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Appropriate whole genome
amplification and pathogenic
loci detection can improve the
accuracy of preimplantation
genetic diagnosis for
deletional a-thalassemia

Yueyun Lan1,2,3,4†, Hong Zhou1,3†, Sheng He1,2,3,4,5,6, Jinhui Shu1,3,
Lifang Liang1,2,3,5,6, Hongwei Wei1,2,3,4,5,6, Jingsi Luo1,2,3,4,
Caizhu Wang1,3, Xin Zhao1,3, Qingming Qiu1,2,3,4,5*

and Peng Huang1,2,3,4,5*

1Maternal and Child Health Hospital of Guangxi Zhuang Autonomous Region, Nanning, China, 2Birth
Defects Prevention and Control Institute of Guangxi Zhuang Autonomous Region, Nanning, China,
3Guangxi Key Laboratory of Reproductive Health and Birth Defect Prevention, Nanning, China,
4Genetic and Metabolic Central Laboratory of Maternal and Child Health Hospital of Guangxi Zhuang
Autonomous Region, Nanning, China, 5Guangxi Key Laboratory of Precision Medicine for Genetic
Diseases, Nanning, China, 6Guangxi Key Laboratory of Birth Defects Research and Prevention,
Nanning, China
Objective: To improve the accuracy of preimplantation genetic testing (PGT) in

deletional a-thalassemia patients.

Design: Article.

Patient(s): fifty-two deletional a-thalassemia couples.

Intervention(s): Whole genome amplification (WGA), Next-generation

sequencing (NGS) and PCR mutation loci detection.

Main outcomemeasures:WGA, Single nucleotide polymorphism (SNP) and PCR

mutation loci detection results; Analysis of embryo chromosome copy number

variation (CNV).

Results: Multiple Displacement Amplification (MDA) and Multiple Annealing and

Looping–Based Amplification Cycles (MALBAC) methods for PGT for deletional

a-thalassemia. Blastocyst biopsy samples (n = 253) were obtained from 52

deletional a-thalassemia couples. The results of the comparison of

experimental data between groups MALBAC and MDA are as follows: (i) The

average allele drop-out (ADO) rate, MALBAC vs.MDA = 2.27% ± 3.57% vs. 0.97% ±

1.4%, P=0.451); (ii) WGA success rate, MALBAC vs. MDA = 98.61% vs. 98.89%,

P=0.851; (iii) SNP haplotype success rate, MALBAC vs.MDA = 94.44% vs. 96.68%,

P=0.409; (iv) The result of SNP haplotype analysis is consistent with that of Gap-

PCR/Sanger sequencing results, MALBAC vs. MDA = 36(36/72, 50%) vs. 151(151/

181, 83.43%), P=0; (v) Valid SNP loci, MALBAC vs. MDA = 30 ± 9 vs. 34 ± 10,
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P=0.02; (vi) The mean CV values, MALBAC vs. MDA = 0.12 ± 0.263 vs. 0.09 ±

0.40, P=0.916; (vii) The average number of raw reads, MALBAC vs.

MDA =3244259 ± 999124 vs. 3713146 ± 1028721, P=0; (viii) The coverage of

genome (%), MALBAC vs. MDA = 5.02 ± 1.09 vs. 5.55 ± 1.49, P=0.008.

Conclusions: Our findings indicate that MDA is superior to MALBAC for PGT of

deletional a-thalassemia. Furthermore, SNP haplotype analysis combined with

PCR loci detection can improve the accuracy and detection rate of deletional

a-thalassemia.
KEYWORDS

deletional a-thalassemia, preimplantation genetic testing, whole genome amplification,
SNP haplotype analysis, next generation sequencing
1 Introduction

Thalassemia is one of the most common monogenic diseases in

the clinic and comprises a group of hereditary anemias caused by

reduced or even absence of one or more globin chains synthesis

disorders due to the abnormal globin gene (1). Its symptoms can

range from asymptomatic to transfusion-dependent (2). a-
Thalassemia is an autosomal recessive disorder cause by deletion

or single nucleotide variants (SNVs) in the a-1 and a-2 genes (cis

tandem) of the a-like globin gene clusters located at 16p13.3 (chr16:

199800–233300) (3), which result in insufficient synthesis of a-
globin peptide chains. a0 -Thalassemia is defined as a deletion or

abnormality in one alpha gene on each chromosome, while a+

thalassemia is defined as a deletion or abnormal in only one a gene

on one chromosome. Southeast Asia deletion a0-thalassemia

(–SEA), 3.7-kb deletion (-a3.7) and 4.2-kb deletion (-a4.2) are the

three most common homozygous mutations of deletional a-
thalassemia in China (4). In addition, a-1 or a-2 gene SNVs

cause non-deletional a-thalassemia (a+). The common a+ genes

are Hb constant Spring (aCSa), Hb Westmead (aWSa) and Hb

Quang Sze (aQSa). The gene frequencies of aCSa, aWSa and aQSa
recorded at 0.24%, 0.26% and 0.06%, respectively (4). Silent carriers

of a-thalassemia with only one gene mutation are asymptomatic

and require no treatment. Mild a-thalassemia includes a0

-thalassemia heterozygotes (–/aa), a+-thalassemia homozygotes

(a/-a) or double heterozygotes (-a/aTa). These individuals are

asymptomatic carriers with no obvious clinical symptoms. a0-

Thalassemia, is combined with a milder form, a+-thalassemia, it

can lead to the Hemoglobin H (Hb H) disease (5). Due to the

instability of this disorder, affected individuals have increased

hemolysis and a mild-to-moderate anemia with marked

microcytosis and hypochromia (6). Homozygous a0-thalassemia

(–SEA/–SEA) causes Hb Bart’s hydrops fetalis syndrome, which

usually results in death either in late gestation or within several

minutes of delivery. Hb Bart’s hydrops fetalis syndrome is the most

severe form of a-thalassemia. Due to the deletion of all four alpha

globin genes on chromosome 16, the alpha globin chain is

completely lacking, and the g globin chain itself polymerized into
02
the tetramer g4 (7). The extremely high affinity of this form of

hemoglobin for oxygen causes tissue hypoxia, resulting in fetal

edema and premature birth or stillbirth (8, 9).

Pre-implantation genetic testing (PGT) refers to the genetic

testing of pre-implantation embryos in assisted reproduction and

the selection of embryos without pathogenic mutations for uterine

implantation to avoid familial genetic diseases. PGT can be

performed for monogenic disorders or single gene defects (PGT-

M), for chromosomal structural rearrangements (PGT-SR), and for

aneuploidy detection (PGT-A) (10). PGT-M refers to the

identification of nuclear DNA pathogenic variant(s) of a single

gene associated with disease for which the pathogenic locus has

been identified (11, 12). Such variants have an autosomal dominant,

autosomal recessive or X-linked transmission pattern, and the

disease-causing locus has been clearly identified in the offspring

of affected individuals. If the prospective parents are both carriers of

the HBA gene, the chances of giving birth to a child with severe a-
thalassemia are one in four (2). Techniques for preventing the birth

of children with moderate-to-severe thalassemia include prenatal

and PGT (13). However, compared with traditional prenatal

diagnosis, PGT offers the advantage of avoiding the physical and

psychological harm to pregnant women caused by termination of

the pregnancy (13). Therefore, PGT technology can be used to select

genetically normal embryos (14).

Currently, there are no effective medical treatments for Hb

Bart’s hydrops fetalis syndrome or Hb H disease, and scientific and

technological advances is required to prevent such birth defects.

Thus, to prevent the transmission of HBA mutations, PGT can be

considered for couples at high risk of having offspring with Hb

Bart’s fetal edema syndrome or Hb H disease after genetic

counseling. PGT technology, including whole genome

amplification (WGA), single nucleotide polymorphism (SNP)

haplotype analysis or next-generation sequencing (NGS),

represents a major improvement in that some related preclinical

examinations can be omitted, which reduces the workload of the

laboratory and the waiting time for couples. Multiple Displacement

Amplification (MDA) and Multiple Annealing and Looping–Based

Amplification Cycles (MALBAC) methods are commonly used for
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WGA. In this study, we evaluated the MDA and MALBACmethods

amplified blastocyst trophoblastic ectodermal cells to test for

deletional a-thalassemia. SNP haplotype analysis combined with

PCR mutation loci detection were used to diagnose whether the

embryo carried HBA gene deletional mutation.
2 Materials and methods

2.1 Patients

This study was conducted according to principles of the

Helsinki Declaration and was approved by the Institutional

Review Board (IRB) of Maternal and Child Health Hospital of

Guangxi Zhuang Autonomous Region (No. [2021-5] 4). A total of

52 couples with both individuals carrying deletional mutations in

the HBA gene received PGT treatment after being evaluated by

geneticists and infertility specialists at the reproductive center of our

institution between July 1, 2020 and May 31, 2022. Each couple

provided written informed consent before the PGT cycle. Karyotype

analyses with conventional G-banding demonstrated that the

karyotypes of these couples were normal. None of the couples

enrolled had any underlying diseases. However, 22 out of 52

(42.31%, 22/52) deletional a-thalassemia couples had conceived a

fetus with Hb H disease or Hemoglobin Bart’s hydrops fetalis

syndrome. In the MALBAC group, there were 16 cases of

deletional a-thalassemia. In the MDA group, there were 36 cases

of deletional a-thalassemia, with –SEA/aWSa genotype identified in

the spouses in two of the couples.
2.2 Pedigree analysis

2.2.1 Selection of appropriate detection methods
for HBA gene mutations

To improve the accuracy of pedigree verification, two different

detection methods were used to verify whether the samples carrying

HBA gene mutations. For deletional a-thalassemia, we performed

Gap-PCR and SNP haplotype analyses to identify mutation loci.

