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Cushing’s disease (CD) is a severe endocrine disorder characterized by chronic

hypercortisolaemia secondary to an overproduction of adrenocorticotropic

hormone (ACTH) by a pituitary adenoma. Cortisol excess impairs normal

glucose homeostasis through many pathophysiological mechanisms. The

varying degrees of glucose intolerance, including impaired fasting glucose,

impaired glucose tolerance, and Diabetes Mellitus (DM) are commonly

observed in patients with CD and contribute to significant morbidity and

mortality. Although definitive surgical treatment of ACTH-secreting tumors

remains the most effective therapy to control both cortisol levels and glucose

metabolism, nearly one-third of patients present with persistent or recurrent

disease and require additional treatments. In recent years, several medical

therapies demonstrated prominent clinical efficacy in the management of

patients with CD for whom surgery was non-curative or for those who are

ineligible to undergo surgical treatment. Cortisol-lowering medications may

have different effects on glucose metabolism, partially independent of their

role in normalizing hypercortisolaemia. The expanding therapeutic landscape

offers new opportunities for the tailored therapy of patients with CDwho present

with glucose intolerance or DM, however, additional clinical studies are needed

to determine the optimal management strategies. In this article, we discuss the

pathophysiology of impaired glucose metabolism caused by cortisol excess and

review the clinical efficacy of medical therapies of CD, with particular emphasis

on their effects on glucose homeostasis.
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Introduction

Cushing’s syndrome (CS) is a severe endocrine disorder caused

by chronic exposure to excess glucocorticoids (GCs), which can be

from exogenous or endogenous origin. Endogenous CS is further

classified as adrenocorticotropin (ACTH)-dependent Cushing’s

syndrome (80% of all cases) and ACTH-independent (1).

Cushing’s disease (CD), which results from an uncontrolled

adrenocorticotrophic hormone (ACTH) secretion from a pituitary

tumor, is the most common form of ACTH-dependent CS. The

prevalence of CD is estimated to be nearly 40 cases per million, and

the incidence of CD ranges from 1.2 to 2.4 per million per year,

although these figures might be underestimated due to undiagnosed

patients who experience mild or variable disease course (2–5).

The untreated CD is associated with excessive mortality and

morbidity as well as decreased quality of life (6, 7). The clinical

picture of CD consists of weight gain, central obesity with facial fat

redistribution, skin changes, depression, cognitive impairment,

susceptibility to infections, menstrual irregularities in women, and

decreased libido in men (8, 9). Patients with CD commonly develop

multiple systemic and metabolic complications, including insulin

resistance, prediabetes, diabetes mellitus (DM), dyslipidemia,

hypertension, and hypercoagulability. The prevalence of DM in

patients with CD ranges from 20 to 50%, while 10-30% of patients

have impaired glucose tolerance. Collectively, glucose metabolism

abnormalities are observed in approximately 70% of patients with

CD and represent one of the most common complications of the

disease (3–8, 10–13). Diagnosis of prediabetes and diabetes in

patients with CS is the same as in the general population and is

based on measurements of fasting plasma glucose, HbA1c, and

plasma glucose values under an oral glucose tolerance test (OGTT)

(14). However, it should be noted that the most important

metabolic effects of GCs excess occur during the post-prandial

period, and a substantial proportion of patients with CS may

present with normal fasting glucose (15). Thus, the OGTT is

considered a gold standard in diagnosing glucose metabolism

abnormalities in this population. An approach based on OGTT

can also be applied to evaluate pancreatic beta cells dysfunction in

patients with chronic hypercortisolaemia (16).

Cortisol excess plays a major role in the pathogenesis of

imp a i r e d g l u c o s e t o l e r a n c e , a n d t h e s e v e r i t y o f

hypercortisolaemia generally correlates with glucose metabolism

derangements. Moreover, genetic and environmental factors

significantly contribute to the impairment of glucose tolerance

and account for the interindividual susceptibility to disturbed

glucose homeostasis induced by the cortisol excess (13, 17, 18).

Definitive surgical treatment of ACTH-secreting tumors is the

first-line therapy for patients with CD, including those with

concurrent DM (19). Nevertheless, medical therapies have

gained a significant role in the treatment of CD patients for

whom surgical treatment of pituitary tumors was unsuccessful

or for those that are ineligible to undergo surgery (19, 20). In this

article, we review the pathophysiology of glucose metabolism

abnormalities caused by hypercortisolaemia and discuss the

clinical effectiveness of medical treatments in the management

of CD patients with DM.
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Pathophysiology of glucocorticoid-
induced insulin resistance and
diabetes mellitus in patients with
Cushing’s disease

In humans, glucocorticoid hormones are represented primarily

by cortisol produced in the adrenal glands. In rodents,

corticosterone is the main adrenal cortex hormone, and thus it is

commonly used in experimental studies to investigate GCs

functions in animal models. Additionally, several synthetic GCs

are frequently used in preclinical studies, including prednisone,

methylprednisolone, and dexamethasone (21).

The release of ACTH and endogenous GCs is under the control

of circadian rhythm and stress. In humans under physiological

conditions, blood GCs levels peak in the early morning, decline

throughout the daytime, and nadir around midnight (22).

Glucocorticoid hormones play a major role in the physiological

regulation of energy homeostasis. In the postprandial period, GCs

counteract the anabolic effects of insulin and provide the main

substrates for oxidative metabolism, including glucose, amino acids,

and fatty acids, through the stimulation of gluconeogenesis,

lipolysis, and proteolysis as well as inhibition of glycogen synthesis.

In patients with CS, chronic exposure to cortisol leads to insulin

resistance, hyperglycemia, derangements of lipid metabolism, and

altered body composition. In addition to GCs excess, the impairment

of circadian GCs secretion also contributes to metabolic abnormalities

(23). Chronic and uncontrolled hypercortisolaemia profoundly affects

the physiological functions of key metabolic organs, including the liver,

muscles, adipose tissue, and pancreas (17, 24) (Figure 1).

