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Exploring the potential
mechanisms of Tongmai
Jiangtang capsules in treating
diabetic nephropathy through
multi-dimensional data

Yi Liu1†, Xin Cui1†, Xuming Zhang1†, Zhuoting Xie2†, Weili Wang1,
Junyu Xi1 and Yanming Xie1*

1Institute Of Basic Research In Clinical Medicine, China Academy Of Chinese Medical Sciences,
Beijing, China, 2Department of Orthopedics, The Second Hospital of Jilin University, Changchun,
Jilin, China
Background: Diabetic nephropathy (DN) is a prevalent and debilitating disease

that represents the leading cause of chronic kidney disease which imposes public

health challenges Tongmai Jiangtang capsule (TMJT) is commonly used for the

treatment of DN, albeit its underlying mechanisms of action are still elusive.

Methods: This study retrieved databases to identify the components and collect

the targets of TMJT and DN. Target networks were constructed to screen the

core components and targets. Samples from the GEO database were utilized to

perform analyses of targets and immune cells and obtain significantly

differentially expressed core genes (SDECGs). We also selected a machine

learning model to screen the feature genes and construct a nomogram.

Furthermore, molecular docking, another GEO dataset, and Mendelian

randomization (MR) were utilized for preliminary validation. We subsequently

clustered the samples based on SDECG expression and consensus clustering and

performed analyses between the clusters. Finally, we scored the SDECG score

and analyzed the differences between clusters.

Results: This study identified 13 SDECGs between DN and normal groups which

positively regulated immune cells. We also identified five feature genes (CD40LG,

EP300, IL1B, GAPDH, and EGF) which were used to construct a nomogram. MR

analysis indicated a causal link between elevated IL1B levels and an increased risk

of DN. Clustering analysis divided DN samples into four groups, among which, C1

and CI were mainly highly expressed and most immune cells were up-regulated.

C2 and CII were the opposite. Finally, we found significant differences in SDECG

scores between C1 and C2, CI and CII, respectively.

Conclusion: TMJT may alleviate DN via core components (e.g. Denudatin B,

hancinol, hirudinoidine A) targeting SDECGs (e.g. SRC, EGF, GAPDH), with the
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involvement of feature genes and modulation of immune and inflammation-

related pathways. These findings have potential implications for clinical practice

and future investigations.
KEYWORDS

Tongmai Jiangtang capsule (TMJT), Traditional Chinese Medicine, bioinformatics,
machine learning, nomogram, network pharmacology, molecular docking, Mendelian
randomization (MR)
1 Introduction

Diabetic nephropathy (DN) is a significant public health

challenge as it is the leading cause of chronic kidney disease and

end-stage renal disease worldwide (1). It is a microvascular

complication of diabetes mellitus (DM), and up to 40% of people

with DM may develop DN (2, 3). DN is characterized by persistent

albuminuria, a progressive decline in renal function, and an

increased risk of cardiovascular disease and mortality (4, 5). The

pathogenesis of DN involves multiple factors such as abnormal

glucose metabolism, altered renal hemodynamics, oxidative stress,

cytokine action, and genetic factors (6). Current therapies for DN

focus on risk factor interventions in the early stages and renal

replacement therapies in the end-stage, but they have limitations in

preventing disease progression (7). Therefore, there is an urgent

need to identify safe and effective treatments for DN.

Traditional Chinese medicine (TCM) is a promising approach

for treating DN due to its safe and effective complementary and

alternative therapies (8). Both TCM decoctions and Chinese Patent

medicines have shown effectiveness in treating DN by improving

kidney function, regulating immune function, and reducing urine

protein and blood glucose levels (9, 10). TMJT is a Chinese patent

medicine composed of ten herbs and one animal drug (Table 1) that

has been used to treat DM and its neurological and vascular

complications. Clinical studies (11, 12) and animal experiments

(13) have demonstrated its significant therapeutic effect on diabetic

peripheral neuropathy, improving clinical symptoms, nerve

function, and tissue structure. Observational studies (14, 15) have

also reported that TMJT can improve glucolipid metabolism and

regulate the expression of inflammatory factors in the treatment of

cerebral infarction (CI) combined with DM.

TMJT has been reported to be widely used in the treatment of

DN in previous studies. However, these studies have several

limitations, such as being few in number, low in quality, and

primarily conducted from a clinical or theoretical perspective,

without focusing on mechanisms. Thus, the material basis of

TMJT for DN and its molecular mechanisms require further

exploration. Network pharmacology can analyze the patterns of

molecular association between drugs and diseases from a systemic

level and an overall perspective of biological networks, and is

therefore widely used to discover active components and elucidate

the overall mechanisms of TCM (16). Genome-wide transcriptome

analysis, which utilizes microarray and bioinformatics technologies,
02
can identify key targets for disease progression and provide insight

into disease pathogenesis and molecular classification (17). MR is a

method that uses single nucleotide polymorphisms (SNPs) as

instrumental variables (IVs) to assess causal relationships between

exposure factors and diseases (18). Therefore, in this study, network

pharmacology was employed to analyze the core targets of TMJT in

treating DN. Bioinformatics analysis was used to assess the

expression of these core targets in the Gene Expression Omnibus

(GEO) dataset. Additionally, MR analysis was conducted to

investigate the causal relationship between core targets and DN,

aiming to reveal their potential mechanisms of action. The process

of this study can be seen in Figure 1.
2 Methods

2.1 Components and targets in TMJT

The components in TMJT were collected by retrieving the

traditional Chinese medicine system pharmacology technology

platform (TCMSP, http://tcmspw.com/tcmsp.php) (19) and the
TABLE 1 Comparison of names of Chinese medicines in TMJT.

