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Introduction: Female breast cancer has risen to be the most common

malignancy worldwide, causing a huge disease burden for both patients and

society. Both senescence and oxidative stress attach importance to cancer

development and progression. However, the prognostic roles of senescence

and oxidative stress remain obscure in breast cancer. In this present study, we

attempted to establish a predictive model based on senescence-oxidative stress

co-relation genes (SOSCRGs) and evaluate its clinical utility in multiple

dimensions.

Methods: SOSCRGs were identified via correlation analysis. Transcriptome data

and clinical information of patients with breast invasive carcinoma (BRCA) were

accessed from The Cancer Genome Atlas (TCGA) and GSE96058. SVM algorithm

was employed to process subtype classification of patients with BRCA based on

SOSCRGs. LASSO regression analysis was utilized to establish the predictive model

based on SOSCRGs. Analyses of the predictive model with regards to efficacy

evaluation, subgroup analysis, clinical association, immune infiltration, functional

strength, mutation feature, and drug sensitivity were organized. Single-cell analysis

was applied to decipher the expression pattern of key SOSCRGs in the tumor

microenvironment. Additionally, qPCR was conducted to check the expression

levels of key SOSCRGs in five different breast cancer cell lines.

Results: A total of 246 SOSCRGs were identified. Two breast cancer subtypes

were determined based on SOSCRGs and subtype 1 showed an active immune

landscape. A SOSCRGs-based predictive model was subsequently developed

and the risk score was clarified as independent prognostic predictors in breast

cancer. A novel nomogram was constructed and exhibited favorable predictive

capability. We further ascertained that the infiltration levels of immune cells and

expressions of immune checkpoints were significantly influenced by the risk

score. The two risk groups were characterized by distinct functional strengths.
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Sugar metabolism and glycolysis were significantly upregulated in the high risk

group. The low risk group was deciphered to harbor PIK3CA mutation-driven

tumorigenesis, while TP53 mutation was dominant in the high risk group. The

analysis further revealed a significantly positive correlation between risk score and

TMB. Patients in the low risk group may also sensitively respond to several drug

agents. Single-cell analysis dissected that ERRFI1, ETS1, NDRG1, and ZMAT3 were

expressed in the tumor microenvironment. Moreover, the expression levels of the

seven SOSCRGs in five different breast cancer cell lines were quantified and

compared by qPCR respectively.

Conclusion: Multidimensional evaluations verified the clinical utility of the

SOSCRGs-based predictive model to predict prognosis, aid clinical decision,

and risk stratification for patients with breast cancer.
KEYWORDS

breast cancer, senescence, oxidative stress, prognosis, tumor mutation burden, immune
infiltration, single-cell analysis
1 Introduction

The number of patients diagnosed with breast cancer is rising at

an alarming rate, and nearly 2.3 million new cases are reported

annually (1). Thus the disease burden of breast cancer is rapidly

accumulating and evolving to be a global public-health topic.

Among the diverse histological types, breast invasive carcinoma

(BRCA) accounts for over 70% of total breast cancer cases,

including lobular invasive carcinoma and ductal invasive

carcinoma (2). Currently, multidisciplinary treatments including

chemo/radiotherapy, immunotherapy, targeted therapy, and

traditional surgical resection provide renewal for the clinical

management of breast cancer (3). With the aid of collaborative

treatments, the mortality of breast cancer is now less than it was at

previous times (4). However, the whole prognosis of breast cancer

remains unfavorable due to tumor heterogeneity, and some patients

have even died in the early stage (5, 6). Therefore, seeking potential

novel biomarkers may contribute to improving the prognosis of

patients with breast cancer, and in the meanwhile, robust predictive

signature renders the clinical treatment more personalized based on

the risk stratification of patients.

