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Diabetes mellitus (DM) is a systemic metabolic disease with high mortality and

morbidity. Extracellular vesicles (EVs) have emerged as a novel class of signaling

molecules, biomarkers and therapeutic agents. EVs-mediated intercellular and

interorgan crosstalk of pancreatic islets plays a crucial role in the regulation of

insulin secretion of b-cells and insulin action in peripheral insulin target tissues,

maintaining glucose homeostasis under physiological conditions, and it’s also

involved in pathological changes including autoimmune response, insulin

resistance and b-cell failure associated with DM. In addition, EVs may serve as

biomarkers and therapeutic agents that respectively reflect the status and

improve function and viability of pancreatic islets. In this review, we provide an

overview of EVs, discuss EVs-mediated intercellular and interorgan crosstalk of

pancreatic islet under physiological and diabetic conditions, and summarize the

emerging applications of EVs in the diagnosis and treatment of DM. A better

understanding of EVs-mediated intercellular and interorgan communication of

pancreatic islets will broaden and enrich our knowledge of physiological

homeostasis maintenance as well as the development, diagnosis and

treatment of DM.
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1 Introduction

Diabetes mellitus (DM) is a systemic metabolic disease characterized by hyperglycemia

with high mortality and morbidity (1). The International Diabetes Federation estimates

that 10.5% of people aged 20 to 79 years old are currently suffering with DM and the

incidence will rise to 11.3% by 2030 and to 12.2% by 2045 (2). Long-term hyperglycemia
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brings a higher risk of neurovascular injury, which leads to a series

of complications such as cardiovascular disease, diabetic

neuropathy, diabetic kidney disease and diabetic retinopathy, in

association with negative impacts on patients’ quality of life and

heavy economic burdens (3). DM can be mainly classified into type

1 diabetes mellitus (T1DM) and type 2 diabetes mellitus (T2DM)

based on the pathogenesis (4). Additionally, DM can be the

secondary disease caused by Coxsackie-viral infection (5), cystic

fibrosis (6) and pancreatic cancer (7). Although the etiologies of

different types of DM are distinct, it is generally accepted that the

progression of DM is highly associated with abnormal

communications between cells, tissues and organs (8).

Extracellular vesicles (EVs) are a group of heterogenous, multi-

functional lipid bilayer membrane vesicles secreted by a wide

spectrum of cells into extracellular space (9). The characteristics

of EVs are highly heterogenous and influenced by the parental cell

types (10). EVs contain various biologically active molecules such as

nucleic acids, proteins and lipids, where the bioactivity of their

contents could be preserved by the membrane structure, making

EVs as suitable carriers transmitting signals among cells (11). Over

the last decade, EVs have garnered great interest for their critical

roles in mediating intercellular and interorgan communications,

which have been demonstrated to be involved in various

physiological and pathological processes (12). Beside their

intrinsic bioactive properties, EVs have also been confirmed with

other advantages, such as abundant sources, low immunogenicity,

biocompatibility, flexibility to modify, and ability to cross biological

barriers (13), making EVs-based therapies as attractive strategies in

the treatment of various diseases (14–16).

The pancreatic islet discovered by Paul Langerhans in 1869

consist of its own vasculature and five types of hormone-producing

cells known as a-cells, b-cells, d-cells, pp-cells and rare ϵ-cells (17).
The hormones produced by different endocrine cells play a crucial

role in controlling blood glucose level, making pancreatic islet an

important mini-organ to maintain glucose homeostasis (18).

Among different cell types, insulin-secreting b-cells occupy a

decisive position given that loss and failure of b-cells are highly

associated with the emergence and deterioration of DM (19).

Present researches indicate that EVs-mediated crosstalk between

pancreatic islets and extra-islet tissues plays key roles in

maintaining glucose homeostasis under physiological conditions,

whereas such crosstalk is strongly involved in the occurrence and

development of DM under pathological conditions (8, 20). Under

physiological conditions, pancreatic b-cells can lower blood glucose

by secreting insulin to increase glucose uptake of peripheral tissues,

while peripheral tissues may promote insulin secretion and growth

of b-cells via EVs-mediated crosstalk (21, 22). On the other hand,

EVs containing autoantigens derived from pancreatic islets may

target autoimmune cells, causing severe autoimmune response in

T1DM. Furthermore, peripheral tissues-derived EVs impose

negative impacts on pancreatic islets, leading to dysfunction and

death of islet cells in T2DM (23). EVs-mediated crosstalk between

pancreatic islets and other tissues can also lead to the secondary

diabetes after other diseases (6, 7). Notably, EVs have also been

widely applied as biomarkers and therapeutic agents for DM.