In the liver, GCs regulate glucose metabolism both directly through

the activation of gluconeogenesis and indirectly through the stimulation

of the hepatic insulin resistance (17). Glucocorticoids promote the

transcription of genes encoding key enzymes in the gluconeogenic

pathway, including Phosphoenolpyruvate Carboxykinase-1 (PEPCK)

and Glucose-6-phosphate dehydrogenase (G6PD), to increase glucose

production in the liver (25–27). At the same time, GCs attenuate the

signal transduction downstream of insulin receptor (IR) and decrease

insulin sensitivity in hepatocytes. Mechanistically, GCs activate the

transcription of several genes whose products inhibit the PI3K/Akt/

mTOR signaling pathway, amajor downstream effector of the IR cascade

(28–30). Furthermore, GCs facilitate the activation of Adenosine

monophosphate-dependent kinase (AMPK), which in turn switches

on the catabolic pathways, including fatty acids oxidation. Thus, GCs

excess leads to hyperglycemia and may contribute to progressive liver

steatosis in patients with hypercortisolaemia (31).

Skeletal muscles are major sites for insulin-stimulated glucose

uptake, utilization, and storage in the form of glycogen. They also

form a reservoir of amino acids, which can be used as substrates for

glucose production in the process of gluconeogenesis. Because of their

key roles in regulating glucose metabolism, skeletal muscles are also

considered the primary driver of whole-body insulin resistance in

patients with hypercortisolaemia (32). In skeletal muscles, GCs

negatively regulate the signaling cascades downstream of IR, mainly

through PI3K/Akt/mTOR pathway (29, 33, 34). These actions result in

reduced membrane translocation of Glucose transporter type 4 (GLUT-
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4), and consequently inhibition of the insulin-stimulated glucose uptake

(35). Furthermore, low activity of Akt kinase stimulates Glycogen

synthase kinase 3 (GSK-3), which acts as a major negative regulator of

the Glycogen synthase (34). Thus, GCs decrease glycogen synthesis in

skeletal muscle cells. They also appear to have a permissive role in the

catecholamine-dependent glycogenolysis (36).

The adipose tissue controls glucose homeostasis through the

processes of lipogenesis (de novo synthesis of fatty acids from

glucose), lipolysis, and secretion of endocrine factors that affect

insulin sensitivity in many tissues. GCs seem to play a pivotal role in

regulating the metabolism, differentiation, and distribution of adipose

tissue. Long-term hypercortisolaemia leads to visceral accumulation of

fat tissue and obesity, commonly observed in patients with CD (37). In

mature adipocytes, GCs stimulate lipolysis by increasing the expression

of lipases and induce insulin resistance by inhibiting signaling pathways

downstream of IR. Consequently, GCs excess leads to the

downregulation of glucose transporters and decreased glucose uptake

by adipocytes, as well as increased release of free fatty acids (35, 38).

Moreover, GCs may stimulate the secretion of adipokines that

contribute to the remodeling of adipose tissue and further augment

the insulin resistance (39, 40).

Glucocorticoids also directly affect the function of pancreatic beta

cells and insulin secretion, however, the exact mechanisms underlying

this phenomenon remain poorly understood. In vitro, GCs were found

to decrease the viability of beta cells, downregulate Glucose transporter
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type 2 (GLUT-2) expression, and impair insulin biosynthesis and

release (41–44). Intriguingly, several studies in animal models

showed beta cells hyperplasia and transient hyperinsulinemia in

response to GCs treatment, which could represent an adaptive

response to maintain euglycemia (45, 46). In humans, both impaired

insulin secretion and hyperinsulinemia were reported in various

clinical studies that evaluated pancreatic response to acute or short-

term treatment with GCs (47–54). The contradictory results between

the studies likely reflect the significant differences in study design, type

and duration of the treatment, route of GCs agent administration, and

different accompanying clinical procedures. Nonetheless, chronic

exposure to GCs appears to induce beta cell dysfunction due to the

inhibition of insulin secretion and induction of apoptosis, and these

effects presumably contribute to the development of glucose

metabolism abnormalities in patients with CS (13, 15, 47).

In addition to the mechanisms described above, several other

organs and tissues are likely involved in the pathogenesis of

glucocorticoid-induced insulin resistance, including bone, gut, and

brain (27). The studies in the animal models showed that GCs-

induced metabolic syndrome-like phenotype with central obesity and

insulin resistance persists for a long time after hypercortisolaemia

remission (55). These results correspond to clinical data from patients

with CS, which demonstrated increased cardiometabolic risk along

with persistent abdominal fat accumulation and insulin resistance

even after the remission of the disease (56). The mechanisms
FIGURE 1

Mechanisms of glucocorticoid-induced insulin resistance and diabetes mellitus in main organs that control glucose homeostasis. GR, Glucocorticoid
Receptor; FFA, free fatty acids; ATGL, Adipose triglyceride lipase; LIPE, lipase, hormone-sensitive.
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underlying long-lasting metabolic derangements after disease

remission in humans are poorly understood and likely involve a

complex interplay between hormonal deficiencies and persistent

harm induced by GCs in the target tissues.
Medical therapies in the treatment of
Cushing’s disease and concurrent
diabetes mellitus

The major therapeutic goal in patients with CD is to decrease

endogenous cortisol levels. Surgical removal of pituitary adenoma is

considered the first-line therapeutic option for patients with CD.

Following surgery, remission of hypercortisolism is observed in 70-

90% of patients, and the risk of disease recurrence ranges from 10-

20%. Nevertheless, long-term failure of the surgical procedure is

observed in one-third of patients, who require additional treatments

(12, 57, 58). Thus, second-line therapies, such as radiotherapy,

bilateral adrenalectomy, and medical therapy, should be considered

in patients who relapsed after initial surgery or were reluctant or

ineligible to undergo the surgical procedure (19). In the past decades,

medical therapy has emerged as a particularly attractive adjunctive

treatment strategy in patients with CD, mainly due to successful drug

development efforts, as well as a growing body of clinical evidence

indicating the efficacy and safety of old and new medications (20).

Currently, three major drug categories are used in CD treatment,

including 1) pituitary-directed drugs represented by pasireotide and

cabergoline; 2) adrenal-directed drugs, represented by ketoconazole,

levoketoconazole, metyrapone, mitotane, and osilodrostat; 3)

Glucocorticoid Receptor (GR)-directed drugs, mainly represented

by mifepristone and investigational drug relacorilant (Figure 2).

Adrenal-directed and GR-directed agents are also used in

patients with ACTH-independent CS caused by an adrenal
Frontiers in Endocrinology 04
adenoma, adrenal hyperplasia or cortisol-producing adrenal

carcinoma. In these patients, medical therapies are predominantly

used to treat acute complications of CS and control

hypercortisolism in advanced or recurrent disease (59).

This expanding therapeutic landscape allows for a patient-

tailored approach in the treatment of CS and related comorbidities.