Reactive oxygen species (ROS) refer to a group of radicals that

are generated as byproducts during normal cell metabolism,

including O2·, H2O2, hydroxyl radical (OH·), etc., which are

highly aggressive and harmful (7). To offset the cellular damage

by ROS, antioxidants are employed as major power to prevent ROS-

induced cellular damage by means of forming a dynamic balance

with ROS (8). Once the balance is cracked, free radicals spray

around and cause structural destruction, thereby inducing oxidative

stress. One of the most lethal subsequences is irreversible DNA

damage, which significantly affects genome mutation and

instability, as well as epigenetic dysregulation (9). Consecutive

DNA damage and a weakened genome repair system may lead to
02
the mutation of pivotal oncogenes and tumor suppressor genes and

finally trigger carcinogenesis (10). Moreover, previous studies have

verified the potential and value of preventing ROS-related

carcinogenesis by enhancing antioxidative defense, which

demonstrates that ROS is important to cancer initiation (11–13).

Aging is another intriguing topic in life science. It is worth

mentioning that Carlos et al. (14) summarized the top twelve

hallmarks of aging. Several hallmarks of aging, such as genomic

instability, epigenetic alterations, loss of proteostasis, and

mitochondrial dysfunction, are significantly linked with oxidative

stress, as a cause and/or subsequence. Current opinion lies that

oxidative stress results in aberrant activation of pivotal signaling

pathways, genome mutation and instability, and accumulation of

impaired proteins thereby inducing subsequent outcomes like cancer

and senescence (15). Furthermore, the morbidity of cancer is higher

in older populations. This indicates the potential link between

oxidative stress, senescence, and cancer, and that oxidative stress

contributes to both senescence and cancer while aging originally

correlates with cancer. According to this, several studies have

evaluated the role of senescence or oxidative stress in predicting the

prognosis of patients with breast cancer (16–18). Nevertheless, in

breast cancer, the prognostic role of oxidative stress-senescence co-

relation remains obscure and awaits further clarification.

Increasing evidence suggests that oxidative stress, senescence,

and cancer are closely linked (15). In the present study, we aimed to

detect the prognostic value of oxidative stress-senescence co-

relation in BRCA by constructing a prognostic model.

Comprehensive analyses including subtype identification, immune

infi ltration, immune checkpoint expression, functional

characterization, mutation landscape, drug sensitivity, and single-

cell analysis were orchestrated. The results of the present study may

contribute to clinical risk stratification and personalized therapy,

thereby improving the prognosis of patients with BRCA.
frontiersin.org

https://doi.org/10.3389/fendo.2023.1179050
https://www.frontiersin.org/journals/endocrinology
https://www.frontiersin.org


Ye et al. 10.3389/fendo.2023.1179050
2 Materials and methods

2.1 Data collection and identification of
genes characterized by senescence-
oxidative stress co-relation

Transcriptome data and clinical information of patients with

BRCA were downloaded from the TCGA database (http://

cancergenome.nih.gov/) and the GSE96058 dataset was from the

GEO database (https://www.ncbi.nlm.nih.gov/geo). The large

cohort and high throughput sequencing method used in

GSE96058 were taken as the reason for selecting it. The single-cell

profile GSM5354529 was also accessed from the GEO database.

Male BRCA samples and samples without survival information

were excluded. In total, 965 BRCA samples from TCGA and 3409

BRCA samples from GSE96058 were finally enrolled. Then, 280

senescence-related genes (SRGs) were acquired from CellAge

(http://genomics.senescence.info/cells) and 1401 oxidative stress-

related genes (OSRGs) were obtained from a previous study (19).

Pearson correlation analysis was conducted between each SRG and

each OSRG. SRGs with r > 0.3 and P < 0.05 were considered to be

significantly relevant to oxidative stress. The correlation network

between SRGs and OSRGs are displayed in Supplementary Figure

S1. We obtained 246 genes characterized by senescence-oxidative

stress co-relation, which were named senescence-oxidative stress

co-relation genes (SOSCRGs). SOSCRGs were further subject to

Gene Ontology (GO) and Kyoto Encyclopedia of Genes and

Genomes (KEGG) functional enrichment analyses based on

clusterProfiler and org.Hs.eg.db R packages.
2.2 Determination of distinct
subtypes in BRCA

We employed a non-negative matrix factorization (NMF)

algorithm to divide the TCGA-BRCA cohort into different

subtypes based on SOSCRGs. The optimal number of subtypes

was determined according to cophenetic, dispersion, evar, residuals,

rss, silhouette, and sparseness. Survival differences in the

progression free survival (PFS) and overall survival (OS) between

different subtypes were compared with survminer and survival R

packages. Single sample gene set enrichment analyses (ssGSEA)

were applied to quantify the level of immune activities and immune

cell infiltration. The differences in immune activities and immune

cell infiltration between different subtypes were also investigated.