Sanger sequencing and SNP haplotype analysis were used to

identify a-thalassemia non-deletion mutation loci.

2.2.2 Mutation loci detection of HBA gene
(i) Genomic DNA was isolated from peripheral blood

lymphocytes using LabAid DNA kit (Zeesan Biotech Co., Ltd,

Xiamen, China). (ii) Gap-PCR: The deletion thalassemia assay kit

(Yikon Genomics, Shanghai, China) was used to detect the deletion

range and break point of –SEA, -a4.2, and -a3.7. Deletion region

external primers and standard internal control primers were

designed. The sequence of primers is shown in Supplementary

Materials Table 1. Gap-PCR was performed according to the

manufacturer’s instructions with the following PCR reaction

system: 2× Goldstar Master Mix 10 µL, mutation site PCR primer

1 mL, DNA template X mL (30 ng), ddH2O supplementation to
Frontiers in Endocrinology 03
20 µL system. The PCR reaction conditions were as follows: (i) –SEA/

aa, pre-denaturation at 95°C for 10 min; 95°C for 30 s, 55°C for 30

s, 72°C for 45 s (35 cycles); extension at 72°C for 5 min, 8°C, forever;

(ii) -a3.7/aa, pre-denaturation at 95°C for 10 min; 97°C for 45 s, 65°

C for 90 s, 72°C for 180 s (35 cycles); extension at 72°C for 5 min, 8°

C, forever; (iii) -a4.2/aa, pre-denaturation at 95°C for 10 min; 95°C

for 45 s, 61°C for 90 s, 72°C for 180 s (35 cycles); extension at 72°C

for 5 min, 8°C, forever. (iv) Sanger sequencing: aWSa was detected

using Sanger sequencing. The PCR mixture consisting of 1 mL 0.4

nM mutation point specific primer, 10 mL 2× GoldStar Best

MasterMix (CWBIO, China), 30 ng purified WGA product, and

9-X ddH2O added to achieve a total volume of 20 mL. The PCR

cycling conditions were as follows: pre-denaturation at 94°C for

5 min; 94°C for 30 s, 68°C for 2 min (40 cycles); extension at 72°C

for 10 min, 8°C, forever. For purification, 1 mL of the prepared

digestion solution (0.5 mL alkaline phosphatase: 0.5 mL exonuclease

І) was added to the PCR reaction solution and mixture was

incubated at 37°C for 6 min followed by 80°C for 15 min. The

purified PCR product was then stored at 4°C. Sanger sequencing

was performed using the SEQ Mix according to ABI PRISM®

BigDye® Terminator v3.1 Cycle Sequencing Kit. Briefly, 3.5 mL
Mix, 1 mL primer, and 1 mL PCR product were mixed a 96-well plate

according to the sequencing reaction protocol. The SEQ procedure

was as follows: pre-denaturation at 96°C for 2 min; 96°C for 10 s,

55°C for 5 s, 60°C for 90 s (25 cycles); maintained at 4°C. The

sequencing reaction system was purified with 85%, 70% ethanol and

deionized formamide, denatured at 96°C for 2 min, cooled to 4°C,

and denatured before sequencing (ABI 3730, Thermo Fisher

Scientific, USA).

2.2.3 Constructing SNP haplotypes
DNA samples of couples, normal offspring, parents, other

family members or probands were used to establish SNP

haplotypes at the pathogenic mutation loci of the HBA gene and

to identify valid SNP loci. To determine the HBA gene SNP

haplotype, SNP markers within 1 Mb upstream and downstream

of the related mutation loci were selected as linkage analysis

markers. The target PCR products of the SNP library were

enriched using the Universal NGS Library Preparation Kit (Yikon

Genomics, Shanghai, China). The key steps included multiple

amplification of gene-specific primers, purification of amplified

products, enzymatic hydrolysis of non-target fragments,

purification of enzymatic hydrolysis products, PCR enrichment

library construction, product purification, and pooling. The SNP

library was sequenced on the Illumina MiSeq platform (Illumina,

USA). The specific SNP loci selected were analyzed by Illumina SNP

Genotyping Bead Array to construct haplotypes for linkage analysis.

