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The diabetic kidney disease (DKD) is the major cause of the chronic kidney

disease (CKD). Enhanced plasma vasopressin (VP) levels have been associated

with the pathophysiology of DKD and CKD. Stimulation of VP release in DKD is

caused by glucose-dependent reset of the osmostat leading to secondary

pathophysiologic effects mediated by distinct VP receptor types. VP is a stress

hormone exhibiting the antidiuretic action in the kidney along with broad

adaptive effects in other organs. Excessive activation of the vasopressin type 2

(V2) receptor in the kidney leads to glomerular hyperfiltration and nephron loss,

whereas stimulation of vasopressin V1a or V1b receptors in the liver, pancreas,

and adrenal glands promotes catabolic metabolism for energy mobilization,

enhancing glucose production and aggravating DKD. Increasing availability of

selective VP receptor antagonists opens new therapeutic windows separating

the renal and extra-renal VP effects for the concrete applications. Improved

understanding of these paradigms is mandatory for further drug design and

translational implementation. The present concise review focuses on metabolic

effects of VP affecting DKD pathophysiology.
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Metabolic syndrome and diabetic kidney disease

Metabolic syndrome is a combination of homeostatic deviations associated with a high

risk of cardiovascular complications, such as dysregulation of lipid metabolism, high blood

glucose levels, and increased blood pressure. Development of the metabolic syndrome is

frequently accompanied by insulin resistance, which is the main pathogenetic mechanism

of the type 2 diabetes mellitus (DM2) (1, 2). Therefore, a large proportion of people with

DM2 displays a complex picture of metabolic pathophysiology encompassing glycemic and

non-glycemic components (1, 2). The etiology and pathogenesis of DM2 comprise genetic

predisposition, obesity, sleep time deficit or excess, as well as other factors associated with

development of insulin resistance and impaired insulin response to glucose or non-glucose
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stimuli (1, 2). Because of the insulin resistance, DM2 is also referred

as insulin-independent DM type. Etiology of the type 1 diabetes

mellitus (DM1) includes genetic risk factors triggering pancreatic

islet autoimmunity followed by insufficient insulin production and

release. Apart from the genetic background, DM1 may be provoked

by environmental influences such as intoxications, pancreatic

infections, or cancer (1). Independently on the etiology, both

DM1 and DM2 lead to progressive reduction of b-cell mass or

impaired b-cell function with hyperglycemia as a clinical

manifestation. People with hyperglycemia are at risk of major

diabetes mellitus complications independently on the diabetes

type (1, 2).

Diabetic Kidney Disease (DKD) belongs to frequent and severe

complications of both insulin-dependent DM1 and insulin-

independent DM2. Clinical features of DKD are largely similar in

the two diabetes mellitus types, typically manifesting as enhanced

urinary albumin excretion, general proteinuria, reduction of the

glomerular filtration rate, disorders of electrolyte and acid-base

homeostasis, or hypertension, depending on the disease progression

(3). The functional renal deteriorations are strongly related to

pathomorphological alterations of kidney tissue encompassing

thickening of glomerular and tubular basement membrane,

mesangial expansion, glomerulosclerosis, sterile inflammation,

arteriolar hyalinosis, and tubulointerstitial fibrosis (4). Even

though the initial pathohistological kidney damage patterns differ

in patients with DM1 vs. DM2, the resulting glomerular

dysfunction and morphological injury due to chronic

hyperglycemia appear to play the decisive role in progression of

DKD to Chronic Kidney Disease (CKD) with ensuing end stage

renal failure (1, 3, 4). Along with hypertension, DKD is the most

common etiologic factor of CKD (NIH) (3, 5).

CKD is caused by a heterogeneous group of disorders and

characterized by the presence of morphological kidney damage or

decline of renal function during three months or longer, irrespective

of the cause (6). The severity of CKD is typically assessed by the

grade of Glomerular Filtration Rate (GFR) reduction, albuminuria,

abnormalities in urinary sediment, as well as morphological kidney

damage detected by imaging techniques or histopathological biopsy

analysis (6).