Next, we employed the ESTIMATE algorithm to calculate four

indexes (TumorPurity, ESTIMATEScore, ImmuneScore, and

StromalScore) and compared the level of the four indexes

between different subtypes.
2.3 Construction and validation of the
prognostic model

We randomly divided the TCGA-BRCA cohort into the

training cohort (70%) and the internal validation cohort (30%).
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The transcriptome data of GSE96058 were supported by high

throughput sequencing, which is compatible with TCGA. Thus

GSE96058 was used as the external validation cohort. We

subsequentially processed univariate Cox regression analysis and

LASSO regression analysis of the SOSCRGs to further screen

meaningful prognostic factors for BRCA in the training cohort.

Multivariate Cox regression analysis in the glmnet R package was

used to construct the prognostic model that contained seven

SOSCRGs. The risk score was calculated as: Risk score = b1 *

Gene1Exp + b2 * Gene2Exp + ··· + bn * GenenExp. The low risk

group and the high risk group were evenly divided according to the

median risk score value. Survival difference between the low risk

group and the high risk group was compared. We also evaluated the

predictive capability of the prognostic model by depicting receiver

operating characteristic (ROC) curves with the timeROC R package.

The analyses described above were performed in internal and

external validation cohorts respectively.
2.4 Subgroup analysis and establishment of
prognostic nomogram

To testify to the applicability of the prognostic model in a

broader way, we applied the prognostic model in ten different

clinical subgroups. Univariate and multivariate Cox regression

analyses were processed to decipher independent prognostic

predictors from risk score and other clinical factors in the TCGA-

BRCA cohort. Next, we established a prognostic nomogram based

on risk score and other clinical factors to further amplify the

prognostic value of SOSCRGs. The predictive accuracy of the

nomogram was verified by calibration curves.
2.5 Analyses of immune infiltration and
immune checkpoint expression

We quantified the infiltration levels of diverse immune cells by

both CIBERSORT and ssGSEA algorithms, thereby comparing the

difference in immune cell infiltration and immune activities

between the low risk group and the high risk group. The

correlations between the seven SOSCRGs and infiltration levels of

immune cells were analyzed by Pearson correlation analysis.

Moreover, we investigated the expression pattern of immune

checkpoints between the two risk groups to ascertain the

potential value of the prognostic model in immunotherapy.
2.6 Functional enrichment analysis and
drug sensitivity analysis

The differentially expressed genes (DEGs) between the low risk

group and the high risk group were deciphered. Gene Set

Enrichment Analysis (GSEA) was performed based on the DEGs

to check out the functional characterizations in the two risk groups.

The pRRophetic R package was used to process wide drug screening

based on the GDSC database (https://www.sanger.ac.uk/tool/gdsc-
frontiersin.org
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genomics-drug-sensitivity-cancer) to ascertain the drugs that the

two risk groups may sensitively respond to.
2.7 Mutation landscapes of the two
risk groups

The mutation landscapes of the low risk group and high risk

group were obtained via the maftools R package respectively. The top

twenty most frequently altered genes in the two risk groups were

displayed respectively. The difference in tumor mutation burden

(TMB) between the low risk and high risk groups were then

examined. The low TMB group and high TMB group were also

divided according to the median cut-off value of TMB. The survival

differences between patients in the low-TMB group and high-TMB

group with or without a combination of risk groups were further

uncovered. Furthermore, Pearson correlation analysis was conducted

to determine the correlation between risk score and TMB.
2.8 Single-cell analysis

We took the single-cell profile GSM5354529 for single-cell

analysis. Approximately 8402 high quality cells were filtered from

GSM5354529. The filter conditions were as follows: subset =

nFeature_RNA > 100 & nFeature_RNA < 5000 & percent.mt <

25 & nCount_RNA > 100. The expression pattern of the seven

SOSCRGs in the tumor microenvironment were then determined

by the Seurat R package.
2.9 Cell culture

Five human breast cancer cell lines MCF-7, BT-20, MDA-MB-

231, HCC1806, and HCC1937 were purchased from Wuhan Procell

Life Science and Technology Co., Ltd. (Wuhan, China). Each cell line

was cultured in its dedicated medium (Wuhan Procell Life Science

and Technology Co. Ltd., Wuhan, China). Cells were cultured in
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RPMI-1640 (Gibco-BRL), supplemented with 10% fetal bovine serum