A series of associated SNP loci upstream and downstream of the

target regions were selected as genetic markers. If the father is

heterozygous C/G in an SNP marker, the mother is homozygous C/

C and the affected male proband inherits the mutant allele C, we can

infer that the C base from the father is linked to the mutant allele

and the G base is linked to the normal allele (15). The SNP

haplotypes results were verified by Sanger sequencing or Gap-PCR.
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2.2.4 cases grouping
The grouping conditions are as follows: (i) There are more than

2 valid SNPs in the upstream and downstream regions of the HBA

gene in the couples. The MALBAC method was selected is used for

WGA. (ii) There are fewer than 2 valid SNP loci in the upstream

and downstream regions of the HBA gene in one or both of the

prospective parents. The MDA method was selected is used

for WGA.
2.3 Blastocyst trophectoderm cells biopsy

The women who entered the PGT cycle underwent different

ovulation schemes according to their situation, followed by

intracytoplasmic sperm injection (ICSI) and embryo culture.

Blastocyst trophoblastic ectodermal cell biopsy were obtained

from blastocysts using the following protocol: (i) The embryonic

biological samples for biopsy were assigned a unique number; (ii)

The D3 embryos were transferred into the pre-prepared blastocyst

growth dish for zona pellucida laser drilling; (iii) blastocysts ≥3 BC

were selected for biopsy. The blastocysts (1/droplet) were then

transferred into a biopsy dish before 5–8 trophoblast ectodermal

cells were removed with a biopsy needle. Early-stage blastocysts

with no trophectoderm cells observed exiting from the pore were

observed for dilation at D5 PM or D6 PM. If the blastocyst had

dilated but no incubated embryo cells were observed, the zona

pellucida was re-drilled, and the biopsy needle was replaced to

collect ectoderm cells. At the same time, a laser was used to remove

the cells at the cell junction to extract the ectoderm cells; (iv) Using

a biopsy needle, the biopsied blastocysts were quickly transferred

into the dishes containing pre-prepared blastocyst culture medium,

incubated at 37°C under 5% CO2 prior to freezing operation

(ensuring that the number of the blastocyst freezing label is

consistent with the unique biopsy number). (v) The biopsy dish

containing the trophoblast ectodermal cells of the blastocyst were

then at 37°C under 5% CO2 prior to further treatment.
2.4 embryo freezing

It is important to ensure that the number of blastocysts in each

frozen cell is exactly the same as the number of blastocysts at the

time of the biopsy and the number of trophectoderm cells sent for

PGD diagnosis. The freezing reagents ES and VS were removed

from the freezer at 2-8°C and equilibrated at room temperature for

30min. The embryo is placed in ES equilibrium for about 8 min and

then transferred to VS when its shape returns to 80 - 90% of its

original shape. The embryos were washed several times in the VS to

remove as much of the ES solution as possible. The crypt containing

the embryos was placed on a pole specially designed for embryo

freezing and placed in liquid nitrogen after loading. Ensure that the

time between embryo washing from VS to liquid nitrogen

placement is less than 1 minute. An external cannula was placed

to insulate the embryo from liquid nitrogen.
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2.5 Embryonic HBA gene
mutation detection

2.5.1 WGA
2.5.1.1 MDA assay

Biopsy samples were amplified using a REPLI-g Single Cell Kit

(QIAGEN, Germany) following the manufacturer’s protocol. The

denaturation buffer was prepared by mixing 0.25 mL DTT (1 M)

with 2.75 mL buffer DLB. Subsequently, 3 mL freshly prepared

denaturing buffer was added to the sample tube containing 4 mL
PBS and the biopsy sample. After incubation for 10 min at 65°C, 3

mL stop solution was added to the sample tube. The amplification

mixture consisted of 9 mL H2O, 29 mL REPLI-g sc Reaction Buffer,

and 2 mL REPLI-g sc DNA polymerase. The amplification mixture

was added to 10 mL denatured DNA and incubated at 30°C for 4 h

followed by heat inactivation at 85°C for 5 min.

2.5.1.2 MALBAC assay

Biopsy samples were amplified using a Universal Sample

Preparation Kit (Yikon Genomics, Shanghai, China). The

protocol involves a cell lysis procedure to release the DNA for use

as an initial template in a 5 mL reaction volume (0.5 mL lyase, 4.5 mL
lysis buffer with sample). The PCR reaction conditions were as

follows: 20 min at 50°C followed by 10 min at 80°C and then

maintained at 4°C. The amplification mixture contained 60 mL
amplification buffer solution, 2 mL amplification enzyme. Then, 60

mL of the freshly prepared amplification reaction solution was

added to the lysate, and the amplification reaction was performed

as follows: 94°C for 3 min; 10°C for 20 s, 30°C for 30 s, 50°C for 40 s,

70°C for 2 min, 95°C for 20 s (8 cycles); 94°C for 3 s; 94°C for 30 s,

58°C for 15 s, 72°C for 2 min (17 cycles); 72°C for 5 min; maintained

at 4°C. The amplified product was immediately used in experiments

or stored at −20°C.