No.
Pinyin
Name

Pharmaceutical
Latin

English Name

1 Taizishen Radix Pseudostellariae
Heterophylly
falsestarwort root

2 Danshen Radix Salviae Red sage root

3 Huanglian Rhizoma Coptidis Chinese goldthread

4 Huangqi Radix Astragali Milkvetch root

5 Jiaogulan
Herba Gynostemmae
Pentaphylli

Fiveleaf gynostemma
herb

6 Shanyao Rhizoma Dioscoreae Chinese yam

7 Cangzhu Rhizoma Atractylodis
Swordlike atractylodes
rhizome

8 Xuanshen Radix Scrophulariae Figwort root

9 Shuizhi Hirudo Leech

10 Dongkuiguo Fructus Malvae Cluster mallow fruit

11 Gegen Radix Puerariae Lobatae Lobed kudzuvine root
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China national knowledge infrastructure (CNKI) reviews (The search

term were the Chinese name of each Chinese medicine, and the

search time was from January 1, 2018 to December 31, 2022). For the

components available in the TCMSP database, filter conditions of

oral bioavailability (OB) ≥ 30% and drug-likeness (DL) ≥ 0.18 were

applied. For the components not included in the TCMSP database,

the SwissADME (http://www.swissadme.ch/) (20) database was used

for screening, with filter conditions of ‘high’ oral bioavailability and at

least three ‘yes’ items in drug-likeness. Relevant targets were matched

for components available in the TCMSP or the SwissTargetPrediction

(http://www.swisstargetprediction.ch/) (21) was used to predict

targets for the components not available in the TCMSP. The

Universal Protein (Uniprot, http://uniprot.org/) (22) database was

used for target matching.
2.2 Diabetic nephropathy-related targets

This study searched the Genecards (https://www.genecards.org/)

(23), Online Mendelian Inheritance in Man (OMIM, https://

omim.org/#) (24), and the Therapeutic Target Database (TTD,

http://db.idrblab.net/ttd/) (25) for “diabetic nephropathy” to

retrieve DN-related targets. The obtained targets were merged, and

duplicates were removed.
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2.3 Construction of “drug-component-
target” network

The intersection of the relevant targets for each active component

in TMJT and the DN-related targets was obtained using Excel

software. Then, Cytoscape 3.8.0 was used to construct a network,

taking disease, drugs, components, and relevant targets as nodes, and

their mutual relationship as edges. A topological analysis was

performed to identify the core components in the network.

2.4 Construction of protein-protein
interaction network

The PPI network of the intersection targets was obtained from

the String database (https://string-db.org) (26) by setting the species

to Homo sapiens and the minimum required interaction score to

0.40. The core PPI targets were obtained using the MCODE plugin,

which clusters the PPI network.

2.5 Collection and procession of
GEO samples

We used “diabetic nephropathy” as a keyword and restricted the

data type (Expression profiling by array) and organism (Homo
FIGURE 1

Flow diagram of this study.
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sapiens) to retrieve samples from the GEO (https://

www.ncbi.nlm.nih.gov/geo/) database. Gene expression and

clinical data were obtained, and Perl code was used for gene

symbol annotation and data correction to obtain the expression

levels of the core genes of TMJT capsule for DN treatment obtained

from network pharmacology in each sample of the normal and DN

groups, respectively.
2.6 Expression difference of core genes,
chromosome position, and expression
correlation of significantly differently
expressed core genes

The expression levels of the core genes were extracted from both

the normal and DN groups, and differential expression analysis was

performed using R packages such as “limma”, “pheatmap”, and

“ggpubr”. The results were displayed using box plots and a heat

map, with genes having a p-value < 0.05 defined as significantly

differentially expressed core genes (SDECGs). The perl code was

utilized to locate the core genes on the chromosomes, and R

package “Rcircos” was used to represent them as circle plots.

Furthermore, correlation coefficients for each SDECG were

calculated using the “cor” command and visualized.
2.7 Infiltration, difference, and correlation
of immune cells in DN samples

The relative content of immune cells, totaling 1, was obtained

through 1,000 simulations using the CIBERSORT command in R.

The content of immune cells in each sample was then visualized

using a bar plot. Single-sample gene set enrichment analysis

(ssGSEA) was performed using the R packages “GSVA” and

“GSABase” to compare the differences in immune cell content

between the normal and DN groups. The ssGSEA results were

presented as box plots. The SDECGs were intersected with the

ssGSEA scores, and correlation tests were performed to obtain

correlation coefficients, which were then visualized.
2.8 Selection of machine learning
model and nomogram for TMJT
in treatment of DN

The expression data of SDECGs were utilized to construct four

prediction models, namely random forest (RF), support vector

machine (SVM), generalized linear (GL) and extreme gradient

boosting (XGB) models. We defined the prediction functions and

calculated the results of each of the four models. To screen feature

genes in SDECGs, we created reverse cumulative distribution plot of

residual, residual box plot, and receiver operating characteristic

(ROC) curves for comprehensive consideration. After selecting the

best model, we constructed a nomogram using the feature genes and

their expression levels in the normal and DN groups. Finally,
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decision curve and calibration curve were constructed to assess

the accuracy of the nomogram.
2.9 Molecular docking and GEO
model validation

The 3D structures of the previously obtained core components

of TMJT capsule and feature genes were obtained from Pubchem

(https://pubchem.ncbi.nlm.nih.gov) (27) and Protein Data Bank

(PDB) (http://www.rcsb.org/) (28) databases. Autodock Vina was

used for molecular docking to preliminarily validate the interaction

of core network pharmacological components with feature genes,

and the best four combinations of docking were selected and

visualized using Pymol. Another dataset containing normal and

DN groups was acquired from the GEO database, and a machine

learning model was constructed using the same method as before in

the R language. ROC was plotted to validate the constructed

machine learning model in 2.8.
2.10 MR analysis between feature genes
and DN

We conducted two-sample MR analysis to explore the causal

relationships between feature genes and the risk of DN, defining

SNPs as IVs. We obtained SNPs of feature genes as exposure

factors and SNPs of DN as outcome factors from the integrated

epidemiology unit (IEU) database (https://gwas.mrcieu.ac.uk/). MR

analysis was performed using the ‘TwoSampleMR’ package, and the

relationship between feature gene expression levels and DN risk was

assessed using the inverse variance weighted (IVW) method. We

also employed Cochran’s Q statistic to test for heterogeneity, where

p < 0.05 indicated heterogeneity in IVW results (29). Potential

horizontal pleiotropy was evaluated using MR-Egger regression and

MR-PRESSO analysis, with p < 0.05 indicating horizontal

pleiotropy in IVW results (30, 31).
2.11 Clusters of SDECGs and analysis
between SDECG clusters