Despite diversity of the etiologic factors, the pathogenetic

mechanisms of CKD leading to its progress to the end-stage renal

failure are intersecting and include Renin-Angiotensin System

(RAS) hyperactivity, glomerular hyperfiltration with ensuing

glomerusclerosis, renal vasculopathy, as well as cytokine

dysregulation and activation of pro-fibrotic pathways (7–9).

In this context, epidemiologic studies revealed an association

between increased vasopressin (VP) plasma levels and CKD

suggesting a role of excessive VP signaling in pathophysiology of

chronic kidney disorders (10). Elevated plasma VP concentrations

are typically observed in DM1 and DM2 patients (11–13). Animal

models of DM exhibit increased VP levels as well (10, 12). There are

several lines of evidence suggesting that exaggerated VP signaling

aggravates the course of DKD via renal and systemic effects

including dysregulation of glucose and lipid metabolism. VP

antagonists have been increasingly recognized as emerging
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pharmacological strategies for prevention or retardation of CKD

of diabetic and non-diabetic origin (10, 14).

While renal physiological functions of VP has been well

characterized (15–18), available information on its metabolic

effects in other organs and tissues is in part controversial (14).

The global trend, however, is suggestive of a pathophysiological

impact of VP effects on glucose metabolism in DM2 (12, 14, 19, 20).

These pathophysiological effects are mediated by distinct VP

receptor types providing a translational perspective of their

selective targeting towards corrections of certain metabolic

deviations such as hyperglycemia (14).

Apart from DM, experiments in animal suggested that

enhanced VP signaling aggravates the fructose-induced metabolic

syndrome (21). Improved understanding of metabolic effects and

signaling mechanisms involved in the pathogenesis of DM and

DKD is mandatory for clinical implementation of selective VP

receptor antagonists or agonists. This concise review summarizes

recent progress in this direction, with particular focus on the

glucose metabolism in DM and DKD.
Vasopressin and its receptors

The neurohypophysial hormone VP, also referred to as

antidiuretic hormone (ADH), fulfils multiple physiological tasks

comprising preservation of water homeostasis, regulation of

cardiovascular function, stimulation of hormone secretion from

anterior pituitary, adjustment of glucose metabolism, and

modulation of social behavior (14, 17).

VP is synthesized in the hypothalamus in form of a pre-

hormone containing VP, neurophysin, and copeptin (17). After

the ensuing cleavage of the pre-hormone in the neurohypophysis,

all three components are released into the blood in equimolar

amounts. Moreover, plasma copeptin and VP levels closely correlate

over the wide range of plasma osmolalities (22). Since detection of

VP in plasma is by far less reliable and more complicated than

measurement of copeptin, the latter has been established as a

surrogate for VP plasma levels in the clinical routine (17, 22, 23).

In addition to the peripheral VP secretion, vasopressinergic

neurons of hypothalamus project to other brain regions, where they

modulate diverse Central Nervous System (CNS) functions (24).

The blood-brain barrier prevents infiltration of VP from the blood

into the brain tissue, thus dissociating between its central vs.

peripheral actions. The present review work focuses on the

peripheral VP effects in the context of DKD and CKD.

VP is a nonapeptide hormone acting via three receptor types:

vasopressin V1a (V1aR), V1b (V1bR), and V2 receptors (V2R) (17).

The tissue distribution of these receptor types determines the local

mode of VP action. V1aR and V1bR show broad expression

patterns across the organs and tissues, whereas expression of V2R

is limited to the kidney (14).

Despite substantial previous efforts, cell type-specific

distribution of distinct VP receptor types is still subject of debates

for many organs. The underlying reasons are partially related with a

limited availability of selective and robust antibodies to the
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individual VP receptor types due to a high homology between the

VP receptor types and their low expression levels typical for the

most G protein-coupled receptor (25).

Therefore, available localization data substantially rely on

mRNA techniques and functional studies. Immunolabeling using

commercial and non-commercial antibodies produced

controversial results (15, 26). Nevertheless, recent development of

selective antibodies to V1aR and V2R has enabled their cell type-

specific localization in the rodent and human kidneys by knockout

tissue-controlled studies (15, 16). Taken together, reliably detectable

levels of V1aR expression and significant functional effects of V1aR

activation have been reported in the brain, kidney, liver, heart,

adrenal glands, and peripheral arteries. V1bR is less broadly

distributed among organ and tissues compared to V1aR but is

present at least in the pancreas and adrenal gland. Finally,

significant V2R expression was detected only in the kidney tissue.