Post-surgical normalization of hypercortisolaemia is generally

associated with improved glucose metabolism, although insulin

resistance and increased cardiovascular risk may persist in patients

even after successful surgery (60, 61). Cortisol-lowering therapies

along with antidiabetic medications can be used as effective

adjunctive strategies in CD patients with glucose metabolism

derangements who cannot undergo surgery or for whom surgical

treatment was ineffective (19, 20). Medical treatments have various

specific effects on glucose metabolism that are partially independent

of their role in the normalization of hypercortisolaemia. These effects

should be taken into consideration when making therapeutic

decisions to provide adequate and patient-tailored treatment.

Below, we summarize the clinical studies that investigated the

effects of various cortisol-lowering therapies on glucose homeostasis.
Pasireotide

Pasireotide is a new-generation somatostatin analog that binds

four of the five known somatostatin receptors (SSTRs 1-3 and

SSTR5) and demonstrates a significantly higher binding affinity for

SSTR5 compared to octreotide. By stimulating SSTR5 and SSTR2,

pasireotide activates downstream inhibitory signaling pathways,

thereby suppressing hormone secretion, proliferation, and

survival of pituitary gland cells (62). The efficacy of pasireotide in

the treatment of CD was demonstrated in two multicenter phase III

studies, and subsequently, it was approved by the Food & Drug

Administration (FDA) as a first agent for patients with CD who are
FIGURE 2

Combinations of antidiabetic medications (blue boxes) and cortisol-lowering agents (yellow boxes) in the treatment of patients with Cushing’s
disease and concurrent diabetes mellitus.
frontiersin.org

https://doi.org/10.3389/fendo.2023.1174119
https://www.frontiersin.org/journals/endocrinology
https://www.frontiersin.org


Mehlich et al. 10.3389/fendo.2023.1174119
ineligible for surgical treatment or for whom surgery has failed

(63, 64).

SSTR2 and SSTR5 receptors targeted by pasireotide are

expressed by insulin-producing beta cells of the pancreas, while

glucagon-secretin alpha cells express predominantly SSTR2 (62).

Consequently, treatment with pasireotide has been associated with

significant inhibition of insulin and incretins secretion, along with

only a modest suppression of glucagon levels, which commonly

leads to pasireotide-induced hyperglycemia (63–67). Indeed, phase

II and III clinical trials demonstrated that treatment with short-

acting pasireotide administered subcutaneously twice daily was

associated with hyperglycemia and DM in 35-40% and 18-21% of

patients, respectively. Hyperglycemia-related adverse events were

observed in 73% of patients, and new antidiabetic medication was

initiated in 45% of study participants. Notably, 41% of patients who

had not been on any antidiabetic treatment required their first

antidiabetic medication following treatment with pasireotide (64,

65). In the following phase III trial, once-monthly long-acting

pasireotide demonstrated a similar safety profile. Hyperglycemia,

DM, and hyperglycemia-related adverse effects were noted in 49%,

19%, and 72% of patients, respectively. Treatment with a new

antidiabetic drug was started in approximately 50% of study

participants (63).

Real-world evidence and clinical trial extension studies have

demonstrated that glucose metabolism alterations tend to occur

primarily within the first weeks of therapy with pasireotide and

stabilize over time (68–71). The risk of developing pasireotide-

induced hyperglycemia is the highest in patients with high glucagon

levels, HbA1c > 34.5 mmol/L (5.3%), and glucose peak > 9 mmol/L

after pasireotide administration (72). However, careful monitoring

for glucose metabolism abnormalities is required for all patients

undergoing therapy. The detailed considerations regarding the

medical management of pasireotide-induced hyperglycemia in

patients with CD are discussed later in this review.
Cabergoline

Cabergoline is a dopamine D2 receptor agonist that has been

commonly used in the treatment of prolactinomas (73). The expression

of dopamine receptors was found in adrenocorticotrophic cells and

ACTH-secreting pituitary adenomas, suggesting the potential efficacy

of cabergoline in the therapy of CD (74, 75). The clinical efficacy of

cabergoline was reported in case reports as well as several clinical

studies that demonstrated normalization of urinary free cortisol (UFC)

in 25-40% of CD patients (76–80). However, the recent prospective

trial that involved 20 patients with CD failed to show gradual and dose-

dependent correction of cortisol levels in CD patients treated with

cabergoline (81). Although currently the clinical utility of cabergoline

in the management of hypercortisolaemia remains debatable, the

improvements in glucose metabolism associated with dopamine

agonist therapy were frequently reported in patients with CD.

In a prospective open-label study, testing cabergoline at a dose

of 1 mg/week, adjusted up to a maximal dose of 7mg/week, showed

a significant reduction of fasting serum glucose and insulin levels in

CD patients responding to therapy (79). Furthermore, a
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dose range of 0.5-6 mg/week as a first-line therapy or in

persistent CD demonstrated improvement of glycemic control in

40% of responders (82). Notably, the improvement of glucose

homeostasis was also observed in patients with persistent mean

urinary free cortisol (mUFC) levels, which agrees with the

previously reported impact of dopamine agonists on glucose

metabolism that is independent of their cortisol-lowering effects

(79). The direct mechanisms by which dopamine agonists improve

glycemic control remain unclear, and apart from cortisol-lowering

effects, they may involve the combined actions of dopamine

agonists on the central nervous system, insulin secretion, and

glucose uptake in the insulin-sensitive tissues (83).
Ketoconazole and levoketoconazole

Ketoconazole is an azole antifungal drug that reduces adrenal

steroid production by inhibiting various enzymes involved in

steroidogenesis. It has been approved for the treatment of

Cushing’s disease by the European Medicine Agency and is used

off-label for this purpose in the USA (84). Although ketoconazole

was shown to rapidly induce normalization of cortisol levels in CD

patients, it can lead to hepatotoxicity that requires frequent

monitoring in patients undergoing therapy (85). Furthermore, the

clinical use of ketoconazole was limited by the long-standing lack of

prospective studies evaluating its efficacy. Nevertheless, previously

published retrospective studies suggested that ketoconazole might

be effective in lowering HbA1c and fasting glucose in CD patients

(86–88). In a large analysis, Castinetti et al. evaluated data on 200

CD patients treated with ketoconazole, from whom nearly 32% had

DM at baseline. Notably, the authors observed improved glycemic

control in more than half of diabetic patients (87). Another study

examining 62 CD patients treated preoperatively with either

ketoconazole, metyrapone, or their combination reported

lowering of HbA1c levels in those patients whose cortisol levels

were entirely or partially controlled by steroidogenesis inhibitors

(88). These data suggest that ketoconazole can be considered for

both short- and long-term therapy in patients with persistent CD

and DM.