We used the R package “ConsensusClusterPlus” to cluster DN

samples according to the expression of SDRCG with a k-means

clustering method, Euclidean distance type, and maximum of nine

clusters. The resulting clusters were analyzed by comparing their

expression levels using heat maps and box plots. Principal

components analysis was also performed to assess the

differentiation among clusters. An ssGSEA analysis of the SDECG

clusters was then conducted to obtain a bar plot of the individual

immune cell content of each sample in the different clusters and to

compare the differences among the content of the immune cells in

the different clusters. Gene ontology (GO) and Kyoto encyclopedia

of genes and genomes (KEGG) enrichment analysis were performed

using gmt files downloaded from the GSEA platform (http://
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www.gsea-msigdb.org/) and Gene set variation analysis (GSVA)

was conducted using the R language to analyze the expression of the

enrichment items among clusters. Finally, difference analysis was

performed on gene expression of SDECG clusters with filtering

conditions of |logFC| > 1 and adj. P-Value < 0.05, and the

differentially expressed genes (DEGs) were obtained by taking the

intersection of SDECG clusters using a Venn diagram.
2.12 Enrichment analysis in DEGs between
SDECG clusters

The DEGs between the SDECG clusters were subjected to

biological process (BP), molecular function (MF), and cellular

component (CC) gene ontology (GO) enrichment analysis, as well

as KEGG pathway enrichment analysis. These analyses were

conducted using R packages such as “clusterProfiler” and

“enrichplot”, with a screening condition of p-value < 0.05. The

results were visualized as circles plots and bar plots.
2.13 Clusters of DEGs and analysis among
DEG clusters

We conducted another cluster analysis according to the

expression of DEGs using the same clustering method as in 2.11,

and the DEG cluster with the highest accuracy was selected. The

expression levels of DEGs in different clusters, the differences in

SDECG expression, and immune cell content among different

clusters were compared based on the DEG clustering results. These

results were visualized using a heat map and box plots, respectively.
2.14 SDECG scores and differential analysis,
and construction of alluvial plot

We utilized the PCA method to calculate the SDECG scores for

each sample by summing up PC1 and PC2 based on the expression

levels of SDECGs (32). Differential analysis was performed on the

SDECG scores of both the SDECG clusters and DEG clusters using

R packages such as “limma” and “ggpubr”. Box plots were created to

illustrate the SDECG scores of samples clustered in SDECGs and

DEGs. Additionally, an alluvial diagram was drawn using the R

package “ggalluvial” to visualize the relationships and overall

processes among the SDECG clusters, DEG clusters, and samples

with high and low SDECG scores.
2.15 Statistical analysis

In network pharmacology, we utilized Cytoscape V3.8.0 and its

plugins for network analysis. The topological analysis of the “drug-

component-target” network was mainly based on the degree of

nodes. For PPI network analysis, we applied the MCODE plugin of

Cytoscape with degree cut-off = 2, node score cut-off = 0.2, K-core =

2, and max. depth = 100 to identify clusters in the PPI network.
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Core targets were also screened out based on their node degree.

Molecular docking was performed with an energy range of 5,

exhaustiveness of 400, and 20 models to obtain binding energy

combinations. For the extraction of GEO files and data annotation,

we utilized Strawberry Perl 5.32.1.1, while R V4.1.2 was used for all

statistical analyses. In this study, t-tests were used for the

comparison of two independent samples, while the Wilcoxon

paired rank sum test was utilized for two paired samples. For

data with three or more groups, we used one-way analysis of

variance (ANOVA) and Kruskal-Wallis rank sum test, while the

Spearman rank correlation test was used for correlation analysis.

Statistical significance was set at P-value < 0.05 or false discovery

rate (FDR) (Benjamini-Hochberg method) corrected for P-value <

0.05. In MR analysis, we established the following criteria: 1) SNPs

selected should exhibit a strong correlation with the exposure factor,

with corresponding p-values < 5 × 10^-8; 2) During the process of

linkage disequilibrium clumping, we set the r² threshold at 0.001; 3)

For the clumping analysis, we defined a window size of 10,000

kilobase pairs (33); 4) The F-statistic for the SNPs associated with

the exposure factor should be > 10 (34); 5) We applied Bonferroni

correction to adjust the threshold for significance level (35).
3 Results

3.1 Collection of components and targets
in TMJT

We searched the TCMSP database and CNKI reviews (36–39), and

combined the results with SwissADME and SwissTargetPrediction to

collect information on active components and related targets of TMJT.

After removing duplicates and excluding irrelevant data, we obtained

184 unique active components, identified ten repeated components,

and 515 associated targets. Detailed information on these components

is available in Supplementary Table S1.
3.2 Collection of DN related targets

After obtaining 1,278, 68, and 22 targets from Genecards,

OMIM, and TTD respectively, we obtained 1,063 DN-related

targets after processing. We then used Excel to perform an

intersection between the drug and disease targets, resulting in 229

targets directly related to both drugs and diseases.
3.3 Analysis of “drug-component-target”
network

The “drug-component-target” network was constructed using

Cytoscape V3.8.0 and its plugins, with 1,073 nodes and 4,029 edges, as

illustrated in Figure 2. Seventeen core active components, including

Denudatin B, hancinol, hirudinoidine A, Gypenoside XXXV_qt,

isoflavanone, quercetin, Moupinamide, Gypentonoside A_qt, (3R)-3-

(2-hydroxy-3,4-dimethoxyphenyl)chroman-7-ol, Myristic acid, miltirone

II, bacunone,2-Hydroxyisoxypropyl-3-hydroxy-7-isopentene-2,3-
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dihydrobenzofuran-5-carboxylic, palmitic acid, Methyl 4-

methyltetradecanoate, Gypenoside XXXVI_qt, and scropolioside A_qt,

were identified based on their node degree ≥ 60. These core components

are considered to be the main material basis for TMJT to treat DN.

3.4 Analysis of PPI network

We constructed a PPI network using the intersection targets

obtained from STRING and Cytoscape, with 229 nodes and 4,154

edges, and an average node degree of 37.4. The PPI network showed

significant clustering with a p-value less than 1.0e-16. We used the

MCODE plugin to cluster the PPI network and obtained three clustering

networks, as depicted in Figure 3. To identify the core targets, we selected

targets with a node degree greater than or equal to 1.25 times the median

in each clustering network. We identified 48 core targets, which are

considered to be the main targets of TMJT for treating DN, including

AKT1, TNF, EGFR, STAT3, SRC, IL6, NOS3, PPARA, and AGTR1.