Lakhter et al. reported that up-regulated miR-21-5p cargo in b-
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cell derived EVs in response to inflammatory cytokines can serve as

a potential biomarker of T1DM (24). Sun et al. showed that EVs

secreted by mesenchymal stem cells (MSCs) can be used for the

treatment of T2DM by promoting survival and insulin secretion of

pancreatic b-cells (25).
This review aims to outline the current knowledge of EVs-

mediated intercellular and interorgan crosstalk of pancreatic islet,

focusing on its roles in regulating systemic metabolism, as well as its

potential applications in the diagnosis and treatment of DM. We

hope to provide a new and specific perspective for understanding

certain physiological and pathological processes and give new

thoughts to novel biomarkers discovery and anti-diabetic

drug development.
2 Overview of EVs

EVs can be broadly divided into two major categories based on

their characteristics of biogenesis: exosomes (30-100 nm) and

microvesicles (MVs, 50-1000 nm) (11). Exosomes are formed as

intraluminal vesicles (ILVs) via inward budding of endosomal

membrane within the lumen of multivesicular endosomes

(MVEs), which is released to extracellular space upon fusion of

MVEs with plasma membrane (26). While, MVs are formed by

outward blebbing and shedding from the plasma membrane (27).

Apart from exosomes and MVs, increasing number of EV

subpopulations including migrasomes (28), secretory amphisomes

(29), exophers (30), apoptotic bodies (31) and endogenous

retroviral-like particles (32) have also been reported. Roles of

exosomes and MVs in intercellular or interorgan communication

have been recently acknowledged (9, 33). These two main categories

of EVs participate in communications between different cell types

via two steps in a nutshell: generation and targeting to

recipient cells.
3 Generation

3.1 Exosomes

The generation of exosomes can be generally categorized into

three processes including biogenesis, transport and release. In the

process of biogenesis, cargos fated for secretion are first targeted to

endosomes, then followed by clustering, budding and fission to

form ILVs via endosomal sorting complex required for transport

(ESCRT)-dependent or ESCRT-independent pathway (34, 35).

Many sorting mechanisms have been proven to be involved in

exosomes biogenesis, while endosomal sorting machineries seem to

be the main determinants (11). The biogenesis of ILVs is followed

by transport of MVEs towards the plasma membrane. This process

requires the association of MVEs with intracellular trafficking

molecules, such as cytoskeleton, relevant molecular motors and

molecular switches (36, 37). MVE-plasma membrane fusion

mediated by SNARE proteins and synaptotagmin family members

is the final step of exosomes generation (38), which triggers the

release of ILVs into extracellular space.
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3.2 MVs

MVs are usually generated at the protrusions of the plasma

membrane, such as filipodia and microvili (39). The biogenesis of

MVs requires several molecular rearrangements of the plasma

membrane, participation of cytoskeletal elements and their

regulators, which is tightly associated with metabolic changes of

cells (40–42). Once formed, MVs is secreted to extracellular milieu

via pinching off from the plasma membrane.
3.3 EV cargos

Cargos contained in EVs vary depending on the cell type,

pathophysiological state and the extracellular environment (43).

The cargo capacity of EVs can be influenced by a variety of factors,

such as the size and abundance of the cargo molecule, the presence

of specific transporters and the intrinsic ability of EVs to package

and release (9). For example, studies have demonstrated that small

non-coding RNAs, such as miRNAs, can be highly enriched in EVs,

whereas larger RNAs, such as mRNAs, may be present in low

quantities (44). As another example, some proteins on the surface of

EVs, such as teraspanins and integrins, can interact with specific

ligands on cargo molecules and facilitate their packaging into EVs

(45). Additionally, RNA-binding proteins such as hnRNPA2B1 and

YBX1 can also play a role in the selective sorting of RNA into EVs

(46). Table 1 lists the cargos packaged in EVs that participate in the

pathophysiological process of DM.
3.4 Targeting to recipient cells

EVs can be delivered to recipient cells to mediate intercellular

communications in two steps: docking at the plasma membrane and

transmitting signals to target cells. Binding of EVs to recipient cells is

principally mediated by specific interactions between EV surface

proteins and plasma membrane receptors of target cells (47). Upon

binding, EVs can transmit signals by either activating the plasma

membrane receptors or influencing various responses and processes

after internalization (48). The release ofmolecules fromEVs is regulated

byvariousmechanisms, suchas the fusionofEVmembranewithbof the

recipient cell or uptake by endocytosis (11). These processes involve

specific proteins and lipids that mediate the interaction between EV

membrane and recipient cell membrane, eventually leading to release of

cargo molecules into the cytoplasm (49). For instance, the exosomal
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protein CD63 is involved in the fusion of exosomes with recipient cells