2.5.2 Gap-PCR
Gap-PCR experiments as previously described in Mutation loci

detection of HBA gene.

2.5.3 Sanger sequencing
Sanger sequencing as previously described in Mutation loci

detection of HBA gene.
2.6 SNP linkage analysis for PGT-M and
NGS-based analysis for PGT-A

2.6.1 Construction of SNP library
Construction of SNP library as previously described

Constructing SNP haplotypes.

2.6.2 Construction of CNV library
The CNV library fragmentation products were enriched using

the Universal DNA Fragmentation Kit (Yikon Genomics, Shanghai,

China), and library construction was performed directly. The key
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steps involved random splicing of double-stranded DNA into 200–

500 bp fragments, DNA end repair, adapter ligation, ligation

product purification, PCR enrichment, and library purification.

CNV libraries were sequenced on the Illumina MiSeq platform

(Illumina, USA). BlueFuse Multi software was used to process and

analyze the MiSeq data. Similar but not identical reads were

required to pass a series of quality assurance metrics. Each aligner

read count was assigned to a bin cell with a default length of 1 Mb to

calculate the CNVs. Unique mapped reads were then calculated to

obtain a reference data set representing the relative copy number

(16, 17). Aneuploid calling was carried out manually by technicians

using BlueFuse Multi based on individual observations of the

deviation from the default copy number of two. The coefficient of

variation (CV) was calculated as the ratio of the standard deviation

of the original data to the mean of the original data. The CV value

represents the quality control index used to evaluate the degree of

CNV dispersion, and should be <0.25.
2.7 Embryo transfer

Unaffected and euploid blastocysts were identified as transferrable

embryos. In the subsequent in vitro fertilization-embryo transfer (IVF-

ET), the transplantation period was selected based on the luteal phase

support. The specific process mainly involves the body position and

vaginal cervical preparation, transfer of the embryo into the transfer

tube, and transfer of the embryo into the uterine cavity. Growth fluid,

air bubble, growth fluid, embryo, air bubble and growth fluid are

inhaled in turn in the transplant tube. The implantation tube

containing the embryo is inserted accurately and gently into the

uterine cavity through the cervix. The growth fluid and embryo are

slowly injected at a distance of 0.5 cm from the uterine floor, for a total

injection of no more than 0.03 ml. The transplant tube was withdrawn

after 10 seconds of standing. Transplant tubes and petri dishes were

examined under a solid microscope to verify that embryo had been

transplanted into the uterus.
2.8 Statistical analysis

Statistical analyses were conducted using the Mann–Whitney

U-test and chi-square test in IBM SPSS Statistics software (version

20.0). P < 0.05 was considered to indicate statistical significance.
3 Results

3.1 Pedigree validation before PGT

The MALBAC group consisted of 72 blastocyst biopsy samples

obtained from 16 couples and the MDA group consisted of 181

blastocyst biopsy samples obtained from 36 couples. The genotypes

of these patients are shown in the Supplementary Materials Excel 1.

The average maternal ages of the MALBAC and MDA groups were

33.19 ± 5.089 years and 32.50 ± 4.789 years, respectively, with no

significant difference between the two groups (P = 0.766).
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3.2 Comparison of the MALBAC and
MDA groups

3.2.1 WGA results between MALBAC and
MDA groups

The average allele drop-out (ADO) rate in the MALBAC group

was significantly higher than that in the MDA group (2.27% ±

3.57% vs. 0.97% ± 1.4%, respectively; P = 0.451). The results of the

study were summarized below: (i) In the MALBAC group, the

WGA success rate was 98.61% (71/72), WGA amplification failed in

1 sample, and the SNP detection success rate was 94.44% (68/72).

The results of SNP haplotype analysis in 36 (36/72, 50%) samples

were consistent with the Gap-PCR results. In the remaining 36

samples, the results of SNP haplotype detection were inconsistent

with the results of Gap-PCR detection (5 samples of ADO, 27

samples of external region primer amplification failure, 2 samples of

SNP detection failure due to trisomy 16/16p abnormality, and 2

samples of external region primer amplification failure with trisomy

16/16p abnormality). (ii) In the MDA group, the WGA success rate

was 98.89% (179/181), WGA amplification failed in 2 samples, and

the SNP detection success rate was 96.68% (175/181). The results of

SNP haplotype analysis in 151 (151/181, 83.43%) samples were

consistent with Sanger sequencing and/or the Gap-PCR results. In

the remaining 28 samples, the results of SNP haplotype detection

were inconsistent with the results of Gap-PCR detection (2 samples

of ADO, 16 samples of external region primer amplification failure,

8 samples of SNP detection failure due to trisomy 16/monosomy

16/16p abnormality, and 1 sample of abnormal detection

(unqualified quality control), 1 sample of triploidy). (iii) The chi-

squared values of WGA success rate, SNP success rate, and the

results of SNP and Gap-PCR/Sanger Sequencing were consistent in

groups MALBAC and MDA at 0.851, 0.409 and 0, respectively. (iv)

The number of valid SNP loci between groups MALBAC and MDA

is statistically significant (30 ± 9 vs. 34 ± 10, P=0.02). The above data

was shown Table 1.

