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Short-chain fatty acids,
secondary bile acids and indoles:
gut microbial metabolites with
effects on enteroendocrine cell
function and their potential as
therapies for metabolic disease

Karly E. Masse and Van B. Lu*

Department of Physiology and Pharmacology, University of Western Ontario, London, ON, Canada
The gastrointestinal tract hosts the largest ecosystem of microorganisms in the

body. The metabolism of ingested nutrients by gut bacteria produces novel

chemical mediators that can influence chemosensory cells lining the

gastrointestinal tract. Specifically, hormone-releasing enteroendocrine cells

which express a host of receptors activated by these bacterial metabolites.

This review will focus on the activation mechanisms of glucagon-like peptide-

1 releasing enteroendocrine cells by the three main bacterial metabolites

produced in the gut: short-chain fatty acids, secondary bile acids and indoles.

Given the importance of enteroendocrine cells in regulating glucose

homeostasis and food intake, we will also discuss therapies based on these

bacterial metabolites used in the treatment of metabolic diseases such as

diabetes and obesity. Elucidating the mechanisms gut bacteria can influence

cellular function in the host will advance our understanding of this fundamental

symbiotic relationship and unlock the potential of harnessing these pathways to

improve human health.

KEYWORDS

enteroendocrine cells (EEC), gut microbiota, short-chain fatty acids (SCFAs), bile acids
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1 Introduction

The gut microbiota encompasses all the microorganisms (bacteria, fungi, archaea,

viruses) that have colonized the gastrointestinal tract of host animals. The gut microbiota is

composed of trillions of microbes, with current estimates suggesting the collective genome

of gut bacteria outnumbers the host human genome over 1000:1 (1). Bacteria residing in

the gut predominantly belong to the phyla Bacillota (also known as Firmicutes) and

Bacteriodota (aka Bacteroidetes); however, bacteria belonging to Actinomycetota (aka
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Actinobacteria), Pseudomonadota (aka Proteobacteria), or

Verrucomicrobiota (aka Verrucomicrobia) are also represented (2).

This complex and diverse environment of microorganisms

contributes to a symbiotic relationship with the host, assisting in

host physiological functions such as nutrient and energy

metabolism, maintenance of intestinal barrier integrity, and

immune protection (3–5). Changes in gut microbiota populations

have been associated with a multitude of human disease states,

including the metabolic diseases Type 2 diabetes mellitus (T2DM)

and obesity (Figure 1). Reduced bacterial diversity and richness

have been reported in human and animal models of obesity and

diabetes (6–8). Dysbiosis of host-gut microbiota equilibrium may

precede metabolic disease as similar shifts in intestinal gut bacteria

composition can disrupt nutrient and energy metabolism (9). Due

to the global health burden of metabolic diseases, there is great
Frontiers in Endocrinology 02
interest in developing novel therapeutic approaches including

targeting mechanisms involving the gut microbiota.

Diet is a key factor in metabolic health and can influence

the progression of metabolic disease. It can also regulate gut

microbiota health as resident gut bacteria metabolize host-

digested macronutrients to produce an additional class of active

biomolecules. For instance, complex carbohydrates undergo

bacterial fermentation to produce short-chain fatty acids (SCFAs)

(10–12) and the amino acid tryptophan is further metabolized by

gut bacteria to produce indole and other indole-derivatives (13, 14).

Cholesterol-derived bile acids released from hepatocytes are also

modified by gut bacteria to improve solubility and facilitate

recycling of bile acids in the distal colon (15). These bacterial

metabolites themselves may mediate the effects of gut microbiota on

host health as changes in the levels of SCFAs, indoles, and
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FIGURE 1

Schematic representation of the bidirectional relationship between the host-gut microbiota equilibrium and metabolic health. Cells lining the distal
gastrointestinal tract are in direct contact with bacterial metabolites produced by the gut microbiota, and thus can contribute to host health. In a
healthy state, the gut microbiota produces metabolites that activate receptors on distal EECs to mediate insulinotropic effects by the release of
secretory vesicles containing GLP-1. Gut dysbiosis alters the intestinal composition and metabolites produced and is associated with the development
of T2DM and obese-related diseases. Research has proposed that the dysregulation of metabolism in metabolic diseases releases molecules that can
reduce the abundance of intestinal bacteria and alter the function of the ecosystem. EEC, enteroendocrine cell; GLP-1, glucagon-like peptide-1; T2DM,
type 2 diabetes mellitus.
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secondary bile acids are associated with metabolic disease (16–18)

and restoration of levels can attenuate disease progression and

severity (19–24). Although many studies have carefully identified

and quantified the levels of bacterial metabolites produced in

humans (10, 25–27), the signaling pathways mediating the cross-

talk between microbiota-derived metabolites and host physiology

has yet to be fully elucidated.

A specialized population of intestinal epithelial cells called

enteroendocrine cells (EECs) are strategically positioned to

mediate the effects of bacterial metabolites on host health. EECs

have an open-type morphology that spans the intestinal epithelial

cell layer. The apical cell side faces the luminal interface with

microvilli-like structures that are exposed to nutrients and

bacterial metabolites. EECs also express several different types of

nutrient-sensitive receptors (28) that facilitate their role as intestinal

chemosensors. The basolateral cell side of EECs connects the release

of hormones to the intestinal circulatory system. The gut hormone

released can exert effects on host physiology thereby providing a

mechanistic link between bacterial metabolism of nutrients and

host health. The gut hormone glucagon-like peptide-1 (GLP-1),

secreted from a subset of EECs called L-cells, is of interest in the

context of metabolic disease because of GLP-1’s anorexigenic and

hypoglycemic properties (29). GLP-1 mimetics have been used for

the treatment of obesity and T2DM (30–35). Furthermore, the

mechanism of improved metabolic status following bariatric

surgery has been attributed to enhanced GLP-1 release (36–38).

EEC L-cells also secrete peptide-YY (PYY), a gut hormone involved

in appetite regulation (39, 40). Interestingly, the distal small

intestine and colon harbor the greatest density of PYY and GLP-1

releasing L-cells (41), paralleling the distribution of gut bacteria

(42). Thus, studying bacterial metabolite sensing in EEC L-cells can

advance our understanding of the mechanisms by which gut

microbiota regulate host metabolic health. It can also provide a

novel therapeutic avenue for the treatment and management of

metabolic disease.

The focus of this review will be gut microbiota-derived

metabolites that are most abundant in the human colon,

specifically SCFAs, secondary bile acids and indoles, and how

each bacterial metabolite modulate EEC L-cell function (43–47).