(Bioserum), 100 U/mL penicillin G, and 100 mg/mL streptomycin.
2.10 Quantitative PCR

Total RNA was extracted from each cell line using TRIzol

Reagent (Cat. No. P118-05, GenStar, Beijing, China) according to

the manufacturer’s instructions. The total RNA was amplified by

qPCR using SYBR Green Master Mix (Cat#: C0006, TOPSCIENCE,

Shanghai, China) according to the manufacturer’s instructions, and

the mRNA levels of CRGs and CRLncs were detected. The primer

pairs of the seven SOSCRGs were synthesized by Accurate Biology

(Changsha, China) and are listed in the Supplementary Materials.
2.11 Statistical analysis

Bioinformatic analyses were all conducted by R 4.0.3. The

comparison of the K-M survival curve was achieved by Cox

regression analysis. The differences in expression level between

groups were compared by the Wilcoxon rank sum test. Pearson

correlation was taken for correlation analysis. |r| > 0.1 was

considered to be relevant and P < 0.05 was deemed as statistically

significant. “*” indicates P < 0.05, “**” indicates P < 0.01 and “***”

indicates P < 0.001 throughout this study.
3 Results

3.1 Two distinct subtypes were identified in
BRCA based on senescence-oxidative
stress co-relation

GO/KEGG functional enrichment analysis strengthened the

idea that the SOSCRGs are closely relevant to cell aging, DNA

binding, DNA damage, protease activity, and breast cancer, which
A B

FIGURE 1

Functional enrichment analysis of the identified SOSCRGs. (A) GO functional enrichment analysis of SOSCRGs. (B) KEGG functional enrichment
analysis of SOSCRGs.
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verified that the identified SOSCRGs were senescence-oxidative

stress double functional in BRCA (Figure 1). Supporting vector

machine (SVM) learning consensus matrix heatmap was depicted

and the optimal number of subtypes was identified as 2 (k = 2)

according to the cophenetic, dispersion, and silhouette curves

(Figures 2A, B). Kaplan-Meier survival analysis revealed that

subtype 2 harbored worse overall survival (OS) and progression

free survival (PFS) compared with subtype 1 (Figures 2C, D).

Subsequently, we dissected the tumor microenvironment

characteristics of the two subtypes. We found that both the

immune activities and immune cell infiltration levels of subtype 2

were poorer than subtype 1 (Figures 2E, F). Further investigation
Frontiers in Endocrinology 05
showed that, compared with subtype 1, subtype 2 had higher tumor

purity as well as lower ESTIMATE score, immune score, and

stromal score (Figure 2G).
3.2 A seven-SOSCRGs prognostic model
was constructed and validated

A total of nine SOSCRGswere found to be prognostic in BRCAby

univariate Cox regression analysis in the training cohort (Figure 3A).

None of the nine prognostic SOSCRGs were excluded by subsequent

LASSOregressionanalysis (Figures 3B,C).Next, seven SOSCRGswere
A B

D

E F

G

C

FIGURE 2

Determination of breast cancer subtypes based on SOSCRGs. (A) Consensus matrix heatmap by SVM algorithm. (B) Relationship between
cophenetic, dispersion, evar, residuals, rss, silhouette, and sparseness coefficients with respect to the number of subtypes. Survival difference in OS
(C) and PFS (D) between subtype 1 and subtype 2. Differences in immune activities (E) and immune cell infiltration (F) between subtype 1 and
subtype 2. (G) Differences in four tumor microenvironment indexes between subtype 1 and subtype 2. “*” indicates P < 0.05, “**” indicates P < 0.01
and “***” indicates P < 0.001.
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screened by multivariate Cox regression analysis to construct the