The data on organ and tissue distribution of VP receptor types in

rodent and human species relevant for the present review are

summarized in the Table 1.
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V1aR distribution

Early studies of V1aR expression in rat liver and kidney using

radioactive in situ hybridization revealed presence of V1aR mRNA

in hepatocytes, as well as in distal tubular segments of the kidney

and renal vasculature (27, 32). The renal finding were largely

reproduced in a later autoradiographic V1aR localization using a

specific ligand (48). Evaluation of microdissected rat nephron

segments and vessels using RT-PCR suggested that V1aR is

expressed in renal arteries, along the cortical and medullary CD,

as well as in glomeruli (31).

Application of different anti-V1aR antibodies in rodent or

human kidney tissues produced controversial results with respect

to its segmental and intracellular localization in mammalian kidney

(16, 26, 49). Presence of V1aR at the protein level has been

convincingly demonstrated in renal vasculature and intercalated

cells (IC) of CNT/CD throughout the rodent and human species

(16, 35). Mouse but not rat or human kidney exhibited V1aR

protein in macula densa (MD) cells as well (16, 34).
TABLE 1 Distribution of distinct VP receptor types in mammalian organs and tissues.

Organ/tissue/cell type; (references) V1a V1b V2

Brain
Hippocampus (27, 28)
Arcuate nucleus (27)
Solitary tract (27)
Inferior olive (27)
Brainstem (27)
Hypothalamus (27, 28)
Amygdala (28)
Cerebellum (28)
Pituitary gland (14, 27–30)

+
+
+
+
+
+
-
-
+

+
+
-
-
-
+
+
+
+

-
-
-
-
-
-
-
-
-

Kidney
Gl (31)
PT
TAL (15, 27, 32, 33)
MD (15, 16, 34)
DCT (15, 27, 32, 33)
CNT/CD, PC (15, 27, 32, 33)
CNT/CD, IC-A (14, 16, 26, 32, 35)
CNT/CD, IC-B (14, 16, 26, 32, 35)

+
-
-

+ (mouse only)
-
-
+
+

-
-
-
-
-
-
-
-

-
-
+
-
+
+
-
-

Liver
Hepatocytes (27, 32)
Cholangiocytes

+
-

-
-

-
-

Pancreatic islets
alpha-cells (36, 37)
beta-cells (19, 36)
delta-cells (36)
PP-cells (36)

-
+
-
-

+
+
+
-

-
-
-
-

Adrenal gland
Zona glomerulosa (38–40)
Zona fasciculate (38–40)
Zona reticularis (38–40)
Medulla (38–40)

+
+
+
-

-
-
-
+

-
-
-
-

Arteries (14, 16, 27, 31, 32) + – –
The Table 1 summarized evidence on expression of distinct vasopressin (VP) receptor types across mammalian organs and tissues with focus on their implications in nephrotoxic effects depicted
in the Figure 1. The data rely on original localization and functional studies, as well as on comprehensive review papers. The presence of the distinct VP receptor types is indicated by (+), whereas
the absence of the VP receptors or debatable data are labeled by (-). The respective organ/tissue-specific references are provided in brackets. Gl – glomerulus, PT – proximal tubule, TAL – thick
ascending limb, DCT – distal convoluted tubule, CNI – connecting tubule, CD – collecting duct, PC – principal cells, IC – intercalated cells (type A or B).
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Apart from the liver and kidney, expression and functional

significance of V1aR have been well established in the

cardiovascular system (14, 50, 51). Furthermore, functional

studies suggested that V1aR is expressed in the adenohypophysis

and adrenal glands with modulating functions in the endocrine

homeostasis (29, 38). The V1aR expression in the adrenal gland has

been verified in human tissue (39, 40). Therefore, V1aR-mediated

stress response may aggravate renal damage in DKD or CKD.
V1bR distribution

V1bR expression has been mainly localized to various regions of

the brain including the anterior pituitary with effects on the

adrenocorticotropic hormone (ACTH) release (14, 30). The other

reported sites of V1bR expression include pancreas and adrenal

glands (28, 36, 40). Overall, long-term V1bR hyperactivity may

boost the Renin-Angiotensin-Aldosterone System (RAAS) and

cause adverse metabolic effects in DKD patients.
V2R distribution

V2R receptor is generally considered as the kidney-specific VP

receptor type (27, 32, 52). In the kidney, V2R mRNA has been

detected along the entire distal nephron, comprising the thick

ascending limb (TAL), the distal convoluted tubule (DCT), and

the connecting tubule (CNT), as well as in collecting duct (CD) (26,

27, 32, 33). CNT and CD contain two cell types: the principal (PC)