We will detail the signaling pathways that are recruited in EEC L-

cells following exposure to each bacterial metabolite. In addition, we

will describe how the levels of these bacterial metabolites are altered

during metabolic disease and discuss therapeutic approaches that

target these bacterial metabolite signaling pathways.
2 Metabolic products of microbes

2.1 Production of short-chain fatty acids by
the gut microbiota

SCFAs are monocarboxylic acids of 1-5 carbon chain lengths

and are the most abundant bacterial metabolite produced in the gut

(11, 12). The majority of bacterial SCFAs synthesized (>95%)

include acetate (C2), propionate (C3), and butyrate (C4) in

a molar ratio of approximately 3:1:1, respectively (10, 48).
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Production of SCFAs is most abundant in the caecum and

ascending limb of the colon in humans (>100 mM) (10). In

humans, undigested fiber passes through the small intestine

largely unabsorbed before entry into the colon and metabolism by

both Gram-negative and Gram-positive bacteria. The production of

the smaller chained SCFAs acetate and propionate are favored by

Bacteroidota, whereas Bacillota primarily produce butyrate as a

metabolic product (49). Bacterial fermentation of indigestible

carbohydrates yields the majority of SCFAs produced, but a small

fraction of SCFAs produced (1%) stem from bacterial metabolism

of dietary amino acids (50). Notably, the liver can generate

significant levels of acetate (~1 mM) during bouts of chronic

alcohol consumption that can enter circulation and impact

gastrointestinal function (51).

Following production, SCFAs are almost exclusively taken up

by colonocytes via H+-dependent or sodium-dependent

monocarboxylate transporters (MCTs and SMCTs, respectively;

Figure 2) (52). Colonic absorption of SCFAs accounts for

approximately 5-10% of the body’s total energy requirement, with

butyrate acting as the predominant source of energy (53). The

absorbed butyrate is largely utilized by colonocytes for energy, and

the remaining absorbed SCFAs are transported through portal

blood circulation back to the liver where SCFAs are primarily

converted to glucose stores (4). Therefore, the levels of SCFAs

that reach systemic circulation are much lower in concentration

than the levels measured in the colon (10, 54).
2.2 Metabolism of bile acids by the
gut microbiota

Bile acids are the primary metabolic end products of cholesterol

catabolism (55, 56) and account for the majority of cholesterol

turnover in humans. Hydroxylation and modification of cholesterol

in the liver generates the primary bile acids, cholic acid (CA) and

chenodeoxycholic acid (CDCA) in humans (57), and CA and

muricholic acid (MCA) in rodents (58). Most primary bile acids

are conjugated with glycine or taurine, to increase solubility

properties, and are stored in the gallbladder (56). Conjugated

bile acids comprise the majority of secreted bile; however,

phospholipids, cholesterol, exogenous drugs, and environmental

toxins contribute a small component (59). Following the

consumption of fat, the gut hormone cholecystokinin is released

which stimulates the contraction of the gallbladder to release bile

acids into the proximal small intestine. Bile acids act as powerful

detergent molecules, forming solubilizing micelles that promote the

digestion and absorption of dietary lipids and fat-soluble vitamins

(59). The total levels of bile acids in the enterohepatic circulation, or

bile acid pool, remains consistent due to highly efficient (95%)

reabsorption of bile acids in the small intestine (55). Conjugated

primary bile acids are actively reabsorbed in the distal ileum via the

apical sodium-dependent bile acid transporter (ASBT; also known

as the ileal sodium-dependent bile acid transporter, IBAT; Figure 3),

whereas unconjugated bile acids can passively diffuse through

enterocytes. The reabsorbed bile acids are shuttled across

enterocytes to the basolateral membrane and are recycled back to
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the liver through portal blood circulation. Conjugated bile acids are

taken up by hepatocytes via the sodium taurocholate cotransporting

polypeptide (NTCP) while unconjugated bile acids are taken up by

the organic anion transporting polypeptide (OATP), which is also

responsible for uptake of bilirubin (55, 59). The bile acid pool is

tightly regulated through the coordination between synthesis,

reabsorption, and excretion of bile acids by the liver.

The remaining bile acids that escape absorption in the small

intestine (5%) act as substrates for anaerobic metabolism in the colon

(15, 60) or are excreted with feces. Bile salt hydrolase (BSH),

produced by intestinal bacteria, converts conjugated primary bile

acids to secondary bile acids through a series of biotransformation

reactions, thus increasing the diversity of bile acids. In humans,

deoxycholic acid (DCA) and lithocholic acid (LCA) are the

predominant secondary bile acids produced (15, 57), whereas in

rodents the predominant secondary bile acids generated are DCA and
Frontiers in Endocrinology 04
w-MCA (58). At the phyla level, bacterial populations encoding BSH,

such as Bacillota, Bacteroidota and Actinomycetota, have been shown

to play an important role in the production of secondary bile acids

(61). Other human intestinal archaea species, Methanobrevibacter

smithii andMethanosphera stadmanae, also encode for BSH and can

contribute to the production of secondary bile acids (62). Other bile

acid transformations catalyzed by bacterial enzymes include the

actions of hydroxysteroid dehydrogenases (HSDs), which alters the

hydrophobicity and toxicity of bile acids (15).
2.3 Metabolism of tryptophan by the
gut microbiota

Tryptophan is an essential aromatic amino acid that must be

consumed as the body lacks the enzymes necessary to synthesize
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FIGURE 2

SCFA-triggered intracellular signaling mechanisms in GLP-1 releasing EEC L-cells. Schematic of an L-cell (white) surrounded by enterocytes (grey).
Complex carbohydrates are substrates for resident gut bacteria to produce SCFAs in the distal gastrointestinal tract. SCFAs can signal through multiple
receptors on both the apical (top) and basolateral membranes (bottom) of L-cells. Uptake of SCFAs by SMCT and MCT across the intestinal epithelium
to the basolateral side shown in enterocytes. SCFAs inhibit HDACs or activate G-protein coupled receptors FFA2, FFA3 and OR51E1/2 in L-cells.
Unresolved mechanisms are marked with a question mark. EEC, enteroendocrine cell; SCFAs, short-chain fatty acids; FFA2/3, free fatty acid receptor 2
or 3; OR51E1/2, olfactory receptor subfamily 5E1 or 2; GLP-1, glucagon-like peptide-1; Ca2+, calcium ions; SMCT, sodium-dependent monocarboxylate
transporter; MCT, H+-dependent monocarboxylate transporter; Na+, sodium ions; HDACs, histone deacetylases; AC, adenylyl cyclase; cAMP, cyclic
adenosine monophosphate; PLCb, phospholipase C beta; ERK1/2, extracellular signal-regulated kinases; IP3, inositol triphosphate.
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tryptophan. Following protein digestion, most of the liberated

tryptophan is absorbed in the small intestine and endogenously

metabolized: up to 95% of ingested tryptophan is converted to

kynurenic acid or nicotinamide adenine dinucleotide (NAD+) (63,

64) via the kynurenine pathway, and 1-2% of ingested tryptophan is

converted to serotonin via tryptophan hydroxylase 1 activity (65,

66). The remaining ingested tryptophan that escapes absorption (4-

6%) enters the colon and is metabolized by intestinal bacteria (13).