Levoketoconazole is the 2S, 4R enantiomer of ketoconazole. It

inhibits adrenal steroid production more potently compared to

ketoconazole and might also suppress ACTH secretion and

proliferation of pituitary adenoma cells (89). Levoketoconazole

was recently evaluated in two phase III prospective clinical trials

in patients with endogenous CD (90, 91). Both studies reported

sustained improvements in mUFC along with an acceptable safety

and tolerability profile, which prompted the FDA approval of

levoketoconazole for patients with CS ineligible for surgical

treatment or for whom surgery has not been curative. In phase

III, multicenter, open-label single-arm trial (SONICS),

levoketoconazole was evaluated in three phases: dose titration (2-

21 weeks to achieve effective and tolerable dose), maintenance phase

(6 months of treatment at the therapeutic dose), and extended

evaluation (6 months of continued treatment). The results of the

first two phases showed that 81% of patients who advanced to the
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maintenance phase had mUFC normalization by end of dose

titration, and at the end of the maintenance phase 31% of 94

patients enrolled in the study were responders. Importantly,

levoketoconazole treatment led to significant improvements in

biomarkers of CS comorbidities and glucose metabolism at the

end of the maintenance phase, including fasting glucose

concentration, HbA1c concentration, total and LDL cholesterol,

and body weight (90). The efficacy of levoketoconazole was further

analyzed post-hoc in patients with DM or without DM who entered

the maintenance phase. In both groups, levoketoconazole treatment

led to sustained normalization of mUFC and glycemic control, and

the latter effect was most pronounced in patients with DM. The

authors reported that at the end of the maintenance phase, HbA1c

decreased from 6.9% at baseline to 6.2% and from 5.5% to 5.3% in

patients with and without DM, respectively. Mean fasting blood

glucose decreased from 6.85 mmol/L (123.4 mg/dL) to 5.82 mmol/L

(104.9 mg/dL) in patients with DM and from 5.11 mmol/L (92.1

mg/dL) to 4.66 mmol/L (84 mg/dL) in patients without DM (92). In

another phase III study (LOGICS), levoketoconazole was tested in

patients with CD via an open-label titration maintenance phase,

followed by a double-blinded randomized withdrawal phase and a

restoration phase. The results from the interim analysis at the end of

the randomized withdrawal phase demonstrated significantly better

mUFC response and reduction of total and LDL cholesterol levels in

patients with continuous levoketoconazole treatment. However, no

significant differences in glycemic control markers between

treatment groups were observed in this study (91). Thus,

additional prospective trials and long-term analyses of the effects

of levoketoconazole therapy on glucose homeostasis in CD patients

are warranted.

Both ketoconazole and levoketoconazole are substrates and

potent inhibitors of the cytochrome P450 (CYP3A4) enzyme,

which is a major drug-metabolizing isozyme in the human liver.

Therefore, drug-drug interactions should be considered when

treatment with these agents is initiated. Medications that are

major CYP3A4 substrates should be avoided in patients

undergoing ketoconazole and levoketoconazole therapy (93).
Metyrapone

Metyrapone reduces adrenal cortisol production by inhibiting

the 11-beta-hydroxylase (CYP11B1), an enzyme that is responsible

for the final step in the cortisol synthesis (94). Over the past

decades, metyrapone has been extensively used as off-label

therapy in the management of CD patients. Based on the

evidence derived from observational and retrospective studies that

demonstrated the clinical efficacy and safety of metyrapone, it was

granted official approval by the European Medicines Agency for

treating CS in 2014 (95). More recently, the prospective studies of

metyrapone in patients with Cushing’s syndrome, including CD,

were initiated to further determine its clinical utility and safety

profile (96–98).

In an ongoing open-label, single-arm phase III/IV study

(PROMPT), the efficacy of metyrapone is investigated in adults

who were newly diagnosed with endogenous Cushing’s syndrome
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least 50% above ULN (96). The starting dose of metyrapone is based

on the severity of hypercortisolism at baseline and further titrated

based on cortisol levels in urine and serum over 12 weeks (dose-

titration period). After 12 weeks, patients whose mUFC do not

exceed 2-fold the ULN continue to receive treatment for another 24

weeks (extension period). Early findings from this study, presented

at the Annual Meeting of the Endocrine Society, indicated that

mUFC normalization was achieved by 47% of patients and an

additional 33% of patients had ≥ 50% decrease in mUFC from

baseline. Circulating cholesterol, HbA1c and fasting glucose, and

insulin improved with a median decrease of 12%, 3%, 5%, and 9%,

respectively (96).

In a recent prospective, observational longitudinal study,

Ceccato et al. analyzed 31 patients with CS treated with

metyrapone for ≥ 1 month as primary treatment or after surgical

failure. With a median dose of 1000 mg metyrapone for 9 months,

UFC and late-night salivary cortisol (LNSC) decreased quickly after

the first month of treatment (−67% and −57% from baseline), and

sustained UFC normalization was observed up to 12 and 24 months

(70% and 30% of patients had normalized UFC and LNSC at the last

visit, respectively). Noteworthy, 7 out of 11 patients who presented

with impaired fasting glucose or diabetes reduced the dose or the

number of anti-diabetic drugs (97). In another study, the

combination of mitotane, metyrapone, and ketoconazole initiated

concomitantly led to rapid normalization of hypercortisolaemia

along with the reduction of plasma fasting glucose and Hb1Ac levels

in patients with severe CS (98). Retrospective analyses further

confirm the utility of metyrapone in the rapid management of CS

and cortisol-related comorbidities. Jeffcoate et al. and Verhelst et al.

reported improvement of biomarkers of glucose metabolism in up

to 80% of patients presenting with CS and glucose intolerance or

DM (99, 100). However, the effects of metyrapone treatment on

glucose metabolism were not analyzed in the largest retrospective

study of 195 with Cushing’s syndrome, including 115 patients with

CD (101).

Collectively, the current data suggest that metyrapone can be

used to promptly normalize hypercortisolaemia and improve

cortisol-related metabolic comorbidities in CD patients.