Further information on the core targets is provided in Table 2.
3.5 Acquisition of samples in GEO datasets

By searching the GEO database for “diabetic nephropathy” and

limiting the data type and species, we selected two datasets: dataset

GSE142153 containing ten normal samples and 30 DN samples,

and dataset GSE30122 containing 50 normal samples and 19 DN

samples. The former was used for analysis and model construction,

while the latter was used to validate the analysis results.
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3.6 Analysis of core gene expression
difference, chromosome position, and
expression correlation of SDECGs

We obtained 48 TMJT core genes through network

pharmacology analysis, as shown in Table 2. Differential analysis

between the DN group and the normal group of dataset GSE142153

revealed that 13 genes, including SRC, EGF, GAPDH, IL6, CASP3,

CTNNB1, VEGFA, MMP9, CD40LG, EP300, PIK3R1, IL1B, and

PTGS2, were SDECGs which are the core genes that have been

screened out after validation by human samples, thus they have more

accuracy and clinical value. Among these genes, all were highly

expressed in the DN group, except for CD40LG, which was highly

expressed in the normal group, as demonstrated in Figures 4A, B. The

specific chromosomal locations of the TMJT core genes can be found

in Figure 4C. Correlation analysis between every two SDECGs in DN

samples indicated a strong correlation between the SDECGs, with the

correlation being primarily positive, as displayed in Figures 4D, E.

3.7 Analysis of normal and DN samples
in immune cell infiltration, difference,
and correlation

To explore the mechanisms between the DN group and the

normal group from different levels, we conducted an immune cell

infiltration analysis to determine the type and content of immune cells

expressed in each sample, and the results are presented in Figure 5A.

We also performed ssGSEA (Figure 5B) to identify statistically
FIGURE 2

Drug-component-target network. There were 12 kinds of herbs, 184 compounds, and 1,106 related targets on the network. The purple octagon
represents DN. The blue diamond represents TMJT. Eleven circles represent eleven kinds of Chinese medicines, each color represents one medicine.
Triangles represent the components of different Chinese medicines, and the components have the same color as their source of Chinese medicines.
The red arrow represents the target of the intersection of drug and disease. The transparency of the node reflects the degree value of the node.
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significant immune cells in the normal and DN groups, which

included T cells gamma delta (with high expression in the normal

group), NK cells activated (with high expression in the DN group),

and activated Dendritic cells (with high expression in the DN group).

Immune cell correlation analysis (Figure 5C) revealed that some

correlations were primarily positive between SDECGs and immune

cells. Among the immune cells with significant correlations (P < 0.05)

with SDECGs, B cells memory, Monocytes, and Dendritic cells resting

were mainly negatively correlated with related SDECGs, while

activated Dendritic cells, Eosinophils, Macrophages M2, Mast cells

activated, Neutrophils, activated NK cells, activated T cells CD4

memory, resting T cells CD4 memory, and T cells regulatory were

mainly positively correlated with related SDECGs.

3.8 Selection of machine learning
models and construction of
nomogram of DN probability

We utilized the data of SDECGs to construct four machine

learning prediction models: SVM, RF, XGB, and GLM. ROC curves,

residual box plots, and reverse cumulative distribution plots were

analyzed, revealing that the SVM method had the highest accuracy,

with the largest area under the ROC (AUC) and the lowest residuals
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and reverse cumulative values (Figures 6A–C). Therefore, we

selected SVM as the best model for further construction. The

SVM model was then used to obtain the importance scores of

feature genes, as illustrated in Figure 6D, which revealed nine

feature genes in order of importance scores: CD40LG, EP300,

IL1B, GAPDH, EGF, PTGS2, MMP2, CASP3, and VEGFA.

CD40LG had the highest importance score among them. We used

the top five genes (CD40LG, EP300, IL1B, GAPDH, EGF) to

construct a nomogram, where we obtained individual score scales

for these genes (Figure 6E). Treatment sensitivity was determined

by calculating the sum of the expression scores of these feature

genes to predict the risk rate of TMJT treatment of DN feature genes

in the development of DN. The accuracy of this prediction was high,

as evidenced by the close proximity of the solid and dashed lines in

the calibration curve (Figure 6F), the distance between the red and

gray lines in the decision curve (Figure 6G), and the AUC of 0.893

(>0.720 [95% CI]) in the ROC curve (Figure 6H).

3.9 Molecular docking validation and GEO
datasets validation

To verify whether the core components of TMJT and the proteins

encoded by the feature genes of TMJT for treating DN with the most
FIGURE 3

PPI network of intersection targets. The nodes in the network represent the intersection targets of TMJT and DN. The orange, pink and yellow nodes
represent cluster 1, cluster 2 and cluster 3 respectively. The size of each node reflects the degree value.
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clinical value that we obtained can bind and exert effects, we performed

molecular docking on them. We found that the majority of docking

combinations had binding energy lower than -5.0 kcal/mol through

molecular docking analysis of the feature genes and core components of

TMJT. This suggests that stable structures could form between most of

the feature genes and core components. See Figure 7A; Supplementary

Table S2 for details, including binding energy, and the best docking

combinations are shown in Figure 7B. Notably, scropolioside A_qt

showed a strong binding affinity with residues GLN-204, ALA-238,

SER-284, ASN-287, SER-288, and PHE-318 of GAPDH through

hydrogen bonding, with a docking energy of -12.3 kcal/mol.

Additionally, Obacunone interacted with EP300 through hydrogen

bonding, involving ASP-1399, SER-1400, HIS-1402, ARG-1410, THR-

1411, CYS-1438, TYR-1446, GLN-1455, ARG-1462, and TRP-1466,

with a docking energy of -11.5 kcal/mol. Moreover, scropolioside A_qt

was found to bind to residues ARG-181, SER-185, GLN-186, HIS-212,

SER-213, SER-214, ALA-215, and GLN-221 of CD40LG through

hydrogen bonding, with a docking energy of -9.8 kcal/mol.