More than 85 different Gram-positive and Gram-negative bacterial

species express tryptophanase (67), the enzyme that catalyzes the

hydrolytic b-elimination of tryptophan to indole, pyruvate, and

ammonia (68). Indole production also depends on the tryptophan-

specific transporter, TnaB, expressed in bacteria to facilitate

tryptophan uptake. Other transporters such as AroP and Mtr

permeases may also facilitate bacterial uptake of tryptophan (69).

Indole is the most abundant bacterial metabolite of tryptophan

degradation produced with the average physiological concentration
Frontiers in Endocrinology 05
between 0.25-1.1 mM in human feces (14). Bacterial metabolism of

tryptophan can also give rise to other indole-moiety containing

derivatives. Indole-3-acetic acid (IAA) is an intermediate formed

during a series of decarboxylation reactions from indole-3-pyruvic

acid (IPyA). IAA can be further catabolized to indole-3-aldehyde

(IAld) and 3-methylindole (skatole). Alternatively, bacterial

enzymes catalyze reduction and dehydration reactions to produce

indole-3-propionic acid (IPA). Physiological levels of IPA range

between 1-10 µM in human serum (70). Another bacterial

transformation of tryptophan can occur through the actions of

tryptophan decarboxylases to produce tryptamine (71). Bacteria

also express decarboxylases to convert indole to tryptamine (72).

Following production, indole and other metabolic derivatives

can passively diffuse through the plasma membrane to exert

intracellular effects on intestinal epithelial cells (Figure 4).

Metabolites may also enter enterohepatic circulation and undergo

further oxidative metabolism by cytochrome P450 (CYP450) or
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FIGURE 3

Secondary bile acid-triggered intracellular signaling mechanisms in GLP-1 releasing EEC L-cells. Schematic as in Figure 2. Primary bile acids are
converted to secondary bile acids by intestinal gut bacteria. Secondary bile acids passively diffuse or are transported across the intestinal epithelium via
ASBT and activate the G-protein coupled receptor, GPBAR1 and nuclear receptor, FXR. Activation of GPBAR1 by secondary bile acids results in GLP-1
secretion. FXR regulates SHP and FGF19 expression and may regulate GPBAR1 gene transcription (marked by a question mark). EEC, enteroendocrine
cell; GPBAR1, G-protein coupled bile acid receptor; FXR, Farnesoid-X receptor; GLP-1, glucagon-like peptide-1; ASBT, apical sodium-dependent bile
acid transporter; Ca2+, calcium ions; AC, adenylyl cyclase; cAMP, cyclic adenosine monophosphate; ATP, adenosine triphosphate; SHP, short
heterodimer protein; FGF19, fibroblast growth factor 19; Na+, sodium ions.
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detoxification by enzymes in the liver (73). For instance, indole

undergoes sulfation in the liver to produce indoxyl sulfate, a uremic

toxin which accumulates during renal insufficiency inducing

fibrosis in damaged proximal tubule cells (74). Alternatively,

indole may be reabsorbed passively or actively across bacterial

membranes and activate a variety of bacterial processes (75–77).
3 Signaling mechanisms

Multiple intracellular signaling pathways have been implicated

in gut hormone secretion with concurrent recruitment of several
Frontiers in Endocrinology 06
different pathways suggested to be necessary to stimulate release

from EECs (78, 79). This section examines the various signaling

pathways activated by bacterial metabolites highlighted in this

review, and their known effects on GLP-1 release from EEC L-cells.
3.1 Intracellular signaling pathways in EEC
L-cells activated by SCFAs

In addition to acting as a local energy source for colonocytes,

SCFAs may signal through cell surface G-protein coupled receptors

(GPCRs) that activate a series of intracellular effector molecules to
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FIGURE 4

Indole-triggered intracellular signaling mechanisms in GLP-1 releasing EEC L-cells. Schematic as in Figure 2. Tryptophan is a substrate for resident
gut bacteria to produce the metabolites tryptamine, IPyA and indoles. IPyA is a precursor to the metabolites IAA, IAld, skatole and IPA. Indole and
other metabolites passively diffuse across the intestinal epithelium and activate the transcription factors AhR and PXR to regulate gene transcription.
Indole may mediate effects through a yet to be determined receptor. There are dual and opposing effects on GLP-1 release by acute and chronic
exposure to indoles. Acute indole stimulates release of secretory vesicles containing GLP-1 by a voltage-gated potassium channel blockade. Chronic
indole exposure suppresses mitochondrial activity to produce ATP. IPyA, indole-3-pyruvic acid; IAA, indole-3-acetic acid; IAld, indole-3-aldehyde;
IPA, indole-3-propionic acid; EEC, enteroendocrine cell; AhR, Aryl hydrocarbon receptor; PXR, Pregnane-X-receptor; y, membrane potential; K+,
potassium ions; Ca2+, calcium ions; ATP, adenosine triphosphate.
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produce various physiological responses (Figure 2). SCFAs activate

several GPCRs including: the free fatty acid receptor 2 and 3 (FFA2

and FFA3) (80, 81), the olfactory receptor subfamily 51E1 and 51E2

(OR51E1 in human/Olfr558 in mouse; OR51E2 in human/Olfr78 in

mouse) (82), and the hydroxycarboxylic acid receptor, HCAR2

(also known as the G-protein coupled receptor 109A (GPR109A) or

the niacin receptor) (83). SCFAs can also affect gene expression

through the inhibition of histone deacetylases (HDACs) (84). EECs

express HDACs and SCFA-responsive GPCRs (85–89), except

HCAR2 which is primarily localized in adipose and immune

tissue (83).

The most potent endogenous ligands of FFA2 identified thus far

are acetate and propionate (80, 81). To a weaker extent, butyrate can

also stimulate the receptor. Ffar2 expression increases along the

longitudinal axis of the gastrointestinal tract, with highest

expression in the distal ileum and colon (90). Ffar2 expression

was also found in leukocytes below the epithelial layer using an

Ffar2-reporter mouse (88) and in the colonic epithelial layer of rats

(90) and humans (89) by immunohistochemistry analysis.

Activation of FFA2 couples intracellularly through the G-

protein families, Gaq and Gai (91–93). Recruitment of the Gaq-

coupled FFA2 signaling pathway in intestinal murine L-cells

triggered SCFA-mediated GLP-1 secretion by promoting activity

of phospholipase C-dependent production of inositol triphosphate

(IP3), thereby increasing mobilization of calcium from intracellular

stores (88, 92). GLP-1 release was found to be stimulatory in the

presence of SCFAs with murine cell lines (94, 95) and murine

primary colonic cultures, an effect attributed to FFA2- and FFA3-

dependent mechanisms (92, 95). Compound 1, a selective FFA2

agonist, stimulated GLP-1 secretion by FFA2 (96) and this effect

was lost in the presence of a Gaq inhibitor, FR900359 (91), thereby

supporting Gaq-mediated FFA2 signaling mechanisms.

Furthermore, pertussis toxin, a Gai-protein uncoupler was shown

to not be involved in SCFA-triggered GLP-1 release nor was the

Gai-biased FFA2 ligand, AZ1729 (91).