Therefore, it may offer a useful treatment modality, either as a

preoperative therapy or in the long-term management of patients

with CD.
Mitotane

Mitotane is an adrenolytic and adrenostatic agent currently

used in the treatment of adrenocortical carcinoma and occasionally

employed in the management of severe CS (102, 103). Several

studies published in the last century reported the high efficacy of

mitotane in the management of CS with an average remission rate

ranging from 70 - 100%, albeit the observed response rates might

have been partially attributable to the low reliability of the hormone

assays available at that time (104–107). A retrospective analysis of

76 patients who were treated with mitotane between 1993 and 2009

demonstrated remission in 72% of cases, however, intolerance
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leading to treatment discontinuation was observed in nearly 30% of

patients. Patients who achieved remission had significantly

improved metabolic outcomes, including decreased levels of

fasting and postprandial serum glucose (108). Although mitotane

may provide effective control of hypercortisolaemia and cortisol-

related comorbidities in patients not responding to other therapies,

its clinical use is limited because of its poor safety profile. Moreover,

there are no randomized clinical trials that evaluated the efficacy of

mitotane in patients with CD.
Osilodrostat

Osilodrostat is a potent inhibitor of 11-b-hydroxylase
(CYP11B1) and aldosterone synthase (CYP11B2), which are the

enzymes that catalyze the final steps of cortisol and aldosterone

synthesis in adrenal glands (109). In recent years, several clinical

studies demonstrated the efficacy of osilodrostat in the treatment of

CD, which led to its FDA approval for patients who are not surgical

candidates or who have persistent/recurrent disease after surgery

(110–113). A multicenter phase III study (LINC 3) included a 24-

week open-label, single-arm treatment with osilodrostat, followed

by the randomized withdrawal phase for 8 weeks and open-label

treatment with osilodrostat until week 48. The results of this trial

demonstrated that at the end of the withdrawal phase, more patients

maintained mUFC below the upper limit of normal (ULN) with

osilodrostat compared to placebo. Moreover, the reduction of

mUFC was accompanied by significant improvement in metabolic

and cardiovascular-related parameters, including BMI, fasting

plasma glucose, systolic and diastolic blood pressure, and total

and LDL cholesterol. At week 48, the analysis of all patients enrolled

in the study indicated that mean fasting plasma glucose decreased

from 99.2 mg/dL at baseline to 87.2 mg/dL, while HbA1c decreased

from 6.0% to 5.6% (110). The clinical efficacy and safety of

osilodrostat were further confirmed in another phase III study

that comprised of an initial 12-week, randomized, double-blind,

placebo-controlled (osilodrostat: placebo, 2:1) period followed by a

36-week, open-label treatment period (LINC 4). In this trial,

significantly more patients treated with osilodrostat than placebo

achieved mUFC at 12 weeks (77% vs 8%), and the response was

maintained at 36-week when 81% of all patients showed mUFC

normalization. At week 12, major metabolic and cardiovascular-

related parameters also showed improvement in osilodrostat, but

not in the placebo group. Notably, in patients who were classified as

diabetic at baseline, mean fasting plasma glucose decreased from

110.7 mg/dL at baseline to 101.8 mg/dL at week 12 and 98.2 mg/dL

at week 48; mean HbA1c decreased from 6.7% at baseline to 6.3% at

week 12 and 6.3% at week 48. In patients who were not classified as

diabetic at baseline, fasting plasma glucose and HbA1c levels

remained within the normal range and were stable throughout

the treatment (113). These observations agreed with the previously

published data from the phase II trial that also showed

improvement in fasting glucose and HbA1c levels during

osilodrostat treatment in patients with a history of DM (111).
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Overall, osilodrostat is an effective medical therapy for patients

with CD and has a significant potential to alleviate the burden of

CD-related comorbidities, including insulin resistance and DM

(114, 115).
Mifepristone

Mifepristone is a high-affinity antagonist of the glucocorticoid

receptor that affects both peripheral and central actions of cortisol,

such as its negative feedback on the CRH/ACTH secretion (116, 117).

Accumulating evidence suggests that mifepristone improves insulin

sensitivity through its effects on many tissues and organs involved in

the regulation of glucose homeostasis, although the underlying

mechanisms are not fully understood (116). Recent clinical studies

demonstrated the effectiveness of mifepristone in the management of

clinical and metabolic features related to hypercortisolaemia.

Consequently, it was approved by FDA for the treatment of CS

with a specific indication for patients who have glucose intolerance or

DM and for whom surgical treatment was not effective (118).

In 2012, Fleiseriu et al. reported the results from the largest

prospective multicenter trial of mifepristone in the treatment of

Cushing’s syndrome (SEISMIC). In this study, 50 patients with

endogenous Cushing’s syndrome (including 43 CD patients)

associated with DM/glucose intolerance (CS-DM, n=29) or

hypertension (CS-HT, n=21) were recruited. Patients were treated

with mifepristone at a dose of 300 mg-1200 mg/week for 24 weeks. In

the CS-DM group, the area under the curve for glucose on 2h oral

glucose test decreased by at least 25% in 60% of patients from baseline

to end of therapy. Fasting plasma glucose and HbA1c decreased from

149.0 ± 74.7 mg/dL to 104.7 ± 37.5 mg/d and from 7.43 ± 1.52% to 6.29

± 0.99%, respectively. Antidiabetic medications were reduced in 7 out

of 15 patients and insulin daily dose was reduced by at least half in 5

out of 12 patients. Noteworthy, overall clinical improvement was seen

in 87% of patients, and mifepristone therapy was associated with a

significant reduction of body weight, waist circumference, and body fat,

as well as increased insulin sensitivity (118–120). In a long-term

extension and follow-up analysis of the SEISMIC study, clinically

meaningful weight loss persisted for two additional years in patients

who remained on the mifepristone therapy (121).

The European, multicenter, retrospective study on 20 patients

with CS (4 patients with CD, 15 patients with malignant disease due

to adrenocortical carcinoma or ectopic ACTH secretion) treated

with mifepristone at doses of 600-1200 mg/day reported

improvement of clinical features in 75% of cases. Normalization

of glucose control was observed in 4 out of 7 patients, which further

suggests that mifepristone may effectively improve glycemic control

in patients with hypercortisolaemia (122).

