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Editorial on the Research Topic

Artificial intelligence for data discovery and reuse in endocrinology
and metabolism
Introduction

As biomedical research has embraced the era of big data, massive amounts of complex

multi-omic data are being generated. While there is huge potential in using the rich body of

data to make new discoveries, many challenges exist in the dissemination, discovery, and

reuse of these data. Artificial Intelligence (AI) and machine learning (ML) technologies

have been paramount towards fully extracting value from rich and complex datasets to

drive scientific discoveries and clinical decision-making. However, the adoption of AI and

ML in endocrinology and metabolic diseases is lagging behind, compared to fields such as

cancer genomics (1).

A major part of the challenge comes from the complexity and heterogeneity of data

being produced by different omics platforms and research groups. In addition, there is a

lack of data standards, data exchange platforms and data processing pipelines that are

widely accepted by the community. Due to the complex and multi-faceted mechanisms

underlying directly observable phenotypes, identifying multi-omic biomarkers that reflect

the interplay between genetic regulation and metabolic response could provide novel

insights into cellular functionality. Recent surveys have shown the role that metabolomic

profiling plays in increasing the power of clinical variables, but have also highlighted its

open challenges (2).

To fully leverage the power of AI to maximize the value of the rich data in

endocrinology and metabolism, at least a few key areas need to be addressed. First,

aggregated, harmonized, discoverable, and accessible datasets that are suitable for ML and

AI applications are in urgent need, especially in the presence of multi-modal data. To this

end, developing data-sharing infrastructure, standards, and data curation pipelines is the

key to success. Second, it is becoming clear that incorporating mechanistic knowledge into
frontiersin.org01

https://www.frontiersin.org/articles/10.3389/fendo.2023.1180254/full
https://www.frontiersin.org/articles/10.3389/fendo.2023.1180254/full
https://www.frontiersin.org/articles/10.3389/fendo.2023.1180254/full
https://www.frontiersin.org/research-topics/31497
https://www.frontiersin.org/research-topics/31497
https://www.frontiersin.org/journals/endocrinology
https://www.frontiersin.org
http://crossmark.crossref.org/dialog/?doi=10.3389/fendo.2023.1180254&domain=pdf&date_stamp=2023-05-05
mailto:c.angione@tees.ac.uk
https://doi.org/10.3389/fendo.2023.1180254
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/endocrinology#editorial-board
https://www.frontiersin.org/journals/endocrinology#editorial-board
https://doi.org/10.3389/fendo.2023.1180254
https://www.frontiersin.org/journals/endocrinology


Angione et al. 10.3389/fendo.2023.1180254
ML and AI tools will facilitate a biologically-informed

interpretation of the predictions. Third, it is crucial to develop

easy-to-use tools and visualization methods that can be used by

researchers and clinicians not trained as computer scientists to drive

scientific discoveries and clinical decisions.
Learning with multiple
omic modalities

The articles presented in this Research Topic tackle the issue of

learning with multiple omic modalities in a clinical context. Overall,

they emphasise that the combination of multiple modalities is more

effective than using only one modality in isolation, showing a

significant increase in predictive performance. They also address

the issue of small sample size, a common drawback of ML studies in

omics, where obtaining matched samples across more than one

modality remains a challenging task in terms of time and costs

involved, with the associated challenges in using deep learning

approaches (3, 4).

Feng et al. implement and compare eight ML models for the

prediction of lateral lymph node metastasis in patients with

papillary thyroid carcinoma, showing that random forest is highly

effective and interpretable as a predictive method, but its

performance is highly dependent on clinical variables. They also

show that combining different modalities (clinical and sonographic

in this case) improves the predictive performance.

Wu and Zhang apply various bioinformatics methods to

identify differentially expressed genes, hub genes and signalling

pathways that are potentially important for type 2 diabetes, using

data from blood samples of subjects with type 2 diabetes vs healthy

controls, downloaded from the GEO database. Further, a

pharmacophore target analysis reveals potential drug target genes

and pathways for celastrol, a natural phytochemical found to have
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anti-diabetic properties. The molecular interaction of celastrol and

target genes is simulated by AlphaFold2.

Chen et al. study drug metabolism genes differentially expressed in

human liver samples with or without NAFLD. Due to the small sample

size, they reanalyse two publicly available GEO datasets, as well as

previously-collected experimental data from the mouse, to enrich the

main dataset and identify nine common differentially expressed genes.

Fu et al. compare five ML algorithms to predict the 52-week

blood glucose level in 273 patients with type-2 diabetes, assessing

the algorithms in terms of clinical and numerical performance

measures. They conclude that XGBoost is the best choice to assist

decision-making in the treatment of diabetic patients. They also

discuss the challenges introduced by learning with a relatively small

sample size.

Taken together, all studies show that focusing on interpreting

the predictions generated by ML is a critical topic, especially for

clinical applications (5–7). In this context, introducing mechanistic

models within ML architectures is likely to represent a step change

compared to existing data-driven approaches.
Perspective: mechanism-aware and
multi-modal machine learning

Data quality and data scarcity remain major challenges when

dealing with the integration of multi-modal data through ML.

Documentation, correct labelling and project metadata are as

important as the data itself. Furthermore, dealing with missing

data is a common issue among different data types or modalities,

whether omic, imaging, or clinical data, which reduces the number

of useable common samples. The limited number of matched

samples in turn fuels the generalizability challenge, since a model

with a limited number of samples tends to overfit the data. Transfer

learning approaches can mitigate this issue.
Metabolic models
(or other modelling approaches)
- Add mechanistic features (flux rates)
- Filter out omic redudancies
- Enable biologically-relevant interpretation

Multi-omics data 
Layers of cellular observables
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FIGURE 1

Example of a multi-modal learning framework combining omics data with mechanism-drive modelling approaches within a neural network
architecture. In an intermediate integration strategy, multi-omics features and mechanistic model-derived features can be used for an independent
phase of modality-specific training, before being fused in a single set of latent features. These can then be used within existing ML architectures (e.g.
a fully connected neural network) to achieve the final prediction.
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It is also important to note that, in complex phenotypes where

the interaction between events spanning multiple omic layers is

likely to be the main cause of disease progression, traditional multi-

omic computational methods based on ML are only able to uncover

associations among genes, proteins or other omic components,

without offering a mechanistic interpretation. As a result, these

methods are not always able to provide the holistic understanding

necessary to provide actionable biomarkers.

Therefore, new hybrid computational methodologies that are

both data- and model-driven are needed for novel biomarker

discovery, early diagnosis and better prediction of therapeutic

targets (8, 9). For instance, multi-modal approaches to integrate

multi-omic data with metabolic modelling (Figure 1) have shown

promising results with higher accuracy and increased attention for

the biological interpretation of ML-derived results (10–12). It seems

therefore likely that combining different types of omics data with

mechanism-driven models will further improve the ability of ML

models to mechanistically characterize a disease.

Another potential direction is the direct incorporation of

biological information within the learning process. This could be

done by manually changing the structure of the ML architecture, or

by adopting a combination of omics depending on the patient’s

clinical characteristics, e.g. introducing an attention mechanism

within the neural network (13). Biomarkers extracted from

biologically-informed architectures are likely to have significantly

higher potential for survival prognosis and therapeutic

role compared to those generated via traditional model-

agnostic interpretations.
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