Recruitment of Gai-coupled FFA2 remains unclear. Canonical

Gai-signaling mechanisms decrease cyclic adenosine monophosphate

(cAMP) production by inhibiting adenylyl cyclase and thus, hormone

secretion. However, in duodenal STC-1 and primary colonic cultures,

propionate promoted GLP-1 secretion via Gai-coupled FFA2

activation and downstream phosphorylation of a class of mitogen-

activated protein kinases, p38 (97). This study suggests a spatial

discrimination between the pleiotropic actions of the FFA2 receptor

as Gaq-mediated FFA2 signaling occurred at the cell membrane and

Gai signaling was internalized, thus diversifying the downstream

effector molecules activated in EECs (97). A possible convergence of

downstream signaling pathways involving the phosphorylation of

extracellular signal-regulated kinases (ERK) is possible as both Gaq-

and Gai-coupled signaling pathways can activate this effector

molecule (94). Future research into how Gai-coupled FFA2 is

affected in other in vitro and in vivo L-cell models is warranted to

confirm signaling through p38.

In addition, FFA2 is postulated to recruit b-arrestin, a protein

involved in the downregulation of GPCRs (98). FFA2 has been

shown to employ b-arrestin dependent signaling for transcriptional

regulation of proinflammatory cytokine expression in vitro (99). In
Frontiers in Endocrinology 07
murine and human overexpression studies, agonist stimulation of

FFA2 supported b-arrestin recruitment (94) suggesting a possible

signaling pathway mediated in L-cells. FFA2 may have the capacity

to employ different effector molecules depending on the spatial and

temporal gradients of the receptor and needs of the host. Further

studies are needed to investigate the functional selectivity of FFA2

under different metabolic conditions.

FFA3 is another free fatty acid receptor responsive to SCFAs

that preferentially binds to the SCFAs propionate, butyrate and

valerate (80, 81). Mouse Ffar3 expression paralleled the expression

of glucagon (Gcg, the gene that encodes for GLP-1), with high

transcript levels found in the distal small intestine and colon (92).

EEC expression of Ffar3 was confirmed in a reporter mouse model

(88). Additional Ffar3 expression was described in enteric neurons

and vagal afferent neurons that innervate the gastrointestinal tract

(100). However, other studies using in situ hybridization failed to

detect Ffar3 expression in the nodose ganglion, but rather found

expression in sympathetic ganglia innervating the intestines (101).

Interestingly, in epithelial cells of the human colonic mucosa, Tazoe

et al. (2009), demonstrated co-localization of FFA3 with PYY, the

gut hormone co-localized with GLP-1. Co-localization was not

observed between FFA3 and serotonin, a marker of another EEC

population the enterochromaffin cells (102).

FFA3 exclusively recruits G-proteins of the Gai family (93), but

the cellular mechanism of FFA3 signaling has yet to be fully

demonstrated. A study found that the selective FFA3 agonist,

AR420626, promoted GLP-1 release from primary colonic

cultures (88) and perfused intact colons (103). However, FFA3

activation in sympathetic neurons has been shown to inhibit

voltage-gated calcium channels through a Gbg-mediated

mechanism (101), thus inhibiting neurotransmitter release.

Similarly, b-arrestin may also be involved in FFA3 activation. In

monocytes, FFA3 activation increased intracellular calcium

signaling and recruited b-arrestin 2 (104), though, the

involvement of b-arrestin in an EEC system has yet to be

determined. Indeed, SCFA-triggered FFA3 signaling warrants

further investigation.

It is possible that other SCFA-responsive receptors could be

involved in the outcome of GLP-1 secretion in L-cells. Originally

discovered in olfactory epithelium, the olfactory receptor subfamily

51E1/2 (OR51E1/2; Olfr558/Olfr78 in mouse) are other receptors

responsive to SCFAs (82). Acetate and propionate, but not butyrate,

are potent endogenous ligands for these receptors (87, 105).

Expression of Olfr78 is localized in murine EECs of the colon,

especially PYY-positive cells (87) and serotonin-producing

enterochromaffin cells (106), though the function of the receptor

remains unclear. Expression of the OR51E1 in a human L-cell line

NCI-H716 was demonstrated, as well as stimulated GLP-1 secretion

following selective receptor activation (107). The mechanism of

enhanced GLP-1 secretion involved an increase in intracellular

cAMP and phosphorylated ERK (107). Moreover, OR51E1

knockdown reduced GLP-1 secretion, supporting the receptor’s

role in mediating the effects of SCFAs on EEC L-cells (107).

In addition to activating cell membrane receptors, SCFAs exert

genomic effects by the inhibition of HDACs. Activation of HDACs

modifies chromatin structure by removing an acetyl group from
frontiersin.org

https://doi.org/10.3389/fendo.2023.1169624
https://www.frontiersin.org/journals/endocrinology
https://www.frontiersin.org


Masse and Lu 10.3389/fendo.2023.1169624
histone proteins which reduces DNA accessibility to transcriptional

activity. HDAC activity has been implicated in gut development

(108) and immune tissue regulation (85, 109). In the colon, HDACs

are inhibited by both butyrate and propionate (85, 86), though

butyrate is the most effective inhibitor of HDACs (110, 111). This is

supported by previous studies suggesting that HDAC inhibition by

butyrate induces expression of many genes in various tissues and

cell lines (109, 112). Understanding HDAC-mediated changes in

expression is physiologically relevant as diets high in fiber results in

chronic elevation of SCFA levels, which can lead to lasting changes

in gut function. For instance, colonic Gcg expression was increased

in rats on a fiber-rich diet compared with animals on a chow-fed

diet (113). SCFAs have also increased the number of L-cells in the

intestinal epithelium and increased endogenous secretion of GLP-1

in both mouse and human organoids in vitro (114). As further

support, there is a reduction of GLP-1 releasing L-cells in germ-free

mice lacking intestinal microbiota (115, 116). However, in cell line

models of human EECs, GCG expression minimally changed and

PYY expression dramatically increased following prolonged

exposure to butyrate (117). The long-lasting effects of SCFAs on

EEC L-cells suggest they may be key regulators of metabolic health

and a promising dietary intervention for the treatment and

management of T2DM and obesity.
3.2 Intracellular signaling pathways in EEC
L-cells activated by bile acids

Bile acids have a functional role in lipid digestion and

absorption, but also act as signaling molecules to cells lining the

gastrointestinal tract. Bile acids exclusively activate two main

receptors in L-cells, the cell surface G-protein coupled bile acid

receptor 1 (GPBAR1, also called the membrane-type bile acid

receptor, M-BAR, or the Takeda G-protein coupled receptor 5,

TGR5) (118) and the nuclear transcription factor, Farnesoid-X

receptor (FXR) (119–121)(Figure 3). Interestingly, primary bile

acids preferentially activate FXR (CDCA>CA>LCA>DCA),

whereas secondary bile acids are more potent endogenous ligands

for GPBAR1 activation (LCA>DCA>CDCA>CA) (119). Bile acids

also activate the nuclear receptors, pregnane-X receptor (PXR)

(122), vitamin D receptor (VDR) (123), constitutive androstane

receptor (CAR) (124), liver-X receptor (LXR) (125), and G-protein

coupled sphingosine-1-phosphate receptor 2 (SIPR2) (126);

however, these receptors are more selective for other endogenous

and xenobiotic ligands such as steroid hormones and oxysterols.