Taken together, mifepristone appears to be an effective and well-

tolerated therapeutic option for patients with CD and diabetes mellitus

or impaired glucose tolerance. Nevertheless, the clinical use of

mifepristone requires close monitoring of severe adverse effects,

including hypokalemia. Due to its abortifacient properties

mifepristone must be used with caution in women of childbearing age.
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Relacorilant

Relacorilant is an investigational selective glucocorticoid receptor

(GR) modulator. Contrary to mifepristone, relacorilant lacks the

affinity for the progesterone receptor. Thus, relacorilant limits

cortisol activity without undesirable side effects related to

progesterone receptor antagonisms, such as abortive properties and

irregular vaginal bleeding (118, 123). In 2021, Pivonello et al. reported

the efficacy and safety of relacorilant in a single-arm, open-label, phase

2 study which enrolled 35 patients with a diagnosis of endogenous CS

and concurrent uncontrolled hypertension and/or impaired glucose

tolerance or DM (124). In this study, relacorilant was administered at

low dose (100-200mg/d) for 12 weeks or high-dose (250-400mg/d) for

16 weeks. Among patients with hyperglycemia, clinically meaningful

hyperglycemia response (defined ad-hoc as ≥ 0.5% decrease in HbA1c,

normalization or ≥ 50mg/dl decrease in 2h plasma glucose on OGTT

or decrease in daily insulin or sulfonylurea dose by 25% and 50%,

respectively) was observed in 2 of the 13 patients in the low-dose group

and 6 of the 12 patients in the high-dose group. Common adverse

effects included back pain, headache, peripheral edema, nausea, pain in

the extremities, dizziness, and diarrhea. No clinically significant

hypokalemia was observed.

Currently, two randomized, double-blind, placebo-controlled

study phase III clinical trials are conducted to further evaluate the

efficacy and safety of relacorilant in patients with CS (GRACE,

NCT03697109 and GRADIENT, NCT04308590).
Antidiabetic treatment in patients with
Cushing’s disease

Antidiabetic treatment plays an essential role in the

management of patients with hypercortisolaemia and concurrent

DM. Antidiabetic medications are often combined with cortisol-

lowering agents to achieve glycemic control in patients with

persistent or recurrent disease after surgical treatment.

Nevertheless, the clinical evidence regarding the optimal

antidiabetic treatment in patients with CD is scarce, and the

current recommendations are largely based on expert opinions

and algorithms used for type 2 DM.

Metformin in combination with cortisol-lowering agents is

considered first-line therapy in the chronic management of CD

patients with persistent hypercortisolaemia and hyperglycemia (15).

Metformin reduces circulating glucose levels by lowering hepatic

glucose production and improving peripheral insulin sensitivity,

and therefore it may effectively control symptoms of hyperglycemia

and reduce long-term HbA1c levels in CD patients. Metformin is

also considered a first-line treatment in patients with pasireotide-

induced hyperglycemia (68, 125, 126). Treatment with metformin is

generally safe and well tolerated, however, it may cause undesired

gastrointestinal effects, which can be potentiated by concomitant

use of cortisol-lowering medications, such as pasireotide and

osilodrostat (62, 115).

Incretin-based therapies with Glucagon-like peptide 1 (GLP-1)

receptor agonists and dipeptidyl peptidase-4 (DPP-4) inhibitors can
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be considered second-line treatments, and they are usually

combined with metformin in patients who need treatment

intensification (80). GLP-1 agonists reduce hyperglycemia by

enhancing insulin secretion and inhibiting the production of

glucagon, and they delay gastric emptying and reduce appetite

(127). The positive effects associated with GLP-1 agonists therapy

include weight loss and blood pressure reduction (128). DPP-4

inhibitors block the degradation of GLP-1 and GIP, thereby

increasing their endogenous levels. This in turn leads to increased

insulin secretion and reduced postprandial and fasting

hyperglycemia (127, 129). DPP-4 inhibitors do not have

significant cardiovascular benefits and are weight-neutral (130).

Because the incretin-based treatments are generally well-tolerated

and reduce postprandial glycemia, they provide useful therapeutic

options in the management of patients with CD and concurrent

DM (131).

Sodium-glucose cotransporter 2 (SGLT-2) inhibitors were

demonstrated to reduce cardiovascular risk and may have positive

effects in patients with heart failure and impaired renal function

(132). Nevertheless, SGLT-2 inhibitors increase the risk of

genitourinary infection, and therefore they should be used with

caution in patients with CD who may be prone to serious infection

and systemic dissemination (133). Sulfonylureas and glinides can be

recommended for short-term periods to manage postprandial

glycemia, although these agents increase the risk of hypoglycemia

and are rarely used independently in the long-term management

(134). Peroxisome proliferator-activated receptor-g (PPARg) agonists
improve insulin sensitivity in the liver and skeletal muscles,

however, they often cause weight gain and edema, and therefore

are generally not recommended in patients with CD (135).

Insulin therapy may be required when glycemic control cannot

be achieved with other agents. In these cases, the combination of

metformin with long-acting basal insulin analog is usually initiated

as a first option, and the addition of prandial insulin should be

considered in patients who present with poor glycemic control and/

or high post-prandial glucose levels. In patients with severe disease

who demand prompt management of hyperglycemia, a

combination of insulin treatment in the form of an infusion,

prandial insulin, or basal-bolus regimens combined with cortisol-

lowering therapies may be needed to rapidly achieve glycemic

control (15).

Currently, the development of the optimal antidiabetic

strategies for patients with CD is limited by the lack of clinical

studies evaluating the efficacy of different therapeutic options in that

population. Given the growing role of medical therapies in the

management of patients with CD, there is also an unmet need to

identify the most effective and safe combinations of antidiabetic

agents and cortisol-lowering medications.
Management of hyperglycemia
induced by pasireotide treatment