while the lipid phosphatidylserine (PS) on the exosome membrane is

recognized by the PS receptor on recipient cells, facilitating uptake of

exosome cargos (50). In some cases, EVs can also be taken up by other

mechanisms, such as micropinocytosis or phagocytosis (51). The

internalized EVs will be mainly degraded by lysosome, which is

influenced by specific compositions of EVs and specific structures at

the plasma membrane of target cells (11, 52, 53).
4 EVs-mediated intercellular and
interorgan crosstalk of pancreatic islet

4.1 Physiological status

Previous study has shown that b-cells secrete EVs containing

higher levels of miR-223 upon high-glucose stimulation, which can

subsequently upregulate GLUT4 expression in hepatocytes and

skeletal muscle to facilitate glucose uptake (65). This

phenomenon highlights the critical roles of EVs-mediated

interorgan crosstalk in the maintenance of glucose homeostasis.

Adipose tissue is an endocrinal organ that involves in the

regulation of immunity, insulin sensitivity, blood glucose and lipid

metabolism, which is crucial for modulating internal environment

homeostasis (66). Interestingly, adipocytes have been demonstrated to

participate in the regulation of the physiological function of pancreatic

islet cells through EVs-mediated crosstalk. EVs derived from healthy

adipocytes can be delivered to recipient b-cells and induce the

expression of transcription factors including Pdx1 and Nkx6.1, which

can promote b-cell proliferation and insulin secretion, while prevent b-
cell apoptosis (21).

Human islet amyloid polypeptide (hIAPP) is an important

insulin co-secreted hormone (67), while hIAPP misfolding and

aggregation may induce b-cells damage (68). Ribeiro et al.

discovered that pancreatic islet-derived EVs can reduce hIAPP

formation of pancreatic islet cells, suggesting a self-protection

mechanism of pancreatic islets in physiological status (22). In a

separate study, Shen et al. reported that b-cells-derived EVs can act

upon recipient islet endothelial cells to promote the migration and

tube formation through the action of cargo miR-127 (69).

Taken together, pancreatic islet cells can release EVs for

communication with other tissues to achieve their biofunction. In

turn, extra-islet tissues or pancreatic islet itself can also regulate

pancreatic islet physiology via EV-mediated intercellular and

interorgan crosstalk.
TABLE 1 Type of EV cargos involved in the pathophysiology of DM.

Type of cargos Examples

regulatory cargos DNAs, mRNAs, tRNAs, miRNAs, IncRNAs, circRNAs, transcription factors, histones

inflammatory cargos cytokines, chemokines

metabolic cargos glucose transporters, lipid transporters, hormones and signaling molecules, metabolites

cellular cargos MSC-derived, immunocyte-derived, endothelial cell-derived, adipocyte-derived
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4.2 T1DM

T1DM is known as autoimmune diabetes, characterized by

immune cells infiltration, b-cell failure and insulin deficiency (70).

The occurrence and deterioration of T1DM are proved to be closely

associated with the crosstalk between pancreatic islet cells and

immune cells (71). Pancreatic islets can promote the inflammation

and autoimmune response by secreting EVs containing potent

immunostimulatory materials. Respectively, immune cells derived

EVs can induce damage and dysfunction of b-cells (72). Overall, EVs-
mediated crosstalk between pancreatic islet cells and immune cells

runs through the whole development of T1DM (Figure 1).

Collective evidence suggests that pancreatic islets derived EVs

contain various autoantigens including GAD65, IA-2, ZnT8, Glut2,

proinsulin, insulin, catabolites of insulin and newly discovered Gag

antigen, which can stimulate antigen presenting cells (APC) and

further activate T-cells and B-cells to trigger autoimmune response

(73–77). In addition, EVs derived from pancreatic islets can also

promote the activation of T-cells and B-cells in an APC-

independent manner (78). A study by Tesovnik et al. reported

that a great number of microRNAs (miRNAs) including miR-122-

5p, miR-192-5p, miR-185-5p, miR-195-3p, miR-455-5p, miR-375-

3p and miR-129-5p were differentially expressed in pancreatic islet-

derived EVs in T1DM compared to that of healthy control, which

can activate phagocytes via TLR7/8-mediated immune modulation

and elevate the cytotoxicity of T-cells and NK cells (79). EVs

derived from inflammatory islet cells also contain other bioactive

materials including monocyte chemoattractant protein 1 (MCP-1),

IL-27, immunostimulatory chaperones calreticulin, Gp96 and

ORP150, which can activate dendritic cells and promote the

release of pro-inflammatory cytokines (74, 80).