Bile acids exert non-genomic effects through the activation of

the membrane receptor, GPBAR1. Expression analysis data

localizes GPBAR1 to brown adipose tissue, skeletal muscle,

spleen, immune cells, gallbladder and the intestine (118, 127,

128). In the intestine, GPBAR1 is highly expressed in the ileum

and colon of EECs (129, 130) and in the enteric ganglia and nerve

fiber plexuses (131). GPBAR1 is localized on the basolateral face of

L-cells, suggesting a mechanism is required for bile acids to be

absorbed before activating the receptor (129). The transporter

responsible for transporting conjugated bile acids across the
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epithelial layer in the small intestine is ASBT. Transport of bile

acids across the epithelial layer is critical for gut hormone secretion

from EECs as blocking ASBT in the terminal ileum reduced GLP-1

release (129, 132). An alternative mechanism to transport bile acids

across the epithelium is required in the colon due to very low ASBT

expression. Resident gut bacteria can improve bile acid permeability

and potency by converting primary bile acids to secondary bile acids

(132). Secondary bile acids, specifically LCA and the taurine

conjugate TLCA, are the most potent stimulants of GPBAR1

activation (127, 133, 134). Multiple studies have identified bile

acids as a robust trigger of GLP-1 release (28, 47, 129, 130) and

bile acid-triggered GLP-1 release was diminished in a GPBAR1

knockout model (129, 133–135). GPBAR1 stimulates Gas-protein

coupling and increases intracellular cAMP levels through activation

of adenylyl cyclase (47, 78, 129, 130). Activation of GPBAR1 in

L-cells also increases membrane electrical activity via increased

calcium current through L-type voltage-gated calcium channels

(28). Bile acids can indirectly alter GLP-1 release by modulating

L-cell differentiation. GPBAR1 agonists enhanced the number of

GLP-1 producing L-cells in the intestinal epithelium (135).

The functional role of FXR activation is well documented

(120, 136, 137). FXR regulates a multitude of genes involved in

bile acid, lipid, and glucose metabolism (15). Expression of FXR is

most abundant in the liver and intestine (119–121), with the highest

expression levels found in the terminal ileum of EEC L-cells (45).

FXR expression has also been identified in immune cells, adipose

tissue, and skeletal muscle (138). FXR is a primary bile acid sensor,

preferentially binding to CDCA in humans and CA to a weaker

extent (119). In mice, CA is the primary ligand for FXR as mice lack

CDCA (121). In the terminal ileum, activation of FXR induces

expression of target genes including the small heterodimer partner

(SHP) and fibroblast growth factor 19, FGF19 (Fgf15 in mice).

FGF19 is released from enterocytes, transported to the liver via

enterohepatic circulation, and binds to the tyrosine kinase receptor

fibroblast growth factor receptor 4 (FGFR4) expressed in

hepatocytes (139). Together, SHP and FGF19 suppress CYP7A1, a

key gene involved in de novo biosynthesis of bile acids (140). The

microbial ecosystem is speculated to play an important role in

regulating expression of ileal FXR target genes. Under conditions of

reduced gut microbiota, either germ-free or antibiotic-treated mice,

elevated levels of the taurine conjugated b-muricholic acid

(TbMCA) bile acid were detected (141). TbMCA acts as an FXR

antagonist, resulting in reduced expression of Fgf15 and increased

Cyp7a1 expression. Similarly, Li et al., (2013) found that reduced

BSH activity diminished synthesis of secondary bile acids and

inhibited FXR-induced signaling. Interestingly, the inhibition of

intestinal FXR signaling altered bile acid composition in mice (142,

143) and decreased the incidence of obesity.

Activation of intestinal FXR is inhibitory to GLP-1 release in L-

cells (45, 46). Trabelsi et al., (2015) determined FXR activation

decreased glucose-stimulated GLP-1 secretion by blocking

glycolysis, and thus glucose production in both mice and human

intestinal L-cells. Similarly, Niss et al., (2020) found that inhibition

of GLP-1 release by FXR is not only attributed to a downregulation

in glycolysis, but also reduced glucose transport.
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3.3 Intracellular signaling pathways in EEC
L-cells activated by tryptophan, indoles
and indole-derivatives

Tryptophan, the substrate for bacterial metabolism, can directly

affect EEC L-cell function. In distal regions of the gastrointestinal

tract, the bioavailability of digested peptides or amino acids is low as

the bulk of protein digestion and absorption occurs in the small

intestine before reaching the colon. Thus, the exposure of colonic

EEC L-cells to tryptophan is limited. However, GLP-1 releasing L-

cells in the proximal small intestine have been described (41, 144–

146) and can respond to the presence of tryptophan. In vitro,

enhanced GLP-1 release was observed in various EEC L-cell models

exposed to tryptophan (147–149). However, contrary in vivo studies

have reported a lack of stimulated GLP-1 release by intraluminal

tryptophan in a perfused small intestine (150). Several G-protein

coupled receptors have been implicated in EEC-sensing of

tryptophan including the extracellular calcium-sensing receptor

(CaSR) (151) and G-protein receptor 142 (GPR142) (149). The

signaling mechanisms in EEC L-cells downstream of GPR142

activation is thought to be similar to pathways elucidated in other

secretory cell types such as pancreatic b-cells (152). Both Gaq and

Gas-proteins are thought to be recruited to increase intracellular

IP3 and cAMP levels, respectively (152, 153). Wang et al. (2016)

also demonstrated that GPR142 activation led to an increase in

inositol monophosphate accumulation, thus promoting the

phosphorylation of ERK. The signaling mechanisms of CaSR in

EEC L-cells have not been fully characterized, but in other duodenal

EEC populations activated CaSR couples to Gaq-protein and

downstream effectors PKC and IP3 receptors (154).

Indoles have been shown to alter EEC L-cell function. Acute

application of indole increased GLP-1 secretion by increasing

calcium mobilization in L-cells (44, 155) (Figure 4). The

mechanism of action involved inhibition of voltage-gated

potassium channels, thereby causing membrane depolarization

and increased mobilization of calcium (44). However,

chronic indole exposure reduced GLP-1 secretion by suppressing

mitochondrial adenosine triphosphate (ATP) production, thus

demonstrating dual and opposing effects of indole (44). The

receptor responsible for mediating the effects of indole on GLP-1

release was not identified in this study. Also, the possible actions of

indoles on tryptophan-sensitive receptors CaSR and GPR142

remain to be determined.

