199a-5p VEGFA Diagnostic biomarker Human Osteosarcoma
cell line-derived
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5 MiRNA biomarkers in other bone-
related diseases

Besides osteosarcoma, Ewing Sarcoma is the second most

common bone and soft tissue tumor in children and adolescents.

The Ewing’s sarcoma family of tumors (ESFT) includes Ewing’s

sarcoma, Askin tumor and peripheral primitive neuroectodermal

tumor. At the time of diagnosis, about 25% of patients have detectable

metastasis, primarily in the lung, bone and bone marrow. Treatment

includes combination chemotherapy and surgical resection (157).

Using miRNA sequencing, Crow et al. (158) identified a disease-

specific signature set of 62 exosomal miRNAs able to differentiate

between ESFT and non-ESFT samples. Similarly, Kosela-Patercyzk

et al. (150) and Nie et al. (159) identified a 4 miRNA panel and a

singular miRNA marker, respectively, as diagnostic biomarkers for

ESFT. In chondrosarcoma, a type of bone sarcoma, miR-145 (160)

was identified as a diagnostic biomarker for early detection, which is

important due to limited treatment options. However, studies

investigating miRNA biomarkers for these types of bone sarcomas

are rare (Table 3).

Multiple Myeloma is a hematological malignancy of the bone

marrow. One of the more severe complications of Multiple

Myeloma is bone disease, which is defined by osteolytic lesions or

osteoporotic fractures due to clonal plasma cell disorder. Even

though imaging techniques are improving quickly, early diagnosis

of bone disease using non-invasive techniques would be very

beneficial to guide treatment decisions (194). To our knowledge,

three studies have investigated circulating miRNA as biomarkers for

multiple myeloma bone disease, using a 5 miRNA-panel (165),

miR-29c-3p (166), and miR-214 and miR-135b (167) as individual

biomarkers, respectively. Out of the 5 miRNA-panel, two miRNAs

(let-7b-5p and miR-335-5p) were also identified as a prognostic

biomarker for progression-free survival (165). Hao et al. (167)

identified miR-214 as a predictive biomarker for good response to

bisphosphonate treatment (Table 3).

Bone homeostasis is maintained by a constant remodeling

process and relies on a balance of osteoblast and osteoclast

activity. Solid tumors often metastasize to bone and over 70% of

metastatic prostate and breast cancer patients experience bone

metastasis. Tumor cells mainly infiltrate the endosteal and

perivascular niches and are thought to remain in a state of
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dormancy often up to many years. Upon activation of tumor

cells, cross-talk between the bone modulating cells leads to a

release of growth factors and tumor cell proliferation is promoted

by a feed-forward loop. Symptoms of bone metastasis include pain

and increased fracture risk. Tumors are often considered incurable

once bone metastasis has occurred and current diagnostic methods

expose patients to radiation, thus biomarkers for early detection and

prediction of patients at risk are highly sought after (176, 195).

Multiple miRNA biomarkers have been identified for detection of

bone metastasis in prostate cancer (168–175), breast cancer (176,

177), hepatocellular carcinoma (178) and lung cancer (180–182).

Additionally, in lung cancer bone metastasis, Valencia et al. (179)

identified miR-326 as a valuable biomarker to monitor metastatic

progression and tumor burden. It correlated with the conventional

bone turnover marker PINP (procollagen I amino-terminal pro-

peptide (179) (Table 3).

Osteoarthritis is one of the leading causes of disability in adults

worldwide and is a socioeconomic and financial burden. It is a

metabolic inflammatory disease that leads to progressive cartilage

degeneration. Major symptoms include chronic pain, stiffness and

loss of mobility (196). MiRNAs have been investigated as diagnostic

biomarkers in osteoarthritis (162–164). Additionally, Ali et al. (161)

has identified the miR-320 family as potential diagnostic biomarker

for fast-progressing osteoarthritis.