and the intercalated cells (IC). Expression of V2R is limited to PCs

in these segments (33). In line with the mRNA data, V2R protein

has been localized to the basolateral membranes of TAL, DCT, and

PCs of CNT/CD (15). The only V2R-negaive cell types within the

distal nephron and CD system were the MD cells in the cortical

TAL and ICs in CNT/CD (15). The kidney-specific V2R

distribution pattern is compatible with the critical role of the VP-

V2R signaling in the urinary concentration (53).
Vasopressin system in diabetic
kidney disease

DKD belongs to frequent complications of either type 1

(insulin-dependent) or type 2 (non-insulin-dependent) diabetes

mellitus. Along with hypertension, DKD is the most common

cause of CKD (3). Diabetic patients usually have elevated plasma

VP levels, which may be associated with a resetting of the osmostat

or increased fluid turnover (11–13, 54). Chronically enhanced VP

secretion may provoke the development or aggravate DKD via renal

and extra-renal adverse effects.
Renal effects of vasopressin in
diabetic kidney disease

Experiments in rodent DKD models showed that excessive VP

signaling is associated with kidney hypertrophy, glomerular
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hyperfiltration, and increased albumin excretion (10, 12, 18).

Similar symptoms typically occur in diabetic patients prior to the

development of DKD (3, 12). Results of chronic infusion of a selective

V2R agonist dDAVP (1-deamino-D-arginine8 vasopressin) in

normal and VP-deficient Brattleboro rats suggested that the

aforementioned deleterious effects of VP are, at least partially,

mediated by V2R (18, 55–57). The underlying pathophysiological

mechanisms may be related to sustained stimulation of the urinary

concentration promoting the NaCl reabsorption along the medullary

thick ascending limb (mTAL) followed by inhibition of the

tubuloglomerular feedback (TGF) mechanism and compensatory

increase in the GFR (18, 57). Chronic increase of GFR is a

reasonable mechanism of glomerular hyperfiltration and

albuminuria in DKD (12, 57). Nephroprotective effects of V2R

antagonists such as tolvaptan has been increasingly recognized,

which led to their clinical approval as a part of therapy in patients

with Autosomal Dominant Polycystic Kidney Disease (ADPKD)

(58). Little evidence is currently available on effects of V2R

antagonism in patients with DKD. Retrospective studies point to

beneficial effects, as judged by milder histopathological renal damage

in kidney biopsies from patients with heart failure and concomitant

DKD treated with tolvaptan compared to equivalent patients without

tolvaptan administration (59). Apart from that, tolvaptan appears to

be instrumental for alleviation of nephrotic syndrome in DKD

patients (60). Taken together, V2R antagonists bear therapeutic

potential as a part of DKD treatment strategy but their pronounced

diuretic action and certain hepatotoxicity may limit patient

compliance and complicate the long-term application in chronic

kidney disorders such as DKD or CKD (61).