Respectively, T-cells can induce inflammation and apoptosis of

pancreatic b-cells via tRNA-derived fragments (tRFs) contained in

T-cell-derived EVs (81). In addition, T-cells derived EVs contain
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specific miRNAs such as miR-142-3p, miR-142-5p and miR-155,

which can trigger chemokine expression and failure of pancreatic b
cells (82).
4.3 T2DM

The process of T2DM involves two key mechanisms, insulin

resistance (IR) and b-cell failure, accompanied with inflammatory

response throughout the whole process (83). IR, a state in which

insulin effector organs become less responsive to insulin, is highly

correlated with obesity (84). During obesity, an increased mass of

stored triglyceride in adipose tissue can induce IR in adipocytes

through hypoxic response and inflammation (85). This results in

enhanced lipolysis and increased release and circulating levels of

free fatty acids (FFAs), which elicit lipotoxicity and aggravate IR in

liver and skeletal muscle (86, 87). Upon the emergence of IR,

current evidence strongly indicates that the mechanisms by which

pancreatic islets compensate to cope with systemic IR are

hyperplasia accompanied by excess insulin secretion and

deposition of hIAPP in b-cells (88, 89). Meanwhile, chronic

elevated FFAs and glucose caused by IR will induce b-cell
dysfunction through endoplasmic reticulum stress (ER stress) and

inflammation response (90, 91).

4.3.1 From pancreatic islets to peripheral tissues:
EVs serve as the initiator of IR

Previous research has reported that EVs derived from low-

density lipoprotein (LDL) treated b-cells can induce insulin signal

impairment by decreasing mTOR/p70S6Ka activation and lead to

IR in hepatocytes (92). Hepatic IR has also been proven to be

associated with up-regulation of miR-29s in EVs derived from free

fatty acids (FFAs)-treated islets or down-regulation of miR-26a in

EVs derived from islets of obese mice (93, 94). In addition, EVs
FIGURE 1

Involvement of islets- and immunocyte- derived EVs in T1DM-related pathological changes. In T1DM, pancreatic islet-derived EVs contain
autoantigens, which can stimulate APC and promote T-cells and B-cells activation. Pancreatic islet-derived EVs can also modulate immune
responses in an APC-independant manner, where differentially expressed miRNAs including miR-122-5p, miR-192-5p, miR185-5p, miR-195-3p, miR-
455-5p, miR-375-3p and miR-129-5p in pancreatic islet-derived EVs may account for the activation of phagocytes (monocytes and granulocytes)
and elevated cytotoxicity of T-cells and NK cells. EVs derived from pancreatic islets also contain other bioactive materials, such as MCP-1, IL-27,
ICC, Gp96 and ORP150, which are associated with the activation of DC. Respectively, EVs derived from T-cells contain tRFs, miR-142-3p, miR-142-
5p and miR-155, which may impose the deleterious impacts on pancreatic b-cells.
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derived from lncRNA Reg1cp mutated b-cells can transfer Mut-

Reg1cp into hepatocytes, adipose tissue and skeletal muscle, and

trigger peripheral IR by inhibiting AdipoR1 translation and

adiponectin signaling (95). Systemic inflammation can further

worsen IR of peripheral tissues in the pathogenesis of T2DM

(96). Sun et al. showed that prediabetic pancreatic b-cells secrete
EVs containing miR-29, which can promote the transformation of

monocytes and macrophages to an inflammatory phenotype and

improve their tissue residential ability, leading to the exacerbation

of IR (97).

4.3.2 From peripheral tissues to pancreatic islets:
EVs serve as the initiator of b-cell compensation
and failure

In the early stage of T2DM, b-cell compensation is one of the

important mechanisms to delay the progression of disease (98).