We used the SVM method to construct a model for the

expression data sample genes in the validation dataset

(GSE30122) of DN, and brought the top five feature genes with

feature importance scores into the model for validation. We plotted

the ROC of the model (Figure 7C) and found that the AUC value

was 0.815, which is greater than 0.481 [95% CI], indicating that the

model with the GEO dataset has a high accuracy upon validation.

3.10 Results of MR analysis between
feature genes and DN

We chose MR analysis to analyze the relationship between the

feature genes and DN to verify whether their relationship was causal
TABLE 2 Information of core targets.

Gene
symbol

Gene name Cluster Degree

FN1 Fibronectin 1 46

TP53 Cellular tumor antigen p53 1 66

EGF Pro-epidermal growth factor 1 46

GAPDH Glyceraldehyde-3-phosphate
dehydrogenase

1 46

HSP90AA1 Heat shock protein HSP 90-alpha 1 61

ESR1 Estrogen receptor 1 43

TNF Tumor necrosis factor 1 63

VEGFA Vascular endothelial growth factor A 1 55

CTNNB1 Catenin beta-1 1 53

SRC Proto-oncogene tyrosine-protein
kinase Src

1 69

MMP9 Matrix metalloproteinase-9 1 37

HRAS GTPase HRas 1 45

NFKBIA NF-kappa-B inhibitor alpha 1 40

CASP3 Caspase-3 1 45

MAPK1 Mitogen-activated protein kinase 1 1 53

STAT3 Signal transducer and activator of
transcription 3

1 65

MAPK14 Mitogen-activated protein kinase 14 1 39

IL6 Interleukin-6 1 54

PIK3CA Phosphatidylinositol 4,5-
bisphosphate 3-kinase catalytic
subunit alpha isoform

1 40

HIF1A Hypoxia-inducible factor 1-alpha 1 38

MAPK3 Mitogen-activated protein kinase 1 66

EGFR Epidermal growth factor receptor 1 59

CREBBP CREB-binding protein 1 38

MAPK8 Mitogen-activated protein kinase 8 1 39

CAV1 Caveolin-1 1 41

JUN Transcription factor Jun 1 63

IL1B Interleukin-1 beta 1 47

EP300 Histone acetyltransferase p300 1 44

IL2 Interleukin-2 1 37

STAT1 Signal transducer and activator of
transcription 1-alpha/beta

1 35

PIK3R1 Phosphatidylinositol 3-kinase
regulatory subunit alpha

1 42

AKT1 RAC-alpha serine/threonine-protein
kinase

1 69

NOS3 Nitric oxide synthase, endothelial 2 30

REN Renin 2 15

(Continued)
TABLE 2 Continued

Gene
symbol

Gene name Cluster Degree

PPARA Peroxisome proliferator-activated
receptor alpha

2 24

APOB Apolipoprotein B-100 2 17

MAPK10 Mitogen-activated protein kinase 10 2 16

PLG Plasminogen 2 18

ITGB2 Integrin beta-2 2 17

BCL2 Apoptosis regulator Bcl-2 2 16

MAP3K5 Mitogen-activated protein kinase
kinase kinase 5

2 14

PRKACA cAMP-dependent protein kinase
catalytic subunit alpha

2 27

PTK2B Protein-tyrosine kinase 2-beta 2 18

CD40LG CD40 ligand 2 17

F2 Prothrombin 2 24

LGALS3 Galectin-3 3 11

AGTR1 Type-1 angiotensin II receptor 3 12

DPP4 Dipeptidyl peptidase 4 3 12
fro
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or correlational. Information on SNPs of the five feature genes

(CD40LG, EP300, IL1B, GAPDH, EGF) in section 3.8 can be found

in Supplementary Table S3, and none of the SNPs are weak IVs. The

causal effects of each feature gene on DN can be seen in Figure 8A.

After Bonferroni correction (p=0.05/5), IVW analysis reveals that

IL1B levels are associated with an increased risk of DN (OR, 1.23;

95%CI, 1.06-1.43; P=0.007), while there is no significant causal

relationship between the other four feature genes and DN

(Figure 8A; Supplementary Table S4). For the IVW analysis of

IL1B, its causal impact on DN can be seen in Figures 8B, E. The

funnel plot of causal effects is approximately symmetrical

(Figure 8C). Leave-one-out analysis demonstrates that

systematically conducting MR analysis on the remaining SNPs
Frontiers in Endocrinology 09
after removing each SNP produces consistent results (Figure 8D),

indicating the robustness of this finding.

The Cochran’s Q test did not reveal any heterogeneity in the

IL1B results (p > 0.05). MR-Egger regression and MR-PRESSO

analysis indicated the absence of horizontal pleiotropy in the IL1B

results (p > 0.05; Supplementary Table S5).
3.11 Clusters of SDECGs of DN samples
and analysis between SDECG clusters

We clustered the samples based on the expression of SDECGs

and found that the highest accuracy was achieved by dividing
B C

D E

A

FIGURE 4

(A) Box plot of expression difference analysis of core genes between normal samples and DN samples; (B) Circle plot of chromosome location of
core genes; (C) Heat map of SDECG expression in normal and DN samples; (D) SDECG correlation network; (E) Correlation analysis between the
two SDECGs. * p<0.05; ** p<0.01.
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them into two clusters, as shown in Figure 9A. This resulted in the

DN samples being divided into C1 and C2 groups, as illustrated in

Figure 9B. By analyzing the inter-cluster differences, we can

supplement and validate our previous results. We then analyzed

the expression of SDECGs in the samples from both clusters, as

depicted in Figures 9C, D. It was observed that all 13 SDECGs

exhibited high expression in C1 and low expression in C2. Several
Frontiers in Endocrinology 10
genes, including VEGFA, IL1B, CASP3, EP300, PIK3R1, MMP9,

and PTGS2, showed significant differences in expression between

the two clusters. PCA (Figure 9E) revealed that SDECGs can

distinguish between C1 and C2. Furthermore, ssGSEA analysis

(Figure 9F) identified immune cells with significantly different

expression between C1 and C2. B cells memory and Monocytes

had down-regulated expression in C1, whereas T cells CD8, T cell
B

C

A

FIGURE 5

(A) Bar plot of relative percentage of each immune cells in samples; (B) Box plot of immune cell fraction between normal samples and DN samples;
(C) Heat map of correlation analysis between SDECGs and immune cells. * p<0.05; ** p<0.01; *** p<0.001.
B C D
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G H

A

FIGURE 6

(A) ROC of the four machine learning models; (B) Box plots of residual of the four machine learning models; (C) Reverse cumulative distribution of
residual of the four machine learning models; (D) Bar plot of feature importance of the four machine learning models; (E) Nomogram of the feature
genes; (F) Calibration curve of feature genes nomogram of TMJT in treating DN; (G) Decision curve of feature genes nomogram of TMJT in treating
DN; (H) ROC of the test GEO dataset.
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regulatory, Dendritic cells activated, and Neutrophils had up-

regulated expression in the C1 group. The distribution of different

immune cells in each sample of C1 and C2 is shown in Figure 9G.