While V2R-activation appears to induce glomerular

hyperfiltration via the TGF mechanism, stimulation of V1aR may

cause renal vasoconstriction via direct vascular effects (62). In the

physiologic situation, the vasoconstrictive effects of VP are buffered

by NO and prostaglandin systems (62). Diabetes mellitus impairs

the autoregulation of renal blood flow and regulation of GFR via

complex pathophysiologic mechanisms affecting K+ and Ca2+

channel activities in smooth muscle cells and paracrine

modulation of the vascular tone (63). The net effect of these

changes is pre-glomerular vasodilation and glomerular

hyperfiltration with ensuing glomerular damage leading to

glomerulosclerosis (3, 63). Apart from vascular effects, V1aR

mediates stimulation of H+ secretion by type A ICs (IC-A) in

response to VP, thereby promoting urinary acidification (16). This

effect may be related to potentiation of aldosterone action upon

concomitant V1aR activation in ICs (35). Whether V1aR-

dependent modulation of urinary acidification plays a role in

pathophysiology of DKD remains to be clarified. Finally, VP

binding to V1aR in MD cells has been shown to increase renin

secretion with resulting systemic RAS activation (16, 34). Presence

of V1aR in MD cells was demonstrated in the mouse species only,

whereas localization of the receptor in rat and human kidney failed

to confirm this result (16). Despite potential interspecies differences

in V1aR-dependent regulation of renin release, extra-renal

stimulating effects of VP on RAAS activity such as enhanced

ACTH or adrenal hormone secretion were extensively

documented in rodent and human species (28, 29, 38, 40, 41, 64).
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Effects of vasopressin on renin-
angiotensin-aldosterone system in
diabetic kidney disease

Several clinical studies reported increased RAAS activity in

patients with type 2 diabetes, especially in the presence of DKD

(65–68). RAAS hyperactivity has been well recognized as a critical

pathogenetic factor contributing to progression of DKD and CKD

towards advanced renal fibrosis and end-stage kidney disease (3).

There is growing clinical and scientific evidence suggesting that

effects of VP in different organs synergistically stimulate RAAS. VP

modulates the neurohypophyseal-adrenal axis by promoting the

ACTH release in the neurohypophysis, increasing the sensitivity of

adrenal glands to ACTH, and enhancing the adrenal synthesis and

secretion of steroid hormones including aldosterone (28, 38, 40, 69,

70). These effects are mediated by V1aR or V1bR. VP-deficient

Brattleboro rats showed a dissociation between high plasma renin

and low plasma aldosterone levels along with decreased amount of

angiotensin II (AngII) binding sites in the adrenal glands reflecting

the idea that VP may potentiate effects of AngII via regulation of the

AngII receptor type 1 (AT1R) (71). Moreover, VP and AngII have

been shown to strengthen effects of each other in the kidney, which

may be related to the shared downstream cAMP-dependent

signaling pathways (71, 72).

In contrast to hyperreninemia observed in Brattleboro rats with

global suppression of VP signaling, selective deletion of V1aR in

mice was associated with reduced renin expression and plasma

activity (34). This discrepancy may be explained by interspecies

differences in renal V1aR expression in MD cells and VP-dependent

paracrine stimulation of renin-producing juxtaglomerular cells

(34). Unlike mouse species, MD cells in rat and human kidney

are devoid of V1aR (16). VP has been shown to suppress renin

expression and plasma activity in rat and human species via the

V2R-mediated signaling (44, 71, 73).

Taken together, elevated VP levels in DKD may increase the

RAAS activity at different levels including stimulation of ACTH and

aldosterone release, modulation of adrenal sensitivity to AngII, and

direct synergism with AngII via intracellular cAMP generation.

These effects are mediated by V1aR or V1bR. In contract, activation

of V2R may counterbalance the RAAS hyperactivity via suppression

of renal renin expression and release. The net effect of all three VP

receptor types on distinct RAAS components may be variable but

clinical reports are suggestive of RAAS activation in DM patients

(65, 68). In particular, enhanced aldosterone plasma levels have

been closely associated with insulin resistance and DKD (68, 74). In

the classic paradigm, aldosterone is considered as a Na+-sparing

and K+-secreting hormone predominantly acting via modulating

the relevant gene expression in the aldosterone-sensitive distal

nephron (ASDN) of the kidney, which comprises the late distal

convoluted tubule (DCT2), connecting tubule (CNT), and cortical

collecting duct (cCD) (75). However, recent progress in

understanding of genomic and non-genomic effects of aldosterone

mediated by the mineralocorticoid receptors (MR) or alternative

vascular aldosterone-sensitive pathways has broadened the

interpretation of its role in induction and aggravation of CKD
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and renal fibrosis (76). According to the accumulated clinical and