Accumulating evidences suggest that peripheral tissues can promote

b-cell compensatory hyperplasia via EVs under prediabetic

conditions. The study by Fu et al. reported that down-regulated

miR-7218-5p in hepatocellular EVs derived from high-fat diet

(HFD) induced obese mice can promote b-cell proliferation by

targeting CD74 gene without affecting insulin secretion (99).
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Jalabert et al. demonstrated that up-regulated miR-16 in EVs

derived from lipid-induced insulin-resistant muscles can promote

b-cell proliferation by down-regulating Ptch1 of the hedgehog

pathway (100). Additionally, miR-155 enriched EVs derived from

adipose tissue macrophages can suppress Mafb expression in b-
cells, leading to reduced insulin secretion and enhanced b-cell
proliferation (101).

In the later stage of T2DM, EVs-mediated crosstalk between

pancreatic islet and extra-islet tissues can lead to apoptosis and

dysfunction of b-cells. Lipotoxic hepatocytes-derived EVs can

augment immune cell infiltration in pancreas and subsequent b-
cell failure (102). Inflamed adipose tissue can secrete EVs to induce

b-cell death and dysfunction, while palmitate (PA)-induced IR

skeletal muscle can also reduce the insulin secretion of b-cells via
EVs-mediated crosstalk (21, 103). The intestinal flora of healthy

people can maintain intestinal homeostasis by secreting

metabolites, while the intestinal microorganism of obese people

may induce inflammatory responses of b-cells in the context of

T2DM (104, 105). The study by Gao et al. demonstrated that EVs

derived from gut microbiota of obese subjects can pass through gut

barrier and deliver microbial DNAs to pancreatic b-cells, resulting
in islet inflammation and b-cell dysfunction (106). Qian et al.
TABLE 2 Administration of EVs as therapeutic agents for the treatment of DM.

Author Type of
study

Administration

Bai et al. (54) Ex-vivo
In-vivo

(1) Human iPSCs (5000 cells per well) were incubated with purified EVs (15 µg/mL) from 1 × 105 cells for 15 days.
(2) i-Beta cells (2 × 106 cells/mouse) were transplanted under the kidney capsule of STZ-induced diabetic mice.

Mahdipour
et al. (55)

In-vivo NR

Mostafa-
Hedeab et al.
(56)

In-vivo MSCs derived exosomes (0.4 µg/mL, 100µL, twice-weekly) were transplanted via tail vein of diabetic mice.

Caxaria et al.
(57)

Ex-vivo high concentration
(2x106 particles/ml)
intermediate concentration
(5x105 particles/ml)
lower concentration
(4x105 particles/ml)

Kalivarathan
et al. (58)

Ex-vivo NR

Zhu et al. (59) Ex-vivo INS-1 cells (plated in six-well plates) were incubated with exosomes (10 µg).

Tang et al.
(60)

Ex-vivo NR

Sun et al. (25) In-vivo Exosomes (6×109 particles) were transplanted in situ pancreas after low dose STZ injection, and exosomes (3×109 particles) were infused
11 days after first transplantation through tail vein injection.

Garcia-
Contreras
et al. (61)

Ex-vivo NR

Keshtkar et al.
(62)

Ex-vivo Islets (400 IEQ of islets per well) were incubated with exosomes (40 µg/ml) for three days.

Mohammadi
et al. (63)

In-vivo Hybrid alginate microcapsule (AlgXO) loaded with exosomes (total number of exosomes within ~1000 AlgXO was 5.43 × 109 ± 4.84 ×
109) and islets (1500 IEQ in total, islet equivalent) were transplanted into the intraperitoneal cavity of STZ-treated mice.

Nie et al. (64) Ex-vivo NR
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showed that EVs derived from islet-resident M1 macrophages of

obese mice can transfer miR-212-5p into the adjacent pancreatic b-
cells, leading to b-cell dysfunction by inhibiting SIRT2 (107).

4.3.3 Self-regulation of pancreatic islets: EVs
serve as the initiator of b-cell failure

Pancreatic islet cell-derived EVs is crucial in mediating autocrine

and paracrine interactions within pancreatic islet, which may mediate

negative self-regulation in the context of T2DM (108). EVs

containing active procoagulant tissue factor derived from

inflammatory b-cells can impose negative impacts on other b-cells
and induce b‐cell dysfunction (109). Similarly, EVs containing

miRNAs derived from inflammatory cytokine-treated b-cells can be

transferred into the recipient b-cells and induce b-cell death (110).