3.2.2 The results of SNP linkage analysis were
inconsistent with those of PCR-based mutation
loci detection

External region primer amplification failure, Sanger sequencing

failure, and a high ADO rate can lead to inconsistent results

between the SNP analysis and the PCR-based mutation loci

detection. If the SNP linkage analysis is inconsistent with the

Sanger sequencing and/or Gap-PCR results, the results of the

SNP linkage analysis prevail. If the SNP linkage analysis fails, the

Sanger sequencing and/or Gap-PCR results are accepted. In

addition, CNVs in the HBA gene region of chromosome 16 will

lead to failure in constructing the SNP haplotype. At this time, the

diagnosis of pathogenic loci in embryos is based on PCR-based

mutation loci detection. The detection results for some embryos

indicated that the embryos did not carry the HBA gene mutation,

while SNP linkage analysis showed that these embryos did. For

example, the MALBAC method was used for WGA when the

genotypes of a couple were identified as –SEA/aa and -a3.7/aa.
SNP analysis revealed that the couple’s affected two embryos were

a-thalassemia minor (–SEA/aa) and a silent gene (-a3.7/aa) carrier.
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TABLE 1 The results of WGA and SNP haplotype analysis in MALBAC and MDA groups.

ion
e

Comparison of SNP and Gap-PCR/
sanger sequencing detection results
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However, corresponding electrophoretic bands were not detected in

the Gap-PCR analysis of the two affected embryos due to the failure

of the external primer amplification for –SEA and -a3.7 (Figure 1).

SNP assay failed in samples with trisomy on chromosome 16 or

CNV of chromosome 16p. Figure 2 shows abnormal SNP detection

in embryo 2, and the corresponding band appeared in the second

lane of the Gap-PCR analysis, indicating that the embryos

were unaffected.
3.3 PGT-A outcomes

CNV detection is used to identify fragments with deletion/

duplication >4 Mb, and mosaic >40% of chromosome. In the study,

the CNV status of the MALBAC and MDA groups were confirmed

by NGS-based PGT-A. Three samples in each group failed the CNV

analysis, as did the HBA allele amplification, confirming the WGA

failure. The MALBAC and MDA groups had 38 (38/72, 52.78%)

and 86 (86/181, 47.51%) embryos with CNVs, respectively

(P=0.450). In some cases, we found that CV values of two

embryos in the MALBAC group were <0.25, and there were no

abnormal fragments larger than 4Mb. But, the overall genome-wide

CNV map showed that the CNVs were scattered rather than

concentrated (Figure 3). The basic quality control parameters for

the two groups of sequencing results are as follows: (i) The mean
Frontiers in Endocrinology 07
CV values of MALBAC and MDA groups are 0.09 ± 0.40 and 0.12 ±

0.263, respectively. The CV values were not statistically significant

in the two groups (P=0.082). (ii) The average number of raw

reads was 3244259 ± 999124 and 3713146 ± 1028721 for group

MALBAC and MDA, respectively. There was a statistically

significant difference between the two groups (P=0). (iii) The

coverage of genome (%), MALBAC vs. MDA = 5.02 ± 1.09 vs.

5.55 ± 1.49. The difference between the two groups was statistically

significant (P=0.008).
3.4 Clinical outcomes

The optimal embryos were selected for transplantation based

on the results of genetic testing and embryo quality analysis.