In the GSVA analysis, as shown in Figures 9H, I, it can be

observed that compared to C1, C2 exhibits upregulation of GO BP

terms related to negative regulation of muscle relaxation,

intracellular transport of virus, CD4 positive alpha-beta T cell

proliferation, among others. On the other hand, GO BP terms

related to terminal button organization, regulation of germ cell

proliferation, extracellular matrix disassembly, and others are

mainly down-regulated in C2. GO MF terms such as protein

sequestering activity, cAMP response element binding protein

binding, and transforming growth factor beta receptor binding
Frontiers in Endocrinology 11
are mainly up-regulated in C2, while hydrolase activity acting on

carbon-nitrogen but not peptide bonds in linear amides, and others

are mainly down-regulated. Similarly, GO CC terms such as RNA

polymerase III transcription regular complex and cytoplasmic side

of endosome membrane are mainly up-regulated in C2, whereas the

periciliary membrane compartment is mainly down-regulated. In

terms of KEGG terms, glycosaminoglycan biosynthesis keratan

sulfate, circadian rhythm mammal, and aldosterone-regulated

sodium reabsorption, among others are mainly up-regulated in

C2, while non-homologous end joining, fatty acid metabolism,

asthma, and others are mainly down-regulated. Finally, genes

with significant differences in expression between C1 and C2

samples were screened, resulting in a total of 428 DEGs (Figure 9J).
B

C

A

FIGURE 7

(A) Heat map of molecular docking results between core components and feature genes; (B) The docking models of the best combinations
(scropolioside A_qt and GAPDH, obacunone and EP300, gypenoside XXXVI_qt, and EP300); (C) ROC for model validation of GEO dataset construction.
B C

D E

A

FIGURE 8

(A) The forest plot of the causal relationships between the five feature genes and DN under the IVW method; (B) The forest plot of the causal
effects of each SNP in IL1B on the risk of DN; (C) Funnel plot of IL1B on DN; (D) Leave-one-out plot of IL1B on DN risk when leaving one SNP
out; (E) Scatter plot of the causal effect of IL1B on the risk of DN.
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3.12 Enrichment analysis of DEGs between
SDECG clusters

We performed enrichment analysis to obtain the biological

functions and pathways of the 428 DEGs, thus obtaining the

mechanisms of TMJT acting on DN from different dimensions to

supplement our results. Among the results, GO analysis revealed that

the significant biological processes (BPs) were mainly related to

immune response, including positive regulation of cytokine

production, lymphocyte differentiation, T cell differentiation,

mononuclear cell differentiation, response to molecule of bacterial
Frontiers in Endocrinology 12
origin, and response to lipopolysaccharide, as shown in Figure 10A.

In terms of cellular components, the DEGs were mainly involved in

transcription regulation complexes, RNA polymerase II transcription

regulator complexes, tertiary granules, specific granule membranes,

and specific granules. The molecular functions of the DEGs were

mainly related to cytokine receptor binding, G protein-coupled

chemoattractant receptor activity, chemokine receptor activity,

DNA-binding transcription repressor activity, RNA polymerase II-

specific, DNA-binding transcription activator activity, and RNA

polymerase II-specific. KEGG pathway enrichment analysis showed

that the DEGs were mainly involved in NOD-like receptor signaling
B C
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FIGURE 9

(A) Consensus cumulative distribution plot of SDECG clustering for samples; (B) Consensus matrix heat map of SDECG clustering for samples;
(C) Heat map of SDECG expression between SDECG clusters; (D) Box plot of expression difference analysis of SDECG clusters; (E) Scatter plot of
PCA between SDECG clusters; (F) Box plot of immune cell fraction between SDECG clusters; (G) Bar plot of relative percentage of each immune
cells in samples of SDECG clusters; (H) Bar plot of GO terms of GSVA between SDECG clusters; (I) Bar plot of KEGG terms of GSVA between
SDECG clusters; (J) Venn plot of DEGs. * p<0.05; ** p<0.01; *** p<0.001.
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pathway, influenza A, viral protein interaction with cytokine and

cytokine receptor, legionellosis, FoxO signaling pathway, and TNF

signaling pathway, as shown in Figure 10B.
3.13 Clusters of DEGs and analysis
between DEG clusters

After clustering the 428 DEGs from the SDECG clusters and

selecting the best-clustered results, two clusters, namely CI and CII,

were obtained (Figures 11A, B). Expression analysis of these two

clusters’ samples showed that 285 DEGs, such as CHRNA10,

C5AR1, GPRIN3, IGSF22, and PDE2A, were mainly highly

expressed in CI and lowly expressed in CII, while 143 differential

genes, such as CXCL10, OAS1, OAS2, IFIH1, and SAMD9L, were

highly expressed in CI and lowly expressed in CII (Figure 11C).