In summary, EVs secreted by pancreatic islets (especially b-
cells) and peripheral tissues play crucial roles in transmitting signals

in the context of T2DM (Figure 2). b-cell-derived EVs can induce

IR in peripheral tissues, while EVs derived from peripheral tissues

can cause b-cell failure. Notably, b-cell-derived EVs can also act

upon recipient b-cells and impose negative impacts in an autocrine

manner in T2DM.
4.4 DM as secondary disease

The persistent infection of enteroviruses, especially Coxsackie

virus, is considered to be associated with the appearance of T1DM,
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while its underlying mechanisms have not been fully elucidated (5).

Geravandi et al. reported that under the condition of Coxsackie-

viral infection, the transfer of b-cell-derived exosomal miRNAs to

recipient cells may be associated with the inflammation, apoptosis

and autoimmune response in pancreatic islets (111).

Cystic fibrosis is a type of genetic disease which is frequently

accompanied by pulmonary infection and cystic fibrosis-related

diabetes (CFRD) (112). CFRD is a unique type of DM that shares

some features with both T1DM and T2DM (113). In the context of

recurrent infection during cystic fibrosis, EVs derived from

pancreatic exocrine cells can induce b-cell dysfunction and death

via activating NF-kB pathway, which may be one of the

pathogeneses of CFRD (6).

There is a prevailed incidence of type 3c DM in patients with

pancreatic cancer, characterized by IR and hyperinsulinemia (114).

EVs originated from pancreatic cancer cells can deliver

adrenomedullin, CA19-9 and miR-19a to b-cells, which can

induce ER stress and dysfunction of b-cells (7, 115). Moreover,

pancreatic stellate cells (PSCs) play an important role in tumor

growth and metastasis through creating the oncological

microenvironment (116). The study by Pang et al. reported that

EVs derived from PSCs can inhibit not only insulin secretion, but

also proliferation of a-cells and b-cells, which may lead to type 3c

DM as secondary disease of pancreatic cancer (117).

In conclusion, EVs emerge as novel vehicles transmitting signals

via multifaceted cargos including miRNAs, inflammatory factors,

adipokines, extracellular matrix proteins in the context of DM.
FIGURE 2

Involvement of islets- and peripheral tissue-derived EVs in T2DM-related pathological changes. IR is the hallmark of T2DM. EVs derived from b-cells
can deliver bioactive materials including increased miR-29s, Mut-Reg1cp and reduced miR-26a to liver, adipose tissue and skeletal muscle, which
results in IR and abnormal lipid accumulation. b-cells can also secrete EVs containing miR-29, promoting the transformation of monocytes and
macrophages to an inflammatory phenotype and improving their tissue residential ability, which can lead to the exacerbation of IR. Upon the
emergence of IR, pancreatic islets will compensate through hyperplasia. down-regulated miR-7218-5p, as well as up-regulated miR-16 and miR-155
loaded in EVs derived from liver, skeletal muscle and adipose tissue macrophages can promote b-cell proliferation. b-cell failure is a sign of systemic
decompensation. EVs with bioactive materials shed by hepatocytes, adipose tissue, skeletal muscle, intestinal microorganism and M1 macrophage
can induce inflammation, apoptosis, dysfunction and inhibit b-cell proliferation. EVs derived from b-cells with increased active procoagulant tissue
factor and miRNAs may participate in the negative self-regulation of pancreatic islets.
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5 EVs serve as biomarkers and
therapeutic agents for diagnosis
and treatment of DM