Among the 38 cases of IVF-ET, successful implantation occurred

in 32 cases, 13 cases are ongoing pregnancy, biochemical

pregnancy occurred in 8 cases, successful delivery was achieved

in 11 cases. Table 2 describes the healthy live births in 11 different

families after PGT-M and PGT-A treatment. The 11 families

chose single embryo transfer, no chromosomal abnormalities >4

Mb were identified. Invasive prenatal diagnosis was performed

through amniocentesis at 12 weeks of pregnancy. The results of

prenatal diagnosis were consistent with those of the pre-

implantation genetic testing.
A

B

DC

FIGURE 1

The results of PCR loci mutation detection and SNP haplotype analysis were inconsistent due to ADO and failure of external primer amplification.
(A) –SEA external primer failed to amplify in Gap-PCR assay. (B) -a3.7 external primer failed to amplify in Gap-PCR assay. (C) C and A are derived from
the same biopsy sample, and C is the result of SNP haplotype analysis of the sample; (D) D and B are derived from the same biopsy sample, and D is
the result of SNP haplotype analysis of the sample. Lane 1 and lane 7 were normal control and blank control, respectively. Lanes 2 to 6 are the bands
of embryo samples 1 to 5 of the family, respectively. Pat: paternal haplotype, mat: maternal haplotype; *: ADO; Number: relative distance from the
upstream and downstream of the HBA gene (unit Kb); Left SNP site: green and purple represent the SNP site upstream or downstream of the
chromosomal location where the gene is located, respectively; Line within haplotype: represents pathogenic chain.
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4 Discussion

Since theHBA gene is located near the telomere (comprises only

200 kb). Consequently, there are fewer SNPs upstream of the HBA

gene. The distribution of SNP locus in the human genome is

homogeneous with a small spatial extent (18). Sufficient SNP loci

available upstream and downstream for both male and female

partners (SNPs >2 or more) can prevent misinterpretation caused

by a low proportion of chromosomal exchanges. In MALBAC

group (SNPs≥2), SNP haplotype analysis does not depend on

Gap-PCR results to determine the pathogenic loci of samples, and

can avoid the risk of misinterpretation due to chromosome
Frontiers in Endocrinology 08
exchange. In MDA group (SNP<2), the determination of the

pathogenic loci in the samples using SNP haplotype analysis

require combination of Gap-PCR results. If no upstream SNP

locus is available, the risk of misjudgment due to chromosome

exchange cannot be avoided. What’s more, external primer

amplicons of large fragment deletion may not be possible direct

detection if MALBAC method (amplification fragment length: 0.2-

2kb) is used.

Our data showed that the ADO rate of the MDA group was

lower than that of the MALBAC group (0.97% ± 1.4% vs. 2.27% ±

3.57%, P=0.451) and the consistency rate between Sanger

sequencing and/or Gap-PCR results and SNP haplotype analysis
A B

C

FIGURE 2

Trisomy 16 results in the failure of SNP detection in –SEA thalassemia biopsy samples. (A) the whole genome CNV map of embryo 2. Chr:
chromosome. Numbers on the left: 0, deletion; 2, diploid; 4/6: duplication. (B) –SEA external primer amplifies in Gap-PCR assay. The red box is the
electrophoresis result of embryo 2. Lane 1 and lane 7 were normal control and blank control, respectively. Lanes 2 to 6 are the bands of embryo
samples 1 to 5 of the family, respectively. (C) SNP linkage analysis. Pat: Paternal, mat: maternal; Number: relative distance from the upstream and
downstream of the HBA gene (unit Kb); Left SNP site: green and purple represent the SNP site upstream or downstream of the chromosomal
location where the gene is located, respectively; Line within haplotype: represents pathogenic chain.
FIGURE 3

CNV map of the whole genome. Chr: chromosome. Numbers on the left: 0, deletion; 2, diploid; 4/6: duplication. Lane 1 and lane 7 were normal
control and blank control, respectively. Lanes 2 to 6 are the bands of embryo samples 1 to 5 of the family, respectively.
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in MDA group was higher than that in the MALBAC group (83.43%

vs. 50%, P=0). As a foundation for PGT, the WGA should be

selected based on clinical application (19). MDA is a non-PCR-

based amplification technique that uses multiple displacement

Phi29 DNA polymerase with random primers under isothermal

conditions to amplify the target genome (20). Compared with PCR-

based WGA methods, MDA reduces amplification bias by 4–6

orders of magnitude, and produces fragments of >10 kb (21). In

contrast, MALBAC produces short fragments, rendering this

method more prone to allele deletion (22). Thus, MDA can avoid

false negatives due to amplification. Moreover, the MDA group had

a higher number of valid SNPs than the MALBAC group in the

study. It was found that the amplification efficiency of the MDA

technique is higher than that of the MALBAC technique, and that

the SNP is better detected (22).

Our results demonstrate that SNP haplotype analysis combined

with Gap-PCR and Sanger sequencing could improve the diagnosis of

whether embryos from patients with deletional a-thalassemia carry the

HBA gene mutation. Gap-PCR cannot detect both deletions and

mutations and requires manual interpretation of the electrophoretic

maps, which is not only prone to human error but also difficult to

improve efficiency. SNP haplotype analysis only requires the

establishment of a detection process to detect both deletions and

mutations, and the procedure is simple and easy to automate. SNP

loci can be used to accurately determine the parental origin of the target

genes, especially chromosome recombination and localization (18).