Long-bone fracture healing occurs in stage starting with

hematoma formation, inflammation, migration and differentiation

of mesenchymal stromal cells (MSCs), bone formation and

angiogenesis and bone remodeling. During endochondral

ossification, hypertrophic chondrocytes turn into osteoblasts. This

process is tightly controlled by miRNAs (183). Any disruption of

this complex process can lead to fracture non-union, arthrosis and

chronic pain syndromes. Bourgery et al. (183) analyzed the serum

expression levels of circulating miRNAs during fracture healing in a

mouse model. They identified differentially expressed miRNAs over

a follow-up period of 14 days compared to the baseline and were

able to establish a potential miRNA signature for monitoring

adequate fracture healing (183). Similarly, Xiong et al. (185)

demonstrated miR-193a-3p as a potential prognostic biomarker

indication fracture non-union. Development of chronic regional

pain syndrome (CRPS) after fracture is often difficult to diagnose

with potentially devastating consequences for the patient. Dietz
TABLE 2 Continued

Bone-
related
disease

Author MiRNA Target genes of
interest

Type of biomarker Species MiRNA
source

exosomes
Plasma

Zhou
et al.
(138)

miR-199a-5p Diagnostic biomarker
Monitoring biomarker for surgical
treatment response and tumor
status

Human Serum

Zhou
et al.
(139)

miR-421 Diagnostic biomarker
Prognostic biomarker for overall
survival

Human Serum
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TABLE 3 MiRNA biomarkers in other bone-related diseases.

Bone-related
disease

Author MiRNA Target genes of interest Type of biomarker Species MiRNA source

Osteoarthritis Ali et al.
(161)

miR-320b
miR-320c
miR-320d
miR-320e

14-3-3 gene family Diagnostic biomarker for
fast-progressing OA

Human Plasma

Pertusa
et al.
(162)

miR-497 SMURF2 Diagnostic biomarker Human Serum

Wan
et al.
(163)

miR-136 IL17 Diagnostic biomarker Human Plasma

Xia et al.
(164)

miR-181-5p TNFA Diagnostic biomarker Human Peripheral blood

Ewing Sarcoma
Family of
Tumors (ESFT)

Crow
et al.
(158)

Panel of 62 miRNAs
(see full list in original
paper)

Diagnostic biomarker Human ESFT cell line-derived
extracellular vesicles
Serum

Kosela-
Paterczyk
et al.
(150)

Panel: miR-424-5p, miR-
3173-3p, miR-142-3p,
miR-4746-5p

Diagnostic biomarker Human Serum

Nie et al.
(159)

miR-125b Diagnostic biomarker Human Serum

Chrondrosarcoma Urdinez
et al.
(160)

miR-145 FSCN1 Diagnostic biomarker Human Plasma

Multiple
Myeloma Bone
Disease

Papanota
et al.
(165)

Panel: let-7b-5p, miR-
143-3p, miR-17-5p
miR-214-3p, miR-335-
5p

ATF4, SP7, FGFR1, PTEN (miR-
214-3p)
SP7 (miR-143-3p)
TGFBR1, IGF1R, MYC (let-7a-5p)
DKK1, IGF1R (miR-335-5p)
SMAD5, BMP2 (miR-17-5p)

Diagnostic biomarker
Prognostic biomarker for
progression-free survival
(let-7b-5p, miR-335-5p)

Human Plasma

Moura
et al.
(166)

miR-29c-3p Diagnostic biomarker Human Plasma

Hao et al.
(167)

miR-214
miR-135b

PTEN (miR-214) Prognostic biomarker for
bone disease in Multiple
Myeloma patients
Predictive biomarker for
bisphosphonate treatment
response (miR-214)

Human Serum

Bone metastasis Fang
et al.
(168)

miR-214 PTEN Prognostic biomarker for
bone metastasis in PCa

Human Serum

Guo et al.
(169)

miR-205 Prognostic biomarker for
bone metastasis in PCa

Human Serum

Lu et al.
(170)

miR-125a-3p
miR-330-3p
miR-339-5p
miR-613

KRAS, RHOA, BDNF, HNRNPA1,
BRCA1, FYN, BCL2L11, NRG1,
SETX, FXR1, BACE1, CDC37,
TIMP3, PDCD4, SGK1

Prognostic biomarker for
bone metastasis in PCa

Human Plasma-derived
exosomes

Peng
et al.
(171)

miR-218-5p TRAF1, TRAF2, TRAF5 Prognostic biomarker for
bone metastasis in PCa

Human Serum

Rode
et al.
(172)

miR-425-5p HSPB8 Prognostic biomarker for
bone metastasis in PCa

Human Prostate cancer cell-
line derived exosomes

(Continued)
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TABLE 3 Continued