As previously described, EVs serve as carriers transmitting

signals to facilitate crosstalk of pancreatic islets in the context of

physiology and DM. In addition, EVs are also viewed as potential

biomarkers and promising therapeutic agents for diagnosis and

treatment of DM (118, 119). EVs can be used as biomarkers for

diagnosis due to their stability in easily accessible biological fluids,

rapid and effective isolation and detection, as well as feasibility of

relatively long-term preservation (8). Moreover, given that EVs can

exert effects on target cells and prevent degradation of inherent

biologically active molecules, they can also function as therapeutic

agents (120). Here, we mainly discuss the isolation, characterization

and clinical potentials of EVs that can reflect the status of pancreatic

islets as biomarkers or improve islet function and viability as

therapeutic agents (Table 2).
5.1 Insolation and characterization of EVs

Despite various differences between exosomes and MVs, most

of current methods cannot completely separate them because they

overlap in size, which results in low purity (121). So far, several

isolation technologies have been established for efficient enrichment

of exosomes or MVs, including commonly used ultracentrifugation

(UC), polymer precipitation, size exclusion chromatography (SEC),

ultrafiltration and immunoprecipitation (122–126) (1). UC mainly

harvests the required components based on the size and density

differences, typically separating the original solution into pellet cells

and debris, large EVs and small EVs through a sequential increase

in centrifugal force (2). Polymer precipitation usually uses

polyethylene glycol (PEG) as a medium to reduce the solubility of

EVs for precipitation and harvest. (3) SEC respectively separates

macromolecules outside the gel pores and small molecules inside

the gel pores by using a column. (4) Ultrafiltration selectively

isolates samples through ultrafiltration membranes with different

molecular weight cutoffs (MWCO). (5) Immunoprecipitation

captures desired substances from heterogeneous mixtures based

on the specific binding of monoclonal antibodies and ligands on the

surface of EVs (122–126).

After isolation, EVs need to be characterized for their intended

downstream application. In general, EV characterization methods

are mainly categorized into two types: external characterization and

inclusion characterization (127). We can detect morphology and

particle size for external characterization through scanning electron

microscopy (SEM), transmission electron microscopy (TEM),

dynamic light-scattering (DLS) and nanoparticle tracking analysis

(NTA) (128). As for inclusion characterization, western blotting,

enzyme-linked immunosorbent assays and flow cytometry are

optional methods to characterize membrane protein, lipid raft

and other components of EVs, using classical biomarkers such as

CD9, CD63, CD81, ALIX, and TSG101 (129–131). Notably, some
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new characterization methods have been reported recently. For

instance, Islam et al. provided a way to characterize EVs by using

nanoparticle-based time resolved fluorescence immunoassay, which

can simplify the characterization step without extensive

pretreatment (132). Paganini et al. presented a microfluidic device

combining diffusion sizing and multiwavelength fluorescence

detection to simultaneously provide information on EV size,

concentration, and composition (133).
5.2 EVs as biomarkers reflecting the status
of pancreatic islets

In the context of T1DM, profiling of RNAs from human islet-

derived exosomes proven that coding and noncoding RNAs were

differentially expressed under proinflammatory cytokines stress

conditions and these RNAs were associated with insulin secretion,

necrosis, apoptosis, and calcium signaling (134). The study provided a

comprehensive catalog of RNAs from pancreatic islets that may serve

as potential biomarkers for T1DM diagnosis (134). Lakhter et al.

reported that increased miR-21-5p cargo in b-cell derived EVs in

response to inflammatory cytokines can serve as a potential biomarker

of T1DM (24). In T2DM conditions, miR-26a was down-regulated in

islets of obese mice and reduced in serum exosomes in both obese

mice and overweight humans, which was inversely correlated with

clinical features of T2DM (94). Moreover, miR-375-3p was up-

regulated in islet-derived exosomes after mixed cytokines or STZ

treatment and dramatically increased in serum exosomes of STZ

injected mice and new-onset T1DM and T2DM patients, which may

serve as a potential biomarker of islets damage (135).
5.3 EVs as therapeutic agents improving
function and viability of pancreatic islets

Autoimmune response-mediated destruction of the structure

and function of pancreatic islets is identified as the main

pathogenesis of T1DM (136). Strategies to replace, regenerate or

promote the function of b-cells while inhibiting autoimmune

response may allow for effective treatment (137). A study by Bai

et al. showed that miR-212/132-enriched EVs derived from mature

b-cells can promote differentiation of induced pluripotent stem cells

into functional pancreatic b-cells (54), suggesting a novel approach
of b-cell regeneration and replacement in the treatment of T1DM.

MSCs are considered as ideal candidates to treat T1DM for their

ability to promote b-cell function and regeneration (138, 139). It has
been proven that EVs originated from MSCs can be delivered to b-
cells to promote regeneration, insulin secretion and inhibit

apoptosis, while the effects of MSCs-derived EVs on b-cells
present a concentration-dependent manner (55–57). Advanced

T1DM is also accompanied by dysfunction of a-cells, which may

lead to severe hypoglycemia (140). Kalivarathan et al. found that

under low-glucose condition, b-cell-derived EVs can significantly

elevate the release of glucagon from a-cells, which may become one

of the strategies for relieving severe hypoglycemia in advanced

T1DM (58).
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Pancreatic b-cell failure is one of main hallmarks in T2DM

(141). Thus, maintaining the mass and function of b-cells to halt the
progressive b-cell failure is an effective therapy to treat T2DM (142).