Another regulator of indole signaling is the aryl hydrocarbon

receptor (AhR). Indole, tryptamine, skatole, IAA and other indole-

derivatives are ligands for AhR (71, 156). AhR is a basic helix-loop-

helix (bHLH) transcription factor (157) primarily expressed in host

immune cells and its activation has been shown to mediate lipid and

fatty acid metabolism and intestinal homeostasis (158). Inactive

AhR forms a complex with heat shock protein 90 (Hsp90), the

Hsp90 chaperone p23 (P23) and X-associated protein 2 (XAP2).

Ligand binding induces a conformational change and translocation

of the receptor complex to the nucleus (71). Within the nucleus,

gene expression is activated through binding of the AhR nuclear

translocator (ARNT) protein and cis-acting AhR response elements

(AhREs) in target gene promoters (157). Interestingly, indoles, IAA
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and IPA also activate PXR (159). As mentioned, PXR is a nuclear

receptor with DNA-binding and ligand-binding domains.

Activation of PXR by several products of bacterial metabolism,

including secondary bile acids and indoles, suggests a convergence

of gut microbiota sensing pathways. Further investigation is

warranted to understand the interactions between the different

activating ligands and identify common downstream effectors.

These studies will provide novel insights into the mechanisms

underlying gut microbiota-host interactions.
4 Bacterial metabolites in
metabolic health

Intestinal gut composition is an important determinant of

health and many studies have attributed the pathogenesis of

obesity and T2DM to an altered microbial ecosystem, particularly

reduced bacterial diversity (160–163). Indeed, the dysregulation of

nutrient metabolism, energy homeostasis, and appetite (164), all of

which occur in obese-related diseases, are associated with a colonic

shift in the relative abundance of three major phyla, Bacillota,

Bacteroidota, and Verrucomicrobiota (164–167). In earlier studies,

obesity and insulin resistance were associated with an increased

abundance of Bacillota and concomitant decrease of Bacteroidota in

both animal (7, 168), and human studies (6, 167, 169). However,

recent reports found a reduction of the Bacillota population in

obese subjects, whereas Bacteroidota significantly increased (16,

170–173). Some studies have even reported no change in the

abundance of the two main microbial phyla (174–177). So, the

exact changes in Bacillota and Bacteroidota during metabolic

disease remains unresolved and we may need to consider other

patient factors such as sex (178) and diet (179). Akkermansia¸ and

its main species, Akkermansia muciniphilia (A. muciniphilia), is an

abundant intestinal acetate- and butyrate-producing microbe from

the phylum Verrucomicrobiota (180–182) and is gaining interest for

its protective role against T2DM and obesity (183). The presence of

A. muciniphilia in the gut is correlated with a healthy intestine and

the decline in enrichment of A. muciniphilia has been linked to

impairments in insulin sensitivity (165) and obese-related diseases

(183–185). A. muciniphilia improves insulin sensitivity and glucose

tolerance through various anti-inflammatory and energy

mechanisms (186–189).

Surgical and pharmacological interventions that improve

metabolic health also alter gut microbiota populations. Patients

undergoing bariatric surgery, commonly Roux-en-Y-gastric bypass

(RYGB) and vertical sleeve gastrectomy (VSG), often achieve

sustained weight loss and T2DM resolution (190–192). A partial

restoration of healthy intestinal microbiota composition was

observed six months post-bariatric surgery in morbidly-obese

female participants (193).

The manipulation of gut microbiota populations may be an

approach to exploit in next generation therapeutics for metabolic

disease. Interestingly, fecal microbiota transplantation from an

individual with a healthy gut to an individual with metabolic

syndrome resulted in significantly improved insulin sensitivity,

accompanied by an altered microbial composition (163).
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Consistent with this report, the obese phenotype in mice was found

to be transmissible by transplanting the gut microbiota of

conventional obese mice to normal weight germ-free mice (167,

194). Furthermore, administration of A. muciniphilia was safe, and

improved several metabolic parameters including increased insulin

activity, a reduction in insulinemia, and decreased weight status in

obese, insulin-resistant patients (195). However, A. muciniphilia

was not linked to the improved glucose homeostasis pre- or post-

bariatric surgery (185). Despite these discrepancies, manipulation of

gut microbiota populations or administration of the metabolites

produced by beneficial gut bacteria represent a promising

therapeutic approach for improving metabolic health.
4.1 The role of SCFAs in metabolic health

SCFAs in the gastrointestinal tract improve host gut health by

increasing mucus production (196) and maintaining the intestinal

gut barrier (197). SCFAs also promote crosstalk along the gut-brain

axis (198) and are heavily involved in glucose and lipid metabolism

(199). For example, SCFAs have been shown to stimulate the

secretion of GLP-1 from intestinal L-cells (92, 95, 200) which

promotes insulin release post-prandially. Similarly, butyrate

attenuates insulin resistance of mice on a high-fat diet (HFD) by

promoting energy expenditure (199).

Increased production of SCFAs by gut bacteria has been linked to

reduced risk of obese-related chronic diseases (201). A shift in

microbiome composition away from SCFA-producing bacterial

species has been linked to prediabetes (173), a key step in the

progression of diabetes (202). This may reflect diets consisting of

high-fat and low-fiber content (203). Indeed, studies have shown that

consumption of fiber- and w-3 fatty acid-rich diets have increased

levels of SCFA-producing bacteria (204, 205). The beneficial role of

SCFAs was further supported by studies demonstrating increased

dietary fiber intake reduced the risk of developing metabolic diseases,

such as T2DM (206–210). Mechanisms proposed include direct

effects on insulin sensitivity and energy expenditure (4, 199, 201,

211), improved glucose tolerance (49, 212, 213) or increased GLP-1

levels (212). Even direct delivery of SCFAs was beneficial as acute

rectal infusions of sodium acetate enhanced PYY release in

overweight human subjects and modulated whole-body metabolism

(19–21). An increase in the abundance of acetate-producing bacteria

was also found following SCFA administration (49). Therefore,

supplementation of SCFAs may help to reverse gut dysbiosis as

well as promote host metabolic health.

Epigenetic regulation, including HDAC-mediated mechanisms,

has been linked to the development of T2DM in multiple organ

systems (214). SCFAs are important regulators of gene expression

through their actions as potent HDAC inhibitors (113). Reduced

butyrate production led to a concomitant increase in colonic HDAC

activity in a non-obese diabetic model and were associated with the

increase in reactive oxidative species and alterations of colonic

permeability (215). Butyrate supplementation suppressed HDAC

activity in the liver of mice, leading to decreased gluconeogenesis

and improved glucose homeostasis (216). This suggests that
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butyrate supplementation may induce epigenetic modifications

that supports a healthy gut microbiota and metabolic health.