All patients treated with pasireotide should be carefully

monitored for the development of impaired glucose tolerance and
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diabetes mellitus (62, 68). Although the optimal treatment for

managing pasireotide-induced hyperglycemia is not well-

established, metformin is usually considered a first-line therapy. If

adequate glycemic control is not achieved with metformin alone,

combination treatment with incretin-based therapies can be

initiated. DPP-4 inhibitors and GLP-1 analogs may be effective in

the management of pasireotide-induced hyperglycemia, as

pasireotide impairs both pancreatic insulin secretion and incretin

response. The staged treatment intensification with DPP-4 inhibitor

with a subsequent switch to a GLP-1 receptor agonist was suggested

by expert recommendations (136). GLP-1 analogs may provide

additional advantages compared to DPP-4 inhibitors in the

management of pasireotide-induced hyperglycemia as they

demonstrated the potential to reduce body weight and have a

superior HbA1c lowering effect. Furthermore, inhibition of GLP-1

degradation by DPP-4 inhibitors may not effectively restore GLP-1

levels when its secretion has been already impaired by pasireotide

(137). Nevertheless, further studies are needed to determine the

optimal order and regimen of incretin-based therapies in the

management of pasireotide-induced hyperglycemia. If

hyperglycemia induced by pasireotide treatment remains

uncontrolled by the combinations of metformin and incretin-

based therapies, the initiation of insulin therapy is required to

achieve and maintain glycemic control (138).
Conclusions

Impairment of glucose metabolism is one of the most common

complications encountered in patients with CD. Further research

aiming to elucidate the pathogenesis of glucose intolerance and DM

in patients with hypercortisolaemia is warranted and may provide

novel therapeutic opportunities. With the exception of pasireotide,

new medical therapies were demonstrated to improve glucose

intolerance and glycemic control. The ongoing and future clinical
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studies should aim to identify the optimal combinations of

antidiabetic medications and cortisol-lowering therapies for the

tailored treatment of CD patients with concurrent DM. There is also

a need to facilitate the selection of patients who may benefit from

specific combination regimens.
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62. Bolanowski M, Kałużny M, Witek P, Jawiarczyk-Przybyłowska A. Pasireotide–a
novel somatostatin receptor ligand after 20 years of use. Rev Endocr Metab Disord
(2022) 23(3):601–20. doi: 10.1007/s11154-022-09710-3
frontiersin.org

https://doi.org/10.1016/j.diabres.2022.109994
https://doi.org/10.1016/j.diabres.2022.109994
https://doi.org/10.1159/000314319
https://doi.org/10.1111/j.1365-2362.2008.02067.x
https://doi.org/10.1016/S2213-8587(21)00235-7
https://doi.org/10.3389/fendo.2020.00648
https://doi.org/10.1530/JOE-17-0361
https://doi.org/10.1210/er.2015-1080
https://doi.org/10.1111/cen.12422
https://doi.org/10.3389/fendo.2018.00284
https://doi.org/10.1210/me.2004-0497
https://doi.org/10.1210/mend.12.4.0090
https://doi.org/10.3390/ijms22020623
https://doi.org/10.1677/joe.1.05953
https://doi.org/10.1172/JCI116803
https://doi.org/10.1172/JCI116803
https://doi.org/10.1146/annurev-physiol-021115-105323
https://doi.org/10.1146/annurev-physiol-021115-105323
https://doi.org/10.1096/fj.07-094144
https://doi.org/10.1002/cphy.c190029
https://doi.org/10.1016/S0092-8674(04)00400-3
https://doi.org/10.1016/S0092-8674(04)00400-3
https://doi.org/10.1016/j.abb.2008.02.034
https://doi.org/10.1016/S0026-0495(98)90184-6
https://doi.org/10.1073/pnas.77.10.5711
https://doi.org/10.1016/j.ecl.2013.10.005
https://doi.org/10.1016/j.ecl.2013.10.005
https://doi.org/10.1038/srep02573
https://doi.org/10.1038/ijo.2014.6
https://doi.org/10.1530/JOE-12-0278
https://doi.org/10.2337/db05-1220
https://doi.org/10.1172/JCI119175
https://doi.org/10.1016/j.lfs.2015.11.017
https://doi.org/10.1074/jbc.272.6.3216
https://doi.org/10.1055/s-0030-1269896
https://doi.org/10.1055/s-0030-1269896
https://doi.org/10.1152/ajpendo.90931.2008
https://doi.org/10.1530/EJE-09-1034
https://doi.org/10.1210/jcem.81.7.8675587
https://doi.org/10.1152/ajpendo.1996.270.1.E36
https://doi.org/10.1152/ajpendo.1984.247.5.E592
https://doi.org/10.1007/s001250051251
https://doi.org/10.1016/0026-0495(90)90043-C
https://doi.org/10.1210/jcem-41-3-600
https://doi.org/10.1007/s125-002-8244-y
https://doi.org/10.1530/JOE-19-0168
https://doi.org/10.1111/jne.13113
https://doi.org/10.1111/jne.13113
https://doi.org/10.1210/jcem.80.11.7593411
https://doi.org/10.3171/JNS/2008/108/01/0009
https://doi.org/10.3171/JNS/2008/108/01/0009
https://doi.org/10.1530/ERC-12-0191
https://doi.org/10.1210/jcem.84.8.5896
https://doi.org/10.1210/jcem.84.8.5896
https://doi.org/10.1210/jc.2009-0806
https://doi.org/10.1007/s11154-022-09710-3
https://doi.org/10.3389/fendo.2023.1174119
https://www.frontiersin.org/journals/endocrinology
https://www.frontiersin.org


Mehlich et al. 10.3389/fendo.2023.1174119
63. Lacroix A, Gu F, Gallardo W, Pivonello R, Yu Y, Witek P, et al. Efficacy and
safety of once-monthly pasireotide in cushing’s disease: a 12 month clinical trial. Lancet
Diabetes Endocrinol (2018) 6(1):17–26. doi: 10.1016/S2213-8587(17)30326-1

64. Colao A, Petersenn S, Newell-Price J, Findling JW, Gu F, Maldonado M, et al. A
12-month phase 3 study of pasireotide in cushing’s disease. N Engl J Med (2012) 366
(10):914–24. doi: 10.1056/NEJMoa1105743

65. Boscaro M, LudlamWH, Atkinson B, Glusman JE, Petersenn S, Reincke M, et al.
Treatment of pituitary-dependent cushing’s disease with the multireceptor ligand
somatostatin analog pasireotide (SOM230): a multicenter, phase II trial. J Clin
Endocrinol Metab (2009) 94(1):115–22. doi: 10.1210/jc.2008-1008

66. Henry RR, Ciaraldi TP, Armstrong D, Burke P, Ligueros-Saylan M, Mudaliar S.
Hyperglycemia associated with pasireotide: results from a mechanistic study in healthy
volunteers. J Clin Endocrinol Metab (2013) 98(8):3446–53. doi: 10.1210/jc.2013-1771

67. Petersenn S, Unger N, Hu K, Weisshaar B, Zhang Y, Bouillaud E, et al.
Pasireotide (SOM230), a novel multireceptor-targeted somatostatin analogue, is well
tolerated when administered as a continuous 7-day subcutaneous infusion in healthy
Male volunteers. J Clin Pharmacol (2012) 52(7):1017–27. doi: 10.1177/
0091270011408727