A study by Zhu et al. showed that EVs derived from low-dose

cytokine-induced b-cells can prevent high-dose cytokine-triggered

b-cell death through the action of cargo neutral ceramidase

(NCDase) (59, 60). MSCs-derived EVs can promote b-cell
function and regeneration while inhibit apoptosis, serving as

potential treatment strategy for T2DM (25). In a low-dose STZ-

induced diabetic animal model, EVs derived from b-cells under

high-glucose stimulation can reduce macrophage infiltration and

enhance the expression of CD31, a marker of endothelial cells in

islets, playing key roles in preserving pancreatic islet architecture

and function (143).

Islet transplantation has become an established treatment option

for insulin-deficient DM (144). The pre-transplantation status of islets

and post-transplantation injury factors including hypoxia and immune

rejection can dramatically influence the effects of clinical operation

(145). Therefore, strategies to improve islets mass and function prior to

transplantation and prevent hypoxia and immune response-mediated

graft rejection after transplantation may be the key to improve

therapeutic effects (146, 147). Pancreatic islets treated with EVs

derived from umbilical vein endothelial cells present better structure

and function compared with untreated group, which provides a new

method of improving pre-transplantation status of islets (61). EVs

containing vascular endothelial growth factor (VEGF) derived from

MSCs are also shown to promote the survival and function of the

isolated islets (62). Furthermore, EVs derived from MSCs can reduce

immune rejection, inflammation, fibrosis of pancreatic islets and

increase hypoxic resistance via ROS-NLRP3-TXNIP pathway after

transplantation (63, 64).
6 Conclusion

Pancreatic islets play vital roles in maintenance of glucose

homeostasis by secreting various hormones, whose dysfunction

causes DM (148) . EVs not only act as interce l lu lar

communication vehicle, but also serve as potential biomarkers

and therapeutic agents for the diagnosis and treatment of human

diseases (149). In this review, we provided an overview of EVs with

the focus on EV generation and cellular recognition and uptake of

EVs, discussed EVs-mediated intra-islet crosstalk as well as

crosstalk between pancreatic islets and extra-islet tissues under

physiological and diabetic conditions, summarized the emerging

applications of EVs in the treatment of DM.

Although much effects have been made, the underlying

mechanisms of EVs-mediated intercellular and interorgan crosstalk

of pancreatic islets are still largely unknown. For instance, it is still

unclear how the expression of EVs cargo is regulated, how EVs cargo is

selectively packaged, and how EVs can be recognized and taken up by

specific cell types. Pancreatic islets are composed of a variety of

endocrine cells including insulin-secreting b-cells, glucagon-secreting
a-cells and somatostatin-secreting d-cells, which tightly regulate blood
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glucose homeostasis (17). Accumulating evidence suggest that non-b
islet cells, such as a-cells and d-cells, are also involved in the

dysregulated cellular communication and the development of DM

(150–152). Hence, more studies are needed to understand EVs-

mediated intercellular and interorgan crosstalk of non-beta islet cells

under both physiological and pathological conditions. In addition, a

wide range of cargos packaged in EVs play a role in the

pathophysiology of DM, including regulatory, inflammatory,

metabolic, and cellular cargos. While most current research on EVs-

mediated crosstalk between islets and extra-islet tissues focused on the

role of miRNAs, it is important for future studies to pay attention to

cargos beyond miRNAs. Given the critical roles of brain-islet axis in

glucose homeostasis and DM, as well as the strong association between

DM and neurodegenerative diseases, it is also meaningful to investigate

the roles of EVs in mediating brain-islet crosstalk in this context

(153–155).

Collective evidence suggests that EVs derived from various cell

sources may serve as therapeutic agents in the treatment of DM

(149). In the current preclinical studies on EVs, there is a lack of

detail investigation on appropriate dosage, frequency, and timing

of EV administration. Moreover, a uniform definition for reversal

of DM has not been established, highlighting the need for future

improvement in this field. Meanwhile, the clinical application of

EVs is hindered by its non-specific organ accumulation and

relative instability (156). Yerneni et al. reported that EVs can be

engineered to acquire capability of targeting through

oligonucleotide tethers without changing inherent properties of

EVs (157). Rayamajhi et al. reported that EVs can be hybridized

with synthetic liposome to generate hybrid exosomes for

preventing poor yield and dysfunction during isolation (158).

EVs-based therapeutics for DM may be significantly improved

through the integration of multidisciplinary technologies. Besides,

the current research on the plasma half-life of EVs and whether

they can induce intensive antibody responses is controversial and

requires further investigation (159, 160).
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