prognostic model with the exclusion of two insignificant

SOSCRGs. Risk score = (-0.149) * ALOX15B + (-0.376) *

ERRFI1 + (-0.439) * ETS1 + 0.385 * G6PD + (-0.380) *

MAP2K6 + 0.266 * NDRG1 + 0.966 * ZMAT3. The survival

difference between the low risk group and the high risk group in

the training cohort, internal validation cohort, and external

validation cohort were significantly differentiated respectively

(Figures 3D–F). The area under the curve from the ROC curve

was used to evaluate the predictive efficacy of the model. The

AUCs at 1-, 3-, and 5 years were 0.831, 0.79, and 0.711 in the

training cohort (Figure 3G). The AUCs at 1-, 3-, and 5 years were

0.664, 0.741, and 0.743 in the internal validation cohort

(Figure 3H). The AUCs at 1-, 3-, and 5 years were 0.623, 0.593,

and 0.579 in the external validation cohort (Figure 3I). We also

compared the predictive efficacy of the risk score and other

clinicopathological features via ROC curves in the training

cohort, internal validation cohort, and external validation cohort

respectively (Supplementary Figure S2). The expression pattern of

the seven SOSCRGs between different risk groups and distribution

of survival time with risk score in the training cohort, internal
Frontiers in Endocrinology 06
validation cohort, and external validation cohort were displayed

respectively (Figures 4A–C). These results indicated the robust

predictive efficacy of the prognostic model.
3.3 The prognostic model was generally
applicable and a predictive nomogram
was established

The distribution of risk score and clinicopathological features

between the low risk group and the high risk group were displayed

(Supplementary Figure S3). The results from subgroup analysis

verified that the prognostic model can generally be applied

regardless of multiple clinicopathological characteristics apart

from patients that are male (Figure 5). Univariate and

multivariate Cox regression analyses determined the risk score as

an independent prognostic predictor for BRCA in both the training

cohort and internal validation cohort, indicating the strong

prognostic power of the predictive model (Figures 6A, B).

Moreover, we established a predictive model to further explore

the prognostic value of the risk score and other clinicopathological
A B

D E F

G IH

C

FIGURE 3

Construction and validation of the SOSCRGs-based prognostic model in breast cancer. (A) Univariate Cox regression of the SOSCRGs. (B, C) LASSO
regression analysis of the SOSCRGs. (D-F) Survival differences between the low risk group and the high risk group in the training cohort, internal
validation cohort, and external validation cohort. (G-I) ROC curves at 1-, 3-, and 5 years in the training cohort, internal validation cohort, and
external validation cohort.
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A B C

FIGURE 4

Expression pattern of the seven SOSCRGs between different risk groups and distribution of survival time with risk score. (A) Training cohort.
(B) Internal validation cohort. (C) External validation cohort.
FIGURE 5

Subgroup analysis of the prognostic model in nine clinical subgroups.
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features (Figure 6C). Calibration curves showed that the predictive

lines were close to the ideal line at 1-, 3-, and 5 years (Figure 6D).
3.4 Low risk group harbored more
abundant immune infiltration levels and
higher immune checkpoints expressions

Results from ssGSEA ascertained that several immune activities

(cytolytic activity, T cell co-stimulation, and type II IFN response,

etc.) and immune infiltrating cells (B cells, CD8+ T cells, NK cells,

and TIL, etc.) were higher in the low risk group (Figures 7A, B).

CIBERSORT consistently suggested that the infiltration levels of B

cells naive, T cells CD8, and T cells CD4 memory resting were higher

in the low risk group (Figures 7C, D). Correlations between the seven

SOSCRGs and 22 immune infiltrating cells were also unfolded

(Figure 7E). Diverse immune infiltrating cells were significantly

correlated with the seven SOSCRGs, such as T cells CD4 memory

resting, T cells regulatory, B cells naive, and NK cells activated, etc.,
Frontiers in Endocrinology 08
indicating potential functional associations. Furthermore, we found

that the expression levels of a majority of immune checkpoints were

significantly higher in the low risk group compared with the high risk

group, including PDCD1, CTLA4, and TIGIT. (Figure 7F). These

results indicated that the low risk group rendered immune-active,

whereas the high risk group was relatively immune-cold. Patients in

the low risk group may better benefit from immunotherapy based on

their active tumor microenvironment.
3.5 The two risk groups were characterized
by distinct functional strengths