68. Samson SL, Gu F, Feldt-Rasmussen U, Zhang S, Yu Y, Witek P, et al. Managing
pasireotide-associated hyperglycemia: a randomized, open-label, phase IV study.
Pituitary (2021) 24(6):887–903. doi: 10.1007/s11102-021-01161-4

69. Pivonello R, Arnaldi G, Scaroni C, Giordano C, Cannavò S, Iacuaniello D, et al.
The medical treatment with pasireotide in cushing’s disease: an Italian multicentre
experience based on “real-world evidence”. Endocrine (2019) 64(3):657–72. doi:
10.1007/s12020-018-1818-7

70. Pivonello R, Petersenn S, Newell-Price J, Findling JW, Gu F, Maldonado M, et al.
Pasireotide treatment significantly improves clinical signs and symptoms in patients
with cushing’s disease: results from a phase III study. Clin Endocrinol (Oxf). (2014) 81
(3):408–17. doi: 10.1111/cen.12431

71. Petersenn S, Salgado LR, Schopohl J, Portocarrero-Ortiz L, Arnaldi G, Lacroix A,
et al. Long-term treatment of cushing’s disease with pasireotide: 5-year results from an
open-label extension study of a phase III trial. Endocrine (2017) 57(1):156–65. doi:
10.1007/s12020-017-1316-3

72. Barbot M, Regazzo D, Mondin A, Zilio M, Lizzul L, Zaninotto M, et al. Is
pasireotide-induced diabetes mellitus predictable? a pilot study on the effect of a single
dose of pasireotide on glucose homeostasis. Pituitary (2020) 23(5):534–42. doi:
10.1007/s11102-020-01055-x

73. Lin S, Zhang A, Zhang X, Wu ZB. Treatment of pituitary and other tumours
with cabergoline: new mechanisms and potential broader applications.
Neuroendocrinology (2020) 110(6):477–88. doi: 10.1159/000504000

74. Pivonello R, Ferone D, de Herder WW, Kros JM, De Caro MLDB, Arvigo M,
et al. Dopamine receptor expression and function in corticotroph pituitary tumors. J
Clin Endocrinol Metab (2004) 89(5):2452–62. doi: 10.1210/jc.2003-030837

75. Pivonello R, Waaijers M, Kros JM, Pivonello C, de Angelis C, Cozzolino A, et al.
Dopamine D2 receptor expression in the corticotroph cells of the human normal
pituitary gland. Endocrine (2017) 57(2):314–25. doi: 10.1007/s12020-016-1107-2

76. Godbout A, Manavela M, Danilowicz K, Beauregard H, Bruno OD, Lacroix A.
Cabergoline monotherapy in the long-term treatment of cushing’s disease. Eur J
Endocrinol (2010) 163(5):709–16. doi: 10.1530/EJE-10-0382

77. Lila AR, Gopal RA, Acharya SV, George J, Sarathi V, Bandgar T, et al. Efficacy of
cabergoline in uncured (persistent or recurrent) cushing disease after pituitary surgical
treatment with or without radiotherapy. Endocr Pract Off J Am Coll Endocrinol Am
Assoc Clin Endocrinol (2010) 16(6):968–76. doi: 10.4158/EP10031.OR

78. Vilar L, Naves LA, Azevedo MF, Arruda MJ, Arahata CM, Moura E Silva L, et al.
Effectiveness of cabergoline in monotherapy and combined with ketoconazole in the
management of cushing’s disease. Pituitary (2010) 13(2):123–9. doi: 10.1007/s11102-
009-0209-8

79. Pivonello R, De Martino MC, Cappabianca P, De Leo M, Faggiano A, Lombardi
G, et al. The medical treatment of cushing’s disease: effectiveness of chronic treatment
with the dopamine agonist cabergoline in patients unsuccessfully treated by surgery. J
Clin Endocrinol Metab (2009) 94(1):223–30. doi: 10.1210/jc.2008-1533

80. Barbot M, Albiger N, Ceccato F, Zilio M, Frigo AC, Denaro L, et al. Combination
therapy for cushing’s disease: effectiveness of two schedules of treatment: should we
start with cabergoline or ketoconazole? Pituitary (2014) 17(2):109–17. doi: 10.1007/
s11102-013-0475-3

81. Burman P, Edén-Engström B, Ekman B, Karlsson FA, Schwarcz E, Wahlberg J.
Limited value of cabergoline in cushing’s disease: a prospective study of a 6-week
treatment in 20 patients. Eur J Endocrinol (2016) 174(1):17–24. doi: 10.1530/EJE-15-
0807

82. Ferriere A, Cortet C, Chanson P, Delemer B, Caron P, Chabre O, et al.
Cabergoline for cushing’s disease: a large retrospective multicenter study. Eur J
Endocrinol (2017) 176(3):305–14. doi: 10.1530/EJE-16-0662

83. Andersen IB, Andreassen M, Krogh J. The effect of dopamine agonists on
metabolic variables in adults with type 2 diabetes: a systematic review with meta
analysis and trial sequential analysis of randomized clinical trials. Diabetes Obes Metab
(2021) 23(1):58–67. doi: 10.1111/dom.14183

84. Shirley M. Ketoconazole in cushing’s syndrome: a profile of its use. Drugs Ther
Perspect (2021) 37(2):55–64. doi: 10.1007/s40267-020-00799-7
Frontiers in Endocrinology 11
85. Young J, Bertherat J, Vantyghem MC, Chabre O, Senoussi S, Chadarevian R,
et al. Hepatic safety of ketoconazole in cushing’s syndrome: results of a compassionate
use programme in France. Eur J Endocrinol (2018) 178(5):447–58. doi: 10.1530/EJE-17-
0886

86. Castinetti F, Morange I, Jaquet P, Conte-Devolx B, Brue T. Ketoconazole
revisited: a preoperative or postoperative treatment in cushing’s disease. Eur J
Endocrinol (2008) 158(1):91–9. doi: 10.1530/EJE-07-0514

87. Castinetti F, Guignat L, Giraud P, Muller M, Kamenicky P, Drui D, et al.
Ketoconazole in cushing’s disease: is it worth a try? J Clin Endocrinol Metab (2014) 99
(5):1623–30. doi: 10.1210/jc.2013-3628
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