scientific data, effects of aldosterone on the kidney function and

morphology are wider than just regulation of electrolyte handling in

CNT and CD. Aggravating effects of elevated plasma aldosterone

levels in DKD may be direct or indirect including the well-known

renal axis and recently identified alternative pathways. In this

context, suppression of aldosterone release using V1aR or V1bR

antagonists may contribute to the renoprotection in patients

with DM.
Metabolic effects of vasopressin in
diabetic kidney disease

Effects of vasopressin on
glucose metabolism

As a stress hormone, VP exerts numerous direct and indirect

metabolic effects towards energy mobilization. Glucose is a

principal energy source for the brain and an important secondary

energy substrate for many other organs and tissues. Importantly,

the process of urine concentration requires glucose as the energy

source since the medullary portions of the distal nephron and

collecting duct system function upon the physiologic hypoxia and

utilize glucose. Moreover, adaptations of glucose metabolism in

renal epithelial cells has been implicated in pathophysiology of

acute and chronic renal injuries (77). VP regulates the glucose

metabolism via central and peripheral effects resulting in elevation

of blood glucose levels (78). Direct effects of VP on glucose

availability in the blood are mediated by V1aR in the liver and

V1bR in the pancreas (27, 32, 36). Binding of VP to V1aR in the

liver induces glycogen degradation thereby augmenting the blood

glucose levels (32). At the same time, activation of V1bR in alpha

cells of pancreatic islets stimulates glucagon release, which further

promotes glycogenolysis in the liver (36). VP has been shown to

increase plasma insulin levels as well, although to a lesser extent

compared to glucagon (78). Since V1bR expression was

predominantly reported in the glucagon-producing alpha cells of

pancreatic islets, effects of VP on the insulin release are likely

indirect and may be mediated by enhanced glucose concentrations

in the blood (79). Stimulation of cortisol release in response to VP

may further contribute to rise in blood glucose levels by promoting

gluconeogenesis in the liver (41, 42). Apart from direct and indirect

stimulation of the glucose production, VP has been shown to

modulate insulin sensitivity and lipolytic activity in the adipose

tissue, which may secondarily affect the blood glucose

concentration as well (80). The net effect of the complex

physiological action of VP on the glucose metabolism is an

increase of the blood glucose concentration likely serving to

promote the global adaptation of the energy metabolism to stress.

Enhanced VP signaling has been increasingly recognized as a

critical factor aggravating the metabolic syndrome in DM2 and

promoting the kidney damage in DKD and CKD (18, 57). Effects of

VP on the glucose production are distinctly mediated by V1aR or

V1bR, enabling their selective targeting using receptor-specific
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agonists or antagonists. Development of such strategies requires

improved molecular understanding of VP signaling downstream of

V1aR vs. V1bR. In this context, characterization of transgenic mice

with selective deletion of V1aR (V1aR-/-) or V1bR (V1bR-/-)

produced a complex picture with respect to their individual roles

in the glucose metabolism (20). Notably, effects of pharmacologic

vs. genetic suppression of V1aR and V1bR types produced in part

conflicting results demanding for mechanistic explanations (14).
Effects of pharmacologic vs. genetic
V1a receptor inactivation on
glucose homeostasis

Studies using acute and chronic administration of V1aR

agonists and antagonists in rodents suggested that V1aR

activation increases the blood glucose levels but reduces the

glucose tolerance (37). These effects are likely mediated by

increased production of glucose in the liver and modulation of

insulin sensitivity in peripheral tissues. Analysis of V1aR-/- mice

showed impaired glucose tolerance as well, but hepatic production

of glucose was increased (20, 81). Based on pharmacologic effects of

V1aR antagonists, V1aR deletion was expected to suppress

glycogenolysis and lower the blood glucose levels. Surprisingly,

glycogen content was decreased in the liver tissue of V1aR-/- mice

(81). Pharmacologic stimulation of V1aR produced pro-diabetic

effects, whereas V1aR antagonism revealed antidiabetic potential in

rats (37). In contrast, challenging of V1aR-/- mice with high-fat diet

produced more pronounced obesity, hyperleptinemia, and impaired

glucose tolerance compared to control mice suggesting that V1aR

deletion induces a pre-diabetic condition and aggravates the

metabolic syndrome in this model (20, 81). The reasons for

discrepant effects of pharmacologic vs. genetic suppression of the

V1aR signaling on the glucose homeostasis are still poorly

understood but may be related with induction of compensatory

mechanisms during embryonal and postnatal development of

V1aR-/- mice. Such mechanisms may include enhanced hepatic

response to other stimuli for glucose production or de novo

expression of V1bR in the liver of V1aR-/- mice (21). While

V1aR-deficient mice represent a valuable model for improved

understanding of VP biology, detailed characterization of effects

elicited by selective V1aR agonists and antagonists in rodent models

of DM2 and DKD is of immediate clinical relevance (37).
Effects of pharmacologic vs. genetic
V1b receptor inactivation on
glucose homeostasis