We selected the top ten significantly strengthened functional

annotations of the two risk groups via GSEA to display (Figures 8A–

D). Epidermal cell differentiation, keratinization, skin development,

amino sugar and nucleotide metabolism, fructose and mannose

metabolism, glycolysis gluconeogenesis, pentose phosphate

pathway, and proteasome were strengthened in the high risk
A B

DC

FIGURE 6

Construction of the predictive nomogram. (A) Univariate and multivariate Cox regression analyses in the training cohort. (B) Univariate and
multivariate Cox regression analyses in the internal validation cohort. (C) Predictive nomogram based on the risk score and other clinicopathological
features. (D) Calibration curves at 1-, 3-, and 5 years.
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group. Cytokine-cytokine receptor interaction, hematopoietic cell

lineage, primary immunodeficiency, tight junction, viral

myocarditis, muscle system process, contractile fiber, myosin

complex, and T cell receptor complex were strengthened in the

low risk group.
3.6 The mutation features of the two risk
groups were different

We displayed the top 20 most frequently altered genes in the

low risk group and high risk group. PIK3CA (36%) and TP53 (36%)

were deciphered to be the most frequently altered genes in the low

risk and high risk groups respectively, and the most common

mutation type was observed to be missense mutation (Figures 9A,

B). We also compared the TMB difference between the two risk
Frontiers in Endocrinology 09
groups which turned out to be statistically significant (Figure 9C).

Patients with high TMB harbor poorer clinical outcomes compared

to patients with low TMB (Figure 9D). Survival analysis combining

risk score and TMB revealed that patients carrying low TMB and

low risk score have the best prognosis, while patients carrying high

TMB and high risk score suffered from the worst prognosis

(Figure 9E). In addition, the risk score was significantly positively

correlated with TMB (Figure 9F).
3.7 Patients in the low risk group were
potentially sensitive to several drug agents

We processed wide drug screening to determine potential drug

agents that patients may sensitively respond to. These analyses

determined three types of drug agents for patients in the low risk
A B

D

E

F

C

FIGURE 7

Dissection of the tumor microenvironment of the two risk groups. (A, B) Estimation of immune activities and immune infiltrating cells between the
low risk group and the high risk group by ssGSEA. (C) Proportion of 22 immune infiltrating cells for each BRCA sample by CIBERSORT. (D) Estimation
of 22 immune infiltrating cells between the low risk group and the high risk group by CIBERSORT. (E) Correlations between seven SOSCRGs and 22
immune infiltrating cells. (F) The expression pattern of immune checkpoints between the low risk group and the high risk group. “*” indicates P <
0.05, “**” indicates P < 0.01 and “***” indicates P < 0.001. "ns" indicates non-significant.
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A B

DC

FIGURE 8

GSEA functional enrichment analysis of the two risk groups. (A, B) Functional strengthens in the high risk group. (C, D) Functional strengthens in the
low risk group.
A B

D E F

C

FIGURE 9

The mutation characteristics of the two risk groups. (A) The mutation landscape of the low risk group. (B) The mutation landscape of the high risk
group. (C) Difference in TMB between the two risk groups. (D) Survival difference between low TMB group and high TMB group. (E) Survival
difference between low TMB group and high TMB group combined with risk groups. (F) Correlation between the risk score and TMB.
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group: traditional chemotherapeutic drug agents (cyclophosphamide,

epirubicin, and oxaliplatin) (Figures 10A–C), PARP inhibitors

(olaparib and niraparib) (Figures 10D, E), and tyrosine kinase

inhibitor (axitinib) (Figure 10F).
3.8 Single-cell analysis

A total of eight cell subgroups were identified in the tumor

microenvironment of breast cancer, and endothelial cells, epithelial

cells, and fibroblasts appeared to be the main cell subgroups

(Figure 11A). The expression pattern of the seven SOSCRGs were

subsequently determined. ERRFI1 was expressed in endothelial cells,

epithelial cells, and fibroblasts. ETS1 was expressed in endothelial

cells and T cells. NDRG1 was expressed in endothelial cells and

fibroblasts. ZMAT3 was expressed in fibroblasts (Figure 11B).
3.9 The mRNA levels of seven SOSCRGs in
breast cancer cell lines