SCFAs may be important regulators of metabolic function,

particularly in colonic stimulation of EECs and inhibition of

HDAC activity. Harnessing the crosstalk mechanisms between

resident gut bacteria and host by SCFAs may be a successful

therapeutic strategy for the management of metabolic diseases

in humans.
4.2 The role of bile acids in
metabolic health

In an initial study linking cholesterol metabolism to diabetes,

diabetic patients had an elevated bile acid pool size and greater

excretion of bile acids in fecal samples (17). Furthermore, obese,

diabetic db/db mice produced more bile acids leading to a larger

total bile acid pool size (217), supporting the observation

in humans.

The administration of bile acid sequestrants promoted insulin

sensitivity in T2DM patients (218–220) and diabetic mice (221),

likely by enhancing de novo synthesis of bile acids (222). Supporting

studies have shown that in diabetic rats, intestinal sequestration of

the bile acid pool improved insulin sensitivity and the mechanism

involved may be mediated by GPBAR1 activation (223). Similarly,

Trabelsi et al., (2015) found upon treatment with bile acid

sequestrants to FXR-deficient cells, glucose tolerance improved by

a GLP-1 mediated release mechanism. Direct targeting of GPBAR1

also produces positive metabolic health outcomes. In HFD-fed

mice, overexpression of GPBAR1 increased secretion of GLP-1

induced insulin release, an effect that was lost in GPBAR1

deficient mice (134). Administration of oleanolic acid, the

endogenous GPBAR1 agonist, ameliorated insulin sensitivity in

mice upon HFD-feeding (224) and application of a selective

GPBAR1 agonist, INT-777, enhanced GLP-1 secretion (133). The

administration of taurocholate, the taurine conjugate of cholic acid,

augmented GLP-1 release from L-cells and enhanced insulin release

in humans (225). Other studies have shown that the administration

of tauroursodeoxycholic acid, the taurine conjugated secondary bile

acid of ursodeoxycholic acid, improved insulin sensitivity of obese

humans (22) and obese mice (23). Furthermore, dual activation of

FXR and GPBAR1 promotes GLP-1 release, thereby ameliorating

insulin resistance (226). Thus, the receptors activated by bile acids

and their metabolites present a powerful means to regulate glucose

metabolism. However, intense adverse events have limited use of

this approach in the clinic (227).

Dysregulation of energy utilization is often associated with

obesity-related diseases (228). Activation of intestinal FXR

promotes the secretion of FGF19, which could be exploited

therapeutically as patients with obesity and T2DM have lower

FGF19 levels (229). Administration of FGF19 to HFD-fed mice

increased energy expenditure and reversed weight gain, thereby

improving insulin sensitivity (230) and aided in T2DM resolution

of patients following bariatric surgery (231). Interestingly,

administration of a gut-biased FXR agonist protected against diet-
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induced weight gain while simultaneously enhancing energy

expenditure (232).

Both RYGB and VSG enhanced the bile acid pool in rodents

(233, 234) and humans (235, 236). Studies have shown that HFD-

fed mice subjected to a bile diversion procedure increased the

abundance of circulating bile acids (141, 237, 238) and improved

glucose homeostasis (142). This was confirmed by the loss of

significant weight reduction in FXR knockout mice on a HFD

following VSG (239). However, increased abundance of bile acids

has been reported in obese individuals with T2DM (240). Further,

Jahansouz et al., (241) found a hypocaloric diet, mimicking weight

loss, reduced the abundance of unconjugated bile acids. Bile acid

signaling is involved in energy expenditure and glucose control

following bariatric surgery in obese mice (239, 242) but further

study is needed to define the role of bile acid signaling after bariatric

surgery in humans.
4.3 The role of indoles and indole-
derivatives in metabolic health

Amino acid metabolism has been linked to metabolic health for

decades; however, the involvement of metabolic products from

bacterial amino acid metabolism in host metabolic health has

recently become of interest. Fecal concentrations of indole, IAA

and tryptamine were significantly reduced in mice fed a HFD

compared with chow-fed mice (18, 243). A corresponding

reduction in the concentration of indole-derivatives was reported

in the feces of clinically obese (BMI>30) or T2DM human

participants. Similar reductions in serum levels of indole-

derivatives were reported in obese participants compared with

non-obese controls (244). Following RYGB bariatric surgery, there

was a significant improvement in glucose tolerance in T2DM

subjects which coincided with an increase in IPA and tryptamine

levels (245). Other retrospective studies have demonstrated that

higher IPA levels were associated with lower risk of developing

T2DM (70, 245).

Classical studies investigating the benefits of tryptophan

consumption on metabolic disease progression may be attributed

to bacterial-derived tryptophan metabolites. Ingesting tryptophan-

enriched diets lowered the risk of developing obesity and T2DM in

humans (246) and suppressed hyperglycemia and weight gain in

animal models (247–249). Some of the mechanisms proposed for

tryptophan-suppressed hyperglycemia include reduced insulin

production and protection of pancreatic b-cells in diabetic rats

(247) or inhibition of gluconeogenesis in rats and guinea pigs (248).

The gut bacteria-derived tryptophan metabolite IPA was also

associated with improved b-cell function (250) and rats fed an

IPA-rich diet had significantly reduced fasting glucose levels (24).

Furthermore, lower serum IPA levels were the most relevant

indicators of early-onset T2DM (251) and body weight changes

in obese rats (252). Recent studies have evaluated serum IPA levels

as a risk biomarker for developing T2DM (250) or obesity (245) in

humans. However, increased levels of tryptophan in the blood has

been proposed as a predictor of increased risk of developing T2DM

(253). Perhaps, this discrepancy between tryptophan and indolic
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metabolites in predicting metabolic disease states is due to the

diverging metabolic pathways involved in the degradation of

tryptophan. Tryptophan metabolites derived from the kynurenine

pathway and IAA were found to be positively associated with

T2DM risk (254). The kynurenine pathway exclusively involves

host metabolism of tryptophan and excess kynurenine-metabolites

have been associated with neurotoxicity and inflammation (255),

while IAA is an intermediate of bacterial tryptophan metabolism

and may be indicative of disrupted indole biosynthesis. As

previously mentioned, the exclusive microbial-derived metabolite

IPA has antidiabetic properties (24, 250). Therefore, the diversion

of tryptophan metabolism to bacterial production of indoles or IPA

has proven benefits in enhancing a healthy metabolic state.

Indole has been previously studied as an intercellular signaling

molecule within the gut microbiota ecosystem. The capacity of

indoles to stimulate GLP-1 releasing L-cells (44) has recently

become of interest as a potential therapeutic target to regulate

metabolic dysfunction (250). Indole-stimulated GLP-1 release can

trigger the systemic effects of GLP-1 including enhanced insulin

secretion, reduction in appetite and slowing of gastric emptying

(29). Another possible mechanism by which indoles may regulate

metabolic function could be through the regulation of intestinal

microbial populations. Indoles directly affect bacterial functions

associated with protection and host colonization (256). Since the

relative abundance of several intestinal bacteria is associated with

metabolic disease states, the role of indoles in determining the

composition of the gut microbiota may contribute to the beneficial

outcomes of bacterial indole production.