V1bR is expressed in alpha cells of pancreatic islet and mediates

VP-induced stimulation of glucagon release via the Ca2+/inositol

1,4,5-triphosphate signaling pathway (19, 36, 78). Glucagon, in

turn, increases systemic glucose availability via activation of

glycogenolysis in the liver and increasing gluconeogenesis in the

liver and kidney. Systemic availability of glucose may be further

increased by lipolysis (43). Parallel V1bR-mediated stimulation of
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catecholamine release may further contribute to hyperglycemic

effects of VP (82). The resulting rise in blood glucose

concentration may cause a modest increase in insulin plasma

concentration, which has been documented in response to VP in

several in vivo and ex vivo studies (79). The idea that effects of VP

on the insulin release are indirect is supported by the absence of

convincing reports documenting expression of VP receptors in the

beta cells of pancreatic islet, as well as by the blunted VP effects on

the insulin release in the absence of concomitant increase in the

blood glucose concentration. In line with this, effects of VP on the

insulin plasma levels were completely abolished in V1bR-/- mice

(79). Studies using AVP together with selective antagonists for

V1aR, V1bR or a combined V1aR and V1bR antagonist in isolated

rodent pancreatic tissue also confirmed that the direct effect of AVP

on the glucagon release is mediated by V1bR, whereas the effect on

insulin release is indirect (79). Analysis of the glucose homeostasis

in V1bR-/- mice revealed decreased fasting glucagon, insulin, and

glucose levels in the blood along with increased insulin sensitivity in

peripheral tissues (83). Therefore, the data accumulated so far

suggests that V1bR mediates effects of AVP on the blood glucose

levels and may significantly contribute to the progression of DM2

and DKD.
Effects of double V1aR and V1bR
inactivation and global AVP deficiency on
glucose homeostasis

Since both V1aR and V1bR are implicated in the glucose

homeostasis, effects of their concomitant deletion were evaluated.

The phenotype of the double-knockout mice was largely reflecting

the phenotype of V1aR-/- mice and showed higher blood glucose

and insulin levels along with impaired glucose tolerance (14, 20).

Based on these results it is tempting to speculate that stimulation of

V1aR may lower the blood glucose concentration. However,

pharmacologic V1aR activation induced hyperglycemia, whereas

administration of a V1aR antagonist blunted the AVP-induced

hyperglycemia in normal rats (37). In addition, evaluation of the

glucose homeostasis in VP-deficient Brattleboro rats revealed lower

plasma glucose and insulin levels along with enhanced glucose

tolerance (84). The in part conflicting results obtained in different

models of pharmacologic or genetic inhibition of VP signaling

require improved understanding and cautious interpretation with

respect to potential clinical application of V1aR- or V1bR-

antagonists in diabetic patients. Figure 1 provides a concept of

VP-induced kidney damage combining renal and metabolic effects.
Effects of vasopressin on lipid metabolism

VP enables water conservation and at the same time functions

as a stress hormone. Fat is a source of metabolic water and an

energy source as well. VP exerts central and peripheral modulating

effects on lipid metabolism. Indeed, the net effect of VP on the lipid

homeostasis depends on the global metabolic status and combines

distinct actions in different tissues (14). As a stress hormone, AVP
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enhances the sympathetic tone thereby promoting lipolysis in the

adipose tissue (44–46). Concomitant VP-induced stimulation of

adrenal hormone release may have multiple effects on lipid

metabolism depending on the current nutrition status (85). In

fact, both lipolytic and antilipolytic actions have been reported in

rats depending on the experimental conditions (86). In addition to

the indirect effects mediated by changes in the vegetative and

endocrine status, VP affects the lipid metabolism directly by

targeting several organs and tissues. Acting via V1 receptor types,

VP has been reported to promote triacylglycerol mobilization in the

heart, which may serve to support cardiac energy metabolism (87).