Bone-related
disease

Author MiRNA Target genes of interest Type of biomarker Species MiRNA source

Wa et al.
(173)

miR-204-5p TRAF1, TAB3, MAP3K3 Prognostic biomarker for
bone metastasis in PCa

Human Serum

Wang
et al.
(174)

miR-181-5p Prognostic biomarker for
bone metastasis in PCa

Human Serum-exosomes

Zhang
et al.
(175)

miR-141 Prognostic biomarker for
bone metastasis in PCa

Human Serum

Wu et al.
(176)

miR-19a PTEN Prognostic biomarker for
bone metastasis in breast
cancer

Human Bone-metastatic
estrogen-receptor
positive breast cancer
cell-derived exosomes

Zhao
et al.
(177)

miR-10b Prognostic biomarker for
bone metastasis in breast
cancer

Human Serum

Xiang
et al.
(178)

miR-34a TGIF2 Prognostic biomarker for
bone metastasis in
hepatocellular carcinoma

Human Serum

Valencia
et al.
(179)

miR-326 Monitoring biomarker for
metastatic progression in
bone metastasis in lung
cancer

Mouse Serum

Xu et al.
(180)

miR-139-5p NOTCH1 Prognostic biomarker for
bone metastasis in lung
cancer

Human Serum

Yang
et al.
(181)

Panel of 144 miRNA
(Cluster B, see (181)),
e.g. miR-574-5p, miR-
328-3p, miR-423-3p

Wnt/ß-catenin signaling pathway Prognostic biomarker for
bone metastasis in lung
cancer

Human Plasma-derived
exosomes

Zeng
et al.
(182)

miR-31-3p FOXO1 Prognostic biomarker for
bone metastasis in lung
cancer

Human Serum

Fracture healing Bourgery
et al.
(183)

miR-451
miR-328-3p
miR-133a-3p
miR-375-3p
miR-423-5p
miR-150-5p

P38 MAPK (miR-451)
Axin1, PTEN (miR-328-3p)
Egfr, Fgfr1, Igfr1, Met (miR-133a-
3p)
Lrp5, Ctnnp, Brd4 (miR-375-3p)
Tnip2, Cdkn1a, Igf2bp1 (miR-423-
5p)
Vegf, Socs1, Rab9, Mmp14, Slc2a1,
Elk1 (MiR-150-5p)

Monitoring biomarker for
adequate fracture healing

Mouse Serum

Dietz
et al.
(184)

miR-223 Prognostic biomarker for
development of CRPS
after fracture

Human Serum-exosomes

Xiong
et al.
(185)

miR-193a-3p MAPK10 Prognostic biomarker for
fracture non-union

Human Serum

Adolescent
idiopathic
scoliosis

Garcıá-
Giménez
et al.
(186)

Panel: miR-122-5p, miR-
27a-5p, miR-223-5p,
miR-1306-3p

Wnt/ß-catenin pathway, BMP4
(miR-122-5p)
APC, PPARG, CEBPA (miR-27a)
FGF2, PCGF3, BMI1, PU.1,
RANKL, NFATc1, TRAP, c-Jun,
cathepsin K, NFIA (miR-223-5p)

Diagnostic biomarker Human Plasma

Wang
et al.
(187)

miR-151a-3p GREM1 Diagnostic biomarker Human Plasma

(Continued)
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et al. (184) identified miR-223-5p as a potential prognostic

biomarker for development of CRPS after bone fracture (Table 3).