Indoles and other indole-derived metabolites produced by gut

bacteria have significant physiological effects which may be

exploited in future therapeutics. However, the risks associated

with production of toxic by-products such as indoxyl sulfate will

have to be carefully considered. Engineering enterobacteria that

favor production of non-toxic indolic metabolites or the

development of synthetic indole analogues that bypass first-pass

metabolism are potential approaches to explore in designing future

gut microbiota-based therapies. Herbal medicines may provide a

source of inspiration to design structural analogues of indoles to

treat metabolic disease. Indole alkaloids, which are bioactive

compounds isolated from plants, have been found to inhibit

dipeptidyl peptidase IV (DPP-IV) (257), the enzyme responsible

for the inactivation of GLP-1. Therefore, indole alkaloids increase

the half-life of the gut hormone responsible for enhancing insulin

release post-prandially. Pharmacological strategies based on plant

extracts containing indole alkaloids are effective in treating diabetic

rats (258, 259) but their effectiveness and safety in human clinical

trials remain to be determined. The direct effects of indole alkaloids

on GLP-1 release are unknown, raising the possibility of these

plant-based therapies improving glucose homeostasis through

multiple synergistic pathways. Novel therapeutic approaches

could also exploit indole signaling pathways. Recent studies have

shown that targeting AhR by indoles may be able to ameliorate

diabetes. Supplementation of indole-3-carbinol (I3C), an

endogenous ligand of AhR, increased expression of AhR in the

intestine (260) and promoted weight loss of HFD-fed obese mice

and improved glucose tolerance (261). The involvement of AhR
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signaling in reducing proinflammatory responses (262, 263)

could promote additional improvements in the treatment of

metabolic diseases.
4.4 The role of other bacterial metabolites
in metabolic health

We have focused our review on the main metabolites produced

by gut bacteria, namely short-chain fatty acids, secondary bile acids

and indoles. However, other bacterial metabolites have also been

implicated in host metabolic health. Bacterial fermentation of other

dietary amino acids can give rise to several active metabolic

compounds. For instance, p-Cresol is produced following tyrosine

or phenylalanine degradation by gut bacteria. Serum concentration

of p-Cresol is negatively correlated with T2DM and administration

of p-Cresol reduced body weight, improved glucose homeostasis and

b-cell function in HFD-fed mice (264). Despite these promising

results, p-Cresol as a therapy for metabolic disease is limited as oral

routes of administration are contraindicated due to sulfation by host

cells to the nephrotoxic metabolite p-Cresol sulfate (264, 265). In

addition, p-Cresol itself is a volatile compound that induces

detrimental neurological, liver and respiratory effects at high

concentrations (266). Imidazole propionate (IMP) is another

amino acid-derived metabolite, produced by gut bacterial

metabolism of histidine. Human subjects with prediabetes or

T2DM have increased serum IMP levels compared with healthy

individuals and administration of IMP to mice impairs glucose

tolerance and disrupts insulin receptor signaling pathways (267,

268). Similarly, inosine, a purine metabolite involved in nucleotides

and nucleic acids, is positively correlated with T2DM risk (269). Both

IMP and inosine may be potential biomarkers to identify metabolite

changes by the gut microbiota or may be exploited to uncover future

treatments. More work is warranted to reconcile the changes that

occur to the microbial composition and the mechanism by which

these metabolites act to increase metabolic disease risk.
5 Conclusion

The gut microbiota has emerged as a pivotal regulator of GLP-1

releasing L-cells. Various approaches to treat obese-related diseases

have been of interest for decades, although novel therapeutic

strategies are urgently needed to treat a growing patient population.
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Approaches such as combining existing therapies in order to further

enhance weight loss with fewer side effects or targeting the gut

microbiota are currently in use. Altering gut bacterial populations

with pre- or probiotics is a popular strategy to exploit this important

relationship and restore deficiencies of nutrient and energy

homeostasis observed in obesity-associated diseases. More work is

needed to understand the precise cellular mechanisms that govern the

bidirectional communication between the gut microbiota and EECs.

Targeting common downstream effectors of converging signaling

pathways recruited following bacterial metabolite receptor activation

may be a feasible strategy as well. Due to the increasing incidence of

metabolic disease, understanding the symbiotic relationship between

gut bacteria and host cellular function, will provide greater clarity for

the development of novel therapeutic strategies for the treatment of

obese-related diseases.
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Glossary

AhR aryl hydrocarbon receptor

ASBT apical sodium-dependent bile acid transporter

ATP adenosine triphosphate

BSH bile salt hydrolase

C2/C3/C4 acetate/propionate/butyrate

CA cholic acid

cAMP cyclic adenosine monophosphate

CAR constitutive androstane receptor

CaSR calcium-sensing receptor

CDCA chenodeoxycholic acid

CYP450 cytochrome P450

DCA deoxycholic acid

EEC enteroendocrine cell

ERK extracellular signal-regulated kinase

FFA2/3 free fatty acid receptor 2 or 3

Ffar/FFAR mouse/human free fatty acid receptor gene

FGF15/FGF19 fibroblast growth factor 15 in mouse/fibroblast growth factor
19 in human

Fgf15/FGF19 fibroblast growth factor 15 gene in mouse/fibroblast growth
factor 19 gene in human

FGFR4 fibroblast growth factor receptor 4

FXR Farnesoid-X receptor

Gcg/GCG mouse/human glucagon gene

GLP-1 glucagon-like peptide-1

GPBAR1 G-protein coupled bile acid receptor (also called the M-BAR,
membrane type bile acid receptor, TGR5, Takeda G-protein-
coupled receptor 5)

GPCR G-protein coupled receptor

GPR109A G-protein coupled receptor 109A

GPR142 G-protein coupled receptor 142

GPR142 G-protein coupled receptor 142 gene

HCAR2 hydroxycarboxylic acid receptor 2

HDACs histone deacetylases

HFD high-fat diet

IAA indole-3-acetic acid

IAld indole-3-aldehyde

IMP imidazole propionate

IP3 inositol triphosphate

IPA indole-3-propionic acid

IPyA indole-3-pyruvic acid

(Continued)
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LCA/TLCA lithocholic acid/taurine conjugate of lithocholic acid

LXR liver-X receptor

MCA/w-
MCA/
TbMCA

muricholic acid/omega-muricholic acid/taurine conjugate b-
muricholic acid

MCTs monocarboxylate transporters

OR51E1/
OR51E2

human olfactory subfamily (Olfr558/Olfr78 in mouse)

PXR pregnane-X receptor

PYY peptide YY

RYGB Roux-en-Y-gastric bypass

SCFAs short-chain fatty acids

SHP small heterodimer partner

SHP small heterodimer partner gene

SIPR2 G-protein coupled sphingosine-1-phosphate receptor 2

SMCTs sodium-dependent monocarboxylate transporters

T2DM type 2 diabetes mellitus

VDR vitamin D receptor

VSG vertical sleeve gastrectomy
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