We demonstrated the mRNA levels of the seven SOSCRGs in

five breast cancer cell lines respectively using qPCR (Figure 12).
4 Discussion

Carcinogenesis increases with aging, which can be partially

explained by it sharing several similar hallmarks, such as genomic

instability, epigenetic alterations, loss of proteostasis, altered

intercellular communication, and chronic inflammation (14, 20).
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Current opinion also suggests that epigenetic entropy increases with

aging and is relevant to DNA damage (21). Meanwhile, oxidative

stress is one of the most important origins that induce DNA damage

(22). Therefore, the intimacy between senescence, oxidative stress,

and cancer is intriguing and should be further explored. The need

for established predictive models for these diverse clinical end

events in cancer is growing more urgent, including information

on survival, recurrence, and metastasis. Several previous studies

have reported on how models were used to predict the prognosis of

patients with breast cancer based on unilateral senescence-related

or oxidative stress-related genes (16–18). Compared with these

models, the predictive model constructed in the present study may

have the following advantages: the first being that the genes

characterized by senescence-oxidative stress co-relation were used

to construct the present model, meaning it was initiative. Secondly,

AUCs from the time-dependent ROC curves of the present model

exhibited the highest, which were 0.831, 0.79, and 0.711 at 1-, 3-,

and 5 years. Additionally, we dissected the expression pattern of the

seven SOSCRGs in the tumor microenvironment of breast cancer

by single-cell analysis.

SVM classification is a powerful machine learning method that is

widely applied in cancer subtyping (23). We identified two subtypes

by SVM classification in BRCA based on SOSCRGs. Interestingly,

subtype 1 exhibited active immune activities and abundant immune

cell infiltration in the tumor microenvironment (immune-active),

whereas subtype 2 showed much lower immune activities and

immune cell infiltration levels (immune-cold). Higher infiltration

levels of immune cells in the tumor microenvironment infer

priority to mobilize the intratumoral immune system to slash

cancer cells, which also means better response to immunotherapy

(24). Thus patients in the SOSCRGs-based subtype 1 may potentially
A B

D E F

C

FIGURE 10

Drug sensitivity analysis. (A) Cyclophosphamide. (B) Epirubicin. (C) Oxaliplatin. (D) Olaparib. (E) Niraparib. (F) Axitinib.
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better benefit from immunotherapy, which can contribute to

clinical decisions.

Immune infiltrating cells in the tumor microenvironment are

attributed to their important roles in affecting the prognosis of

cancer, especially tumor-infiltrating lymphocytes (TILs) (25–27).

High infiltration levels of T cells are often supposed to be associated

with a better prognosis (28, 29). Studies have examined whether

CD4 + T cells alleviate CD8 + T cells exhaustion, and high

infiltration levels of CD4 + T cells and CD8 + T cells predicted

better survival for patients with breast cancer (30, 31). We also

identified higher infiltration levels of both CD8 + T cells and CD4 +

T cells memory resting in the low risk group that harbored favorable

clinical outcomes.

In recent years, immunotherapy has risen to become a first-line

anti-cancer strategy. Identification of the expression patterns of

immunotherapy targets may provide potential survival priority for

patients (32). Studies have shown that the combined blockade of

PD1 and CTLA4 achieves better prognosis improvement compared

to monotherapy in several cancer types (33–35). Our results showed

that the expression levels of PD1, TIGIT, and CTLA4 were higher in
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the low risk group, suggesting co-blockade of these molecules as a

new immune checkpoint blockade strategy for patients in the low

risk group. This also indicates the value of the present model in

aiding clinical treatment.

Metabolic reprogramming has been widely observed in diverse

cancer types to facilitate cell growth and proliferation. Aberrant

enhancement of glycolysis is an important component in cancer

metabolic reprogramming, which also refers to the Warburg effect

(36). Elevated glycolysis level generally infers an unfavorable

prognosis (37, 38). We found several strengthened functional

terms relevant to sugar metabolism in the high risk group (amino

sugar and nucleotide metabolism, fructose and mannose

metabolism, glycolysis gluconeogenesis, and pentose phosphate

pathway), which may explain the corresponding worse prognosis.

Besides, targeting glycolysis may also serve as a potential

therapeutic strategy for patients in the high risk group.