Other bone-related diseases that have been studied in the

context of circulating miRNA expression levels include adolescent

idiopathic scoliosis (186, 187), osteonecrosis of the femoral head

(188–190), fibrous dysplasia of the bone (191), developmental

dysplasia of the hip (192) and renal osteodystrophy (193) (Table 3).
6 Discussion

This review discusses the potential use of circulating and EV-

derived miRNA as biomarkers of bone-related disease. Although

this is a promising approach for diagnostic, monitoring, prognostic

and predictive purposes, this area of research is still in early stages

and has many limitations.

One of the main criticisms of circulating miRNAs as biomarker

of disease is its lack of reproducibility, low specificity and high intra-

and inter-assay variability. In the studies discussed in this review,

there is only minimal overlap of biomarker candidates in

osteoporosis, even less so in osteosarcoma studies. Moreover,

some studies are even directly contradictory, e.g. Yang et al. (134)

demonstrated high levels of miR-221 associated with poor

prognosis and Nakka et al. (141) reported the reversed situation.

These inconsistencies are due to lack of standardization of pre-

analytical and analytical conditions and unaccounted differences in

patient population, e.g. sex, age and existing preconditions (53,

197). For instance, centrifugation conditions can impact
Frontiers in Endocrinology 16
measurements of miRNA expression in plasma or serum samples

and differences in miRNA purification methods accounts for 77-

92% of intra-assay variation in miRNA quantification (197).

Additionally, detection methods for circulating miRNA include

Next-Generation Sequencing (NGS), real-time PCR, miRNA

microarray, and less frequently, Northern blot analysis and in situ

hybridization (198). To assure consistency between studies, miRNA

detection should be accompanied by an adequate normalization

strategy. Usually, this can be done by using a reference marker, most

commonly spike-in cel-miR-39 or endogenous miR-16 during RNA

extraction. A combination of spike-in and endogenous reference

markers is preferred (197–199). The osteomiR™ panel contains

three spike-in controls as well as two endogenous reference markers

for hemolysis (79). In osteosarcoma, Allen-Rhoades et al. (115)

investigated cross-species application of miRNA biomarkers and

identified disease-specific endogenous reference plasma miRNAs in

mouse and human.

Moreover, selection of biomarker candidates is inconsistent and

unreliable, leading to low specificity. Many authors do not perform

comprehensive screening methods to select potential miRNA

biomarker candidates, but rather rely on previously published

literature selecting miRNAs that have been shown to play a role in

related diseases. To identify novel candidates that are specific to the

investigated disease, comprehensive screening methods need to be

performed and potential biomarkers should be selected based on

differential expression levels at multiple different time points and

their known or potential biological and molecular function. For

instance, miR-21 is a widely known oncogenic miRNA implicated
TABLE 3 Continued

Bone-related
disease

Author MiRNA Target genes of interest Type of biomarker Species MiRNA source

Osteonecrosis of
the femoral head
(ONFH)

Hong
et al.
(188)

miR-127-3p
miR-628-3p
miR-1
miR-885-5p
miR-483-3p
miR-483-5p

IGF2, PDGFA, RUNX2, PTEN,
VEGF

Diagnostic biomarker for
alcohol-induced ONFH

Human Serum

Kao et al.
(189)

miR-18a
miR-19a
miR-138-1
miR-1290
miR-3609

TP53
SERBP1

Diagnostic biomarker Human Blood

Liu et al.
(190)

miR-93-5p
miR-320a

Diagnostic marker Human Serum

Fibrous dysplasia
of the bone

Legrand
et al.
(191)

miR-25-3p
miR-93-5p
miR-182-5p
miR-324-5p
miR-363-3p
miR-451a

IL6ST (miR-25-3p, miR-363-3p)
FOXO1 (miR-324-5p)
IL6R (miR-451a)
GNAS, FOXO3, PDGFB, ESR2,
BMP2 (miR-93-5p)

Diagnostic biomarker Human Serum

Developmental
dysplasia of the
hip

Luo et al.
(192)

miR-140 and 25-
hydroxyvitamin D status

Diagnostic biomarker Human Serum

Renal
osteodystrophy

Nickolas
et al.
(193)