Differential analysis of SDECGs for samples clustered by DEGs,

as shown in Figure 11D, shows that these genes are up-regulated for

CI expression and down-regulated for CII expression, among which

the genes with significant differences are VEGFA, IL6, CTNNB1,

IL1B, CASP3, PIK3R1, MMP9, PTGS2. ssGSEA of DEGs clustering

(using the same gene set file as above) (Figure 11E) yielded the

following immune cells with statistically significant differences:

activated B cell, CD56 bright natural killer cell, neutrophil,

plasmacytoid dendritic cell, regulatory T cell, and T follicular

helper cell.
3.14 Scores of SDECGs, differential analysis
of SDECG scores among clusters, and
construction of alluvial plot

We used PCA to analyze the SDECGs of TMJT for treating DN

and built a scoring model. We compared the score differences

between different clusters to determine whether the SDECGs had

significant differences between them, and to identify the

corresponding relationship of the clusters, ensuring the

robustness of our results. The difference analysis of the SDECG

clusters scored by the PCA method revealed a statistically

significant difference between the two clusters (Figures 12A, B).
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Cluster 1 showed high scores, while Cluster 2 showed low scores.

Similarly, a statistical difference was observed between the two

clusters of DEGs scored by two clusters, with CI high and CII low.

The alluvial plot in Figure 12C indicates that C1 of SDECG

clustering primarily corresponds to CI of DEG clustering, while

C2 of the former mainly corresponds to CII of the latter.

Furthermore, high and low SDECG scores correspond mainly to

CI and CII of DEG clustering, respectively.
4 Discussion

4.1 TCM understanding of DN

DN belongs to the category of “Shuizhong” (edema),

“Shenxiao” (renal diabetes), and “Guange” (obstruction and

rejection) in TCM. According to TCM theory, this disease is

characterized by weak viscera, moodiness, and excessive

consumption of fatty and sweet foods. The root mechanism of

DN is yin deficiency, and the tip mechanisms are dryness-heat

and static blood. Therefore, TCM treatments that can tonify qi,

nourish yin, and tonify kidney and spleen while promoting blood

circulation and removing blood stasis are often used to treat DN.

The medicinal materials used in TMJT are able to address these

effects comprehensively.
4.2 The material basis of TMJT for
treating DN

Through analysis of the “drug-component-target” network, we

have identified the main material basis for the therapeutic effects of

TMJT on DN. Denudatin B, a natural platelet antagonist, relaxes

smooth muscle by inhibiting calcium ions (Ca2+) inward flow and

increases the action of cyclic adenosine monophosphate (cAMP) to

relax blood vessels. Platelets play a role in inflammation,

coagulation, and fibrosis in the pathogenesis of DN, thus platelet

antagonists have therapeutic effects on DN (40, 41). Hirudinoidine

A, an ingredient extracted from leeches, has shown efficacy in the

treatment of diabetic nephropathy by modulating inflammatory
BA

FIGURE 10

(A) GO enrichment analysis of DEGs; (B) KEGG pathway enrichment analysis of DEGs.
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factors through lyophilized leech powder containing this ingredient

(36). Gypenoside XXXV_qt and Gypenoside XXXVI_qt are the

parent nucleus of Gypenoside-like ingredients, and their derivative

Gypenoside XLIX has shown potential therapeutic effects on kidney

injury through an insulin-like growth factor-binding protein 7

(IGFBP7)/insulin-like growth factor 1 receptor (IGF1R)-

dependent mechanism (42). Isoflavanone, a type of isoflavonoid,

has been shown to regulate blood glucose levels, reduce insulin

resistance, and regulate inflammation and oxidative stress, playing

an important role as a supplementary drug in treating DM and its

complications (43). Quercetin, a flavonoid widely found in plants,

has been shown to reverse the process of DN by reducing oxidative

stress, fighting inflammation, and eliminating free radicals (44).

Moupinamide has been reported to have anti-inflammatory effects,
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while inflammation plays a central role in the development and

progression of DN (45, 46). Gypentonoside A_qt, the parent

nucleus of Gypentonoside A, has shown significant activation of

adenosine 5’-monophosphate-activated protein kinase (AMPK)

phosphorylation, a key mechanism for regulating glucose, lipid,

and energy metabolism in animal experiments (47). Myristic acid,

as confirmed by Takato et al. (48), may reduce insulin-responsive

glucose levels and body weight to improve hyperglycemia, making it

a potential candidate for the prevention and treatment of type 2 DM

and its related diseases. Bacunone has been found to ameliorate DN

by inhibiting recombinant glycogen synthase kinase 3 beta (GSK-

3b) activity to attenuate high glucose-induced oxidative damage in

renal tubular duct epithelial cells of rat (NRK-52E) cells (49).

Scropolioside A has been shown to modulate several
B
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FIGURE 11

(A) Consensus matrix heat map of DEG clustering for samples; (B) Delta area plot of DEG clusters; (C) Heat map of DEG expression between DEG
clusters; (D) Box plot of expression difference analysis of DEG clusters; (E) Box plot of immune cell infiltration between DEG clusters. * p<0.05;
** p<0.01; *** p<0.001.
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inflammatory factors and exhibit anti-inflammatory activity in a

study by Bas et al. (50), but further investigation is needed to

determine its relationship with DN. Overall, most of the core

components obtained from the network pharmacological analysis

have direct or indirect therapeutic effects on DN.
4.3 Human sample validated TMJT targets
for DN treatment

We first identified the core targets using the PPI network and

then conducted a differential expression analysis of these targets in

the GEO dataset to identify SDECGs. Our analysis identified several

genes that have been previously implicated in the pathogenesis of

DN. For instance, SRC encodes a non-receptor protein tyrosine

kinase that has been shown to promote the development of DN by

suppressing mitophagy (51). Similarly, EGF, a member of the

epidermal growth factor superfamily, has been closely associated

with DN and may serve as a biomarker of DN progression (52, 53).

GAPDH, which encodes a phosphate dehydrogenase, has been

linked to the pathogenesis of diabetic complications, including
Frontiers in Endocrinology 15
DN, by causing acute endothelial dysfunction (54). Cytokines

such as IL6 and IL1B have also been implicated in the

pathogenesis of DN through increased vascular inflammation and

fibrosis (55, 56). Simultaneously, we have identified a causal

relationship between elevated IL1B levels and an increased risk of

DN through MR analysis, providing a reference for future research

into the mechanisms of DN onset.