There are unaffected relatives in the family, haplotype analysis can still

be carried out by directly detecting the mutation loci by NGS and using

the affected embryos or gametes as probands (23). However, the

deletion regions of the -a3.7 and -a4.2 were not fixed and were in a

floating state, resulting in large primer amplified fragments. While the

sequencing fragments of the NGS platform were short, and it was

difficult to detect the entire PCR amplified fragments. In addition, SNP

haplotype analysis cannot be performed when CNV is present in the

HBA gene on chromosome 16. In summary, it is necessary to detect

HBA gene through both SNP and Gap-PCR/Sanger sequencing.
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There was no significant difference in CV values between theMDA

and MALBAC groups in our study. Moreover, the average number of

raw reads and the coverage of genome (%) of MDA group are superior

to that of MALBAC group. This suggests that the MDAmethod is also

suitable for CNV analysis in deletional a-thalassemia. The finding was

in contrast to previous study, where MALBAC yielded the most

uniform CNV values after normalization (19). We speculated that

this discrepancy might be related to differences in the developmental

stages of the embryos analyzed. We focused mainly on blastocyst

trophectoderm cells from deletional a-thalassemia, while the previous

study focused mainly on fibroblast samples with defined b-thalassemia

variations and single-blastomere samples. Although our data showed

no abnormal CNV fragments >4 Mb in several samples, the overall

genome-wide CNV map was relatively scattered. However, the risk of

abnormalities in such embryos with CNV smaller than 4 Mb remains.

Therefore, we recommend a second biopsy to confirm the presence of

small pathogenic CNV fragments of in the samples. Without a second

biopsy, these embryos should be inspected carefully before

transplantation. There is also a special case where all embryo

samples from the same patient have deletions or duplications in

similar regions. The abnormal fragments in some embryos may

occur in two segments, especially the 46, XN embryos reported at 4

M resolution. This observation should be considered from two

perspectives: (i) The CNVs may come from parents. In this case, we

recommend that the couples get tested for genome-wide CNV to

confirmwhether the CNVs are inherited; (ii)We should also determine

whether the CNVs have been recorded in genetic databases such as

OMIM and DECIPHER.

PGT-M plus PGT-A cycles have resulted in a significantly

increased pregnancy rate and decreased spontaneous abortion rates

compared to PGT-M processes alone (24). Even in younger women,

PGT-M plus PGT-A significantly improved live birth rates of FET

cycles compared to PGT-M alone (25). Since the rate of chromosomal

abnormalities increases with maternal age (26), the cost-effectiveness of

PGT-A would increase with maternal age (27). PGT-M combined with

PGT-A provides 80% of couples with satisfactory genetic test results
TABLE 2 The primary clinical information of the 11 healthy live births.

Family Maternal
genotype

Paternal
genotype

Maternal
age (year)

Embryo
genotype

Embryo
grading

WGA
method

Embryo
Karyotype

5 –SEA/aa –SEA/aa 37 aa/aa 4AA MALBAC 46,XN

6 –SEA/aa -a3.7/aa 30 aa/aa 4AB MALBAC 46,XN

7 –SEA/aa –SEA/aa 29 aa/aa 4AA MALBAC 46,XN

9 -a4.2/aa –SEA/aa 28 aa/aa 4AA MALBAC 46,XN

16 -a3.7/aa –SEA/aa 33 aa/aa 4BB MALBAC 46,XN

19 –SEA/aWSa –SEA/aa 29 aWSa/aa 4AA MDA 46,XN

25 –SEA/aa -a4.2/aa 39 aa/aa 4AA MDA 46,XN

29 –SEA/aa –SEA/-a3.7 32 -a3.7/aa 4AB MDA 46,XN

32 –SEA/aa –SEA/aa 30 aa/aa 4AA MDA 46,XN

33 -a3.7/aa –SEA/aa 31 aa/aa 4AB MDA 46,XN

34 –SEA/aa –SEA/aa 33 –SEA/aa 4BB MDA 46,XN
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(28). Thus, we recommend that deletional a-thalassemia patients

undergoing PGT-assisted conception may consider screening of

unaffected or heterozygous embryos for aneuploidy to achieve higher

implantation and pregnancy rates.
5 Conclusions

Although the limitation of this study is that the number of

deletional a-thalassemia samples is small, we found that MDA is

superior to MALBAC as a method for establishing a PGT system for

deletional a-thalassemia. SNP haplotype analysis and PCR mutation

loci detection were applied for PGT-M diagnosis of pathogenic genes

to improve the clinical diagnosis rate and avoid false-negative/false-

positive results. Based on the WGA, the combination of PGT-M and

PGT-A has been shown to improve clinical pregnancy outcomes in

patients with deletional a-thalassemia.
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26. Munné S, Alikani M, Ribustello L, Colls P, Martıńez-Ortiz PA, McCulloh DH.
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