However, chronically exaggerated VP signaling has been associated

with cardiovascular disorders and combined V1aR/V2R

antagonism demonstrated beneficial effects in patients with acute

heart failure (50, 51, 88). Activation of V1aR or V1bR in the

pancreas and the associated glucagon release may promote

hepatic lipolysis via Ca2+/inositol triphosphate-dependent

signaling in order to enhance the glucose production (43, 47).

Peripheral effects of VP in the fat tissue are debatable since both

lipolytic and anti-lipolytic actions were reported and distinct

underlying mechanisms including direct and hemodynamic
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effects discussed (80, 86, 89). Analysis of V1aR-/- and V1bR-/-

mouse strains suggested that many effects of VP on lipid

metabolism may be mediated by changes in insulin sensitivity

(90, 91). Taken together, VP exerts complex effects on lipid

homeostasis requiring further characterization. The physiological

sense of these effects appears to be related to catabolic metabolism

and energy substrate supply at short term (14). Chronic increases of

circulating VP levels in DM2 may promote the metabolic syndrome

and aggravate DKD (Table 2).
Conclusions and perspectives

Apart from the antidiuretic function, VP has been increasingly

recognized as a global player in the glucose, lipid, and protein

homeostasis. Unlike the V2R-dependent antidiuretic functions,

metabolic effects of VP are predominantly mediated by V1aR and

V1bR. Excessive V2R-mediated signaling substantially aggravates

kidney damage in DKD and CKD. Selective V2R antagonists are

available and even approved for treatment of hyponatremia and

polycystic kidney disease (92, 93). Despite encouraging perspective
FIGURE 1

Renal and metabolic nephrotoxic effects of vasopressin mediated by the individual receptor subtypes in diabetic kidney disease. According to the
current state of understanding, enhanced plasma glucose levels promote vasopressin (VP) synthesis and release due to reset of the osmostat in
hypothalamus. Enhanced circulating VP causes glomerular hyperfiltration with ensuing glomerular damage via sustained stimulation of NaCl
reabsorption in the thick ascending limb, decreased NaCl concentration at the macula densa (MD) site and resulting increase of glomerular filtration
rate (GFR). This effect is aggravated by renin-angiotensin-aldosterone system hyperactivity caused by VP-induced increase of adrenocorticotropic
hormone (ACTH) and aldosterone release, the latter is stimulated directly in the adrenal gland, as well as via the MC2R receptor to ACTH. Parallel
release of cortisol potentiates effects of VP on the glucose production in the liver, whereas VP-dependent glucagon release further aggravates the
hyperglycemia. Finally, enhanced blood glucose levels maintain high VP plasma levels promoting the renal damage in DKD. The effects of VP are
indicated by arrows and the respective receptor type are specified using abbreviations.
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of their use in DKD and CKD patients, a relatively high hepatotoxicity

andpoorpatient compliancedue to thepronounceddiuretic action limit

practical implementationof this strategy (61).Pharmacological targeting

of V1aR or V1bR may provide metabolic benefits on glucose

homeostasis indirectly protecting the kidney. Dysregulation of glucose

homeostasis is a part of metabolic syndrome and may be particular

relevant inpathophysiologyofDMandDKD.Numerous transgenic and

pharmacological models provide perspectives for selective V1aR or

V1bR modulation. However, these models produced in part

conflicting results complicating the clear conclusions. Nevertheless,

integrative analysis of the available data suggests that selective

antagonists of V1aR or V1bR bear blood glucose lowering potential.

Moreover, suchantagonistsmayproduce further renoprotectivebenefits

by suppressing RAAS and adrenal stress hormone levels. Clinical

experience with V1aR or V1bR antagonists are largely limited to dual

V1aR/V2R antagonism in patients with acute heart failure (94, 95).

Experiments in rats suggest renoprotective effects of dual V1aR/V2R

suppression due to RAAS inhibition (96). Further characterization of

V1aR- vs. V1bR antagonists with respect to their metabolic effects may

unravel their therapeutic potential in DKD and CKD.
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