Panel: miR-30b, miR-
30c, miR-125b, miR-155

Diagnostic biomarker low
vs non-low bone turnover

Human Serum
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in tumorigenesis of multiple entities. Overexpression of miR-21 has

been demonstrated in multiple tumors, including glioblastoma,

ovarian cancer, B-cell lymphoma, hepatocellular carcinoma, lung

cancer and breast cancer and is associated with increased

proliferation and invasion and decreased apoptosis (200,

201).Target genes include tumor suppressor genes, e.g. PTEN,

programmed cell death 4 (PDCD4), SMAD7 and tropomyosin

(TPM1). Thus, miR-21 can be valuable as a monitoring biomarker

for tumor progression or treatment response or as part of a diagnostic

panel of miRNA, as suggested by many authors (136, 141, 149, 154),

but its value as an individual diagnostic biomarker is limited (53).The

Receiver Operating Characteristic (ROC) approach allows calculation

of sensitivity and specificity and generation of an area under the curve

(AUC) which is an indicator for how well the biomarker differentiates

between a disease and its control (202). Many, but not all studies,

discussed in this review specify AUC values and accepted cut-off

values are not standardized and/or inconsistent, leading to low

specificity of biomarker candidates (115). Additionally, according

to the BEST Glossary by the FDA-NIH Biomarker Working Group,

the test conditions play an important role in biomarker validation.

For instance, a single measurement of blood measure is not sufficient

for diagnosis of hypertension. The studies discussed in this review

often measure expression levels of the candidate miRNA at only one

defined time point. However, many miRNA expressions change with

disease progression, which might explain some contradictions.

Generally, given the heterogeneity of disease, using a panel

compared to individual biomarkers is advisable (198). Further,

positive and negative predictive values are dependent on the

prevalence of disease in the population and these values were only

rarely discussed in the presented studies (102, 151).

The majority of circulating biomarkers in blood is released by

blood or endothelial cell and is thus not directly derivative of a

specific diseased tissue, e.g. a tumor, and does not have biomarker

potential. Even though it is well known, that tumors secrete miRNA

packaged in EVs into the extracellular fluid, the fraction of these

tumor-derived miRNAs compared to the larger fraction of the

physiologically present endothelial/blood cell derived miRNAs is

small and depends on the size of the tissue, access to variation and

a large enough magnitude of differential expression compared to

healthy tissue. Circulating miRNA biomarkers are thus not directly

tumor- or disease-derivative, but rather a physiological response to

the presence of a neoplastic formation or other disease. Moreover,

miRNA expression levels vary greatly depending on sex, ethnicity,

lifestyle and sample cell type (199). In contrast, EV-miRNAs are

expressed stably and protected from degradation. Additionally, they

express surface markers, that are highly specific to their tissue of

origin. New isolation and purification methods allow for harvesting

of EVs based on expression of surface marker proteins (53, 197–199).

Hereby, EVs and their cargo could be directly linked to the releasing

tissue and allow for differentiation of small disease-dependent

miRNA from the larger fraction of the physiological miRNA

secretome (53). Thus, EV-derived miRNA content is more tissue-

specific and selective analysis harbors potential to improve the

specificity of circulating EV-miRNA biomarker candidates.
Frontiers in Endocrinology 17
7 Conclusions and future perspectives

In the era of “personalized/precision medicine”, discovery of new

biomarkers takes a growing place. An ideal biomarker needs to be easily

accessible, highly specific, and preferably sensitive in early detection of

disease and changes in disease status due to progression or treatment

(198). Given that circulating miRNA are secreted in extracellular fluids

and are thereby easily harvested by minimally invasive liquid biopsy, are

disease- and tissue-specific and reflective of even small changes in disease

status, they technically meet the criteria of an ideal biomarker. However,

technical limitations like lack of standardization of screening methods,

selection and analysis leads to low reproducibility and severely

undermines the value of the currently existing data. However,

considering that this area of research is still in its early stages, adequate

standardization of techniques, analysis and interpretation of results and

comprehensive description of applied methods can help support large-

scale validation studies of the promising, but preliminary, data known

today. Additionally, selective analysis of EV-miRNA based on surface

marker proteins represents a promising approach to further optimize

specificity of the miRNA biomarker candidates.
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