Excessive mutation of tumor suppressor genes originally

accelerates carcinogenesis (39). Both PIK3CA and TP53 are

common mutated oncogenes in breast cancer (40). We identified

PIK3CA and TP53 as potential carcinogenic driving genes in the
A

B

FIGURE 11

Single-cell analysis. (A) Identification of cell subgroups in the tumor microenvironment of breast cancer. (B) Expression pattern of the seven
SOSCRGs in the tumor microenvironment.
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low risk group and the high risk group respectively. A previous

study found that the prognostic effects of PIK3CA and TP53

mutations were different in patients with early breast cancer (41).

Patients with PIK3CA-only mutation harbored relatively favorable

disease-free interval (DFI), whereas patients with TP53-only

mutation harbored worse DFI, more importantly, patients with

PIK3CA-TP53 co-mutation exhibited the worst DFI (41). This also

proved that the prognosis of patients with dominant TP53 mutation

in the high risk group was worse than patients with dominant

PIK3CA mutation in the low risk group. Additionally, patients in

the high risk group had higher TMB than patients in the low risk

group, and the risk score was significantly positively correlated with

TMB. This indicated that patients in the high risk group suffered

from more mutation accumulation, thereby contributing to

unsatisfactory clinical results.

Single-cell transcriptome data is sequenced from annotated cells

with high quality, which renders it more precise than common bulk

RNA-sequencing data. Thus it is widely applied to dissect the tumor

microenvironment to further understand the intratumoral

heterogeneity (42–44). In the present study, we dissected the

expression pattern of SOSCRGs in the tumor microenvironment

of breast cancer based on single-cell analysis. We found that

endothelial cells, epithelial cells, and fibroblasts appeared to be

the main cell subgroups. Only the expressions of ERRFI1, ETS1,

NDRG1 , and ZMAT3 were de t e c t ed in the tumor
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microenvironment. Furlan et al. (45) reported the pivotal role of

ETS1 in modulating the links between breast cancer cells and

endothelial cells and facilitating intratumoral angiogenesis. Thus

it is that these SOSCRGs that may serve as media molecules during

cancer cells-tumor microenvironment interactions to affect tumor

development and progression. However, more experimental

evidence is waiting to be accomplished.

The present study has several limitations. Above all, it would be

better to verify the expressions of the seven SOSCRGs in breast

cancer using clinical specimens. Apart from that, the application of

the SOSCRGs-based predictive model in a prospective cohort would

further prove its clinical utility. In addition, as we mentioned above,

the regulatory network and mechanisms of the SOSCRGs in breast

cancer require further elucidation by more experimental evidence.
5 Conclusion

Two distinct BRCA subtypes were determined based on

SOSCRGs, among which subtype 1 was immune-active and

subtype 2 was immune-cold, and the clinical outcomes between

patients in the two subtypes were significantly different. A seven-

SOSCRGs-based predictive model was constructed and validated to

fairly predict the prognosis for patients with BRCA. Subgroup

analysis verified the applicability of the predictive model. The risk
FIGURE 12

The mRNA levels of the seven SOSCRGs in five breast canceer cell lines. “*” indicates P < 0.05, “**” indicates P < 0.01 and “***” indicates P < 0.001.
"ns" indicates non-significant.
frontiersin.org

https://doi.org/10.3389/fendo.2023.1179050
https://www.frontiersin.org/journals/endocrinology
https://www.frontiersin.org


Ye et al. 10.3389/fendo.2023.1179050
score was deciphered as an independent prognostic predictor by

univariate and multivariate Cox regression analysis. A prognostic

nomogram integrated with the risk score and clinicopathological

characteristics was established and identified to harbor robust

predictive efficacy for patients with BRCA. We further found that

the two risk groups had distinct immune infiltration patterns,

immune checkpoint expression patterns, functional strengths, and

mutation landscapes. Three types of drug agents were predicted to

be potentially sensitive to patients in the low risk group.

Furthermore, the expression patterns of the seven SOSCRGs in

the tumor microenvironment were dissected by single-cell analysis.

Multidimensional investigations verified that the SOSCRGs-based

predictive model may provide new insights into prognosis

prediction, risk stratification, and clinical decision for patients

with BRCA.
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