Other SDECGs identified in our analysis include VEGFA, which

is involved in abnormal angiogenesis in DN and has been shown to

be a potential therapeutic target for DN (51), CASP3, which is

involved in pyoptosis and has been suggested as a possible

mechanism in the pathogenesis of DN (57, 58), CTNNB1, which

regulates apoptosis in DN and is a potential therapeutic target (59),

MMP9, which has been shown to play an important role in DN (60),

EP300, which promotes the fibrotic process in renal tubular

epithelial cells and contributes to the development and

progression of DN (61), PIK3R1, which protects podocytes in DN

by restoring autophagy and inhibiting apoptosis (62, 63), and

CD40LG, which is involved in mediating the inflammatory

response and remodeling associated with DN tissue damage and

glomerulosclerosis (64).
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FIGURE 12

(A) Box plot of different expression analysis of SDECG score between DEG clusters; (B) Box plot of different expression analysis of SDECG score
between SDECG clusters; (C) Alluvial plot of the correspondence of the different clustered samples.
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Our differential expression analysis revealed that all the

SDECGs except CD40LG were up-regulated in the DN group,

which is consistent with previous studies. Additionally, we found

that the SDECGs in DN mainly showed synergistic effects from the

correlation analysis. It is noteworthy that a study (64) reports that

the CD40LG/CD40 system is elevated in DM and its complications,

including DN, because of its main manifestation as inflammation

and remodeling. For this discrepancy, we think that first of all, the

samples we used were peripheral blood samples from healthy and

different stages of DN patients, which differed from the kidney

tissue samples reported in the study; secondly, our sample size was

relatively small, so the research results might be specific to certain

sample size; moreover, although there is no report so far that

CD40LG has bidirectional regulation or indirect effect in DN, our

results suggested that CD40LG might have this effect, as shown by

the correlation analysis of SDECGs that it was mainly positively

correlated with other positively regulated SDECGs and negatively

correlated with a few SDECGs. Therefore, the role of CD40LG in

DN still needs further exploration and research.
4.4 Mechanism analysis of immune cells
and pathways

The ssGSEA revealed statistically significant differences in the

immune cell expression between the normal group and DN group,

with comparable overall expression levels. Furthermore, our

correlation analysis between the expression of SDECGs and

immune cells revealed a statistically significant positive correlation

between some of the SDECGs and immune cells. Among these

immune cells that have statistical differences in expression: gdT
cells have less research on their role in DN, and an experiment has

shown that some T cell subsets are up-regulated in DNmice (65); NK

cells are also up-regulated in the peripheral blood of DN patients in a

retrospective clinical study, thus becoming a risk factor for DN (66);

Dendritic cells also show up-regulation in both experimental and

human studies of DN, and their mechanismmay involve aspects such

as high glucose, RAAS, cytokine secretion and proteinuria status (67).

In addition, it should be pointed out that some studies have shown

that M2macrophage polarization has a positive correlation with renal

fibrosis, which is a key pathological feature of DN progression (68).

Our study also showed that M2 macrophages were positively

correlated with two SDECGs with statistical significance, but there

was no statistical difference in the differential analysis between DN

and normal samples. The reason for this difference we think is firstly

that the expression relationship between M2 macrophages and genes

is different from the expression difference between M2 macrophages

in normal and DN groups, which involves complex regulatory

networks, thus resulting in inconsistency of results; and M2

macrophages only have regulatory relationship with 2/13 SDECGs,

which may account for a small proportion in the level of SDECGs and

DN relationship, thus being diluted in the dimension of disease gene

expression and showing no statistical difference.

Additionally, we constructed a nomogram based on feature

genes identified using SVM to quantitatively assess the onset of DN
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and the sensitivity and accuracy of TMJT in treating DN. We also

validated the target screening and model construction by using

molecular docking and the GEO dataset. By cluster analysis, our

results were expanded, and the results indicated that the

mechanisms of TMJT in treating DN were related to immune-

related factors such as inflammation, oxidative stress, cytokines,

and infection. These results are consistent with the current

understanding that the pathogenesis of DN is mainly due to

hyperglycemia leading to the expression of inflammatory

mediators by damaged glomerular and tubular cells, which induce

extracellular matrix deposition and myofibroblast differentiation/

proliferation through different signaling pathways, thus leading to

renal injury in different ways.
4.5 The strengths and limitations of
this study

This study comprehensively explored the mechanisms of TMJT,

a traditional Chinese medicine, in treating DN from multiple

aspects, such as genes, proteins, immune cells, and pathways,

based on various data of “drug-disease-human” and using

methods such as network topology, machine learning, molecular

docking, and MR. Previous studies (69, 70) on TMJT mainly

focused on its safety and efficacy, while we conducted a

mechanism analysis of TMJT based on this, filling the gap of the

lack of mechanism exploration for this drug. Previous network

pharmacology studies (71, 72) on traditional Chinese medicine or

Chinese herbal medicine for treating DN did not involve in-depth

analysis of human samples but used animal samples or simply

collected disease targets from GEO datasets. Previous machine

learning studies (73–75) on DN mainly analyzed it from the

perspectives of immunity, oxidative stress, programmed cell

death, etc., and were mainly used to screen and identify genetic

biomarkers, while this study used the target as a link and started

from the perspective of drug intervention in disease to explore the

multi-faceted mechanisms of TMJT in treating DN, and verified the

results by dataset analysis, molecular docking, MR analysis, and

other methods. Therefore, compared with other studies, this study

is more comprehensive and has more guiding significance for

clinical medication.

However, further experiments and trials are needed to verify the

accuracy of our results, as the information on drug components,

targets, and patient samples in this study were obtained from public

databases. Overall, our study provides valuable insights for clinical

and future research on the therapeutic effects of TMJT on DN.
5 Conclusion

In conclusion, our study utilized a multi-faceted approach,

combining network pharmacology, molecular docking, and

bioinformatics, to analyze the components, targets, and

mechanisms of TMJT in treating DN. Through this study, we

identified the key components, targets, and feature genes of
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TMJT, including Denudatin B, hancinol, hirudinoidine A, SRC,

EGF, GAPDH, CD40LG, EP300, IL1B, and EGF; We also confirmed

that the elevation of IL1B levels has a causal relationship with the

increased risk of DN. Our findings suggest that the therapeutic

effects of TMJT on DN are primarily mediated through the

regulation of immune and inflammation-related pathways. While

these results are promising and useful as a reference for clinical

application and further research, the accuracy of our findings

should be verified through additional experiments and trials,

particularly given that the data used in this study was obtained

from public databases.
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