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Bone contributes to the maintenance of vital biological activities. At the cellular

level, multiple types of skeletal cells, including skeletal stem and progenitor cells

(SSPCs), osteoblasts, chondrocytes, marrow stromal cells, and adipocytes,

orchestrate skeletal events such as development, aging, regeneration, and

tumorigenesis. Osteosarcoma (OS) is a primary malignant tumor and the main

form of bone cancer. Although it has been proposed that the cellular origins of OS

are in osteogenesis-related skeletal lineage cells with cancer suppressor gene

mutations, its origins have not yet been fully elucidated because of a poor

understanding of whole skeletal cell diversity and dynamics. Over the past

decade, the advent and development of single-cell RNA sequencing analyses

andmouse lineage-tracing approaches have revealed the diversity of skeletal stem

and its lineage cells. Skeletal stem cells (SSCs) in the bone marrow endoskeletal

region have now been found to efficiently generate OS and to be robust cells of

origin under p53 deletion conditions. The identification of SSCsmay lead to amore

limited redefinition of bone marrowmesenchymal stem/stromal cells (BM-MSCs),

and this population has been thought to contain cells fromwhich OS originates. In

this mini-review, we discuss the cellular diversity and dynamics of multiple skeletal

cell types and the origin of OS in the native in vivo environment in mice. We also

discuss future challenges in the study of skeletal cells and OS.

KEYWORDS
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Introduction

Bone is an important organ that significantly contributes to the maintenance of vital

biological activities. It forms the skeleton and helps provide locomotion. In addition, it is the

main site of hematopoiesis in the adult body (1). At the cellular level, bone marrow is

composed of skeletal cells, hematopoietic cells, and vascular cells. These cells form a

functional bone marrow niche by interacting with each other (2–9). Significant progress
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has been made in researching skeletal and hematopoietic stem cells

(SSCs and HSCs, respectively). Both SSCs and HSCs are somatic stem

cell types that are found in various body tissues and are involved in

their growth, regeneration, and homeostasis. By definition, somatic

stem cells are self-renewing and multipotent (10, 11). SSCs are bone

tissue-specific mesenchymal stem cells (MSCs). MSCs have been

identified in various tissues, including bone, bone marrow, fat,

umbilical cord, placenta, synovium, dental pulp, and other tissues

(12, 13). Currently, it has been elucidated that SSCs are

spatiotemporally located at a part of growth plate cartilage,

periosteum, and bone marrow in long bone (14–18). In particular,

SSCs have been characterized as self-renewing and having the

potential to differentiate into osteoblasts, chondrocytes, and

adipocytes. These characteristics were determined using ex vivo cell

culture experiments, which are considered the gold standard for this

type of research (19, 20). Since SSCs were first identified in the 1960s

(21), multiple studies have examined skeletal stem and progenitor

cells (SSPCs) and their cell lineages, including differentiated

chondrocytes, osteoblasts, and marrow adipocytes (1, 22–25). In

the past decade, the characteristics of skeletal cells have been better

elucidated by using fluorescence-activated cell sorting (FACS)-based

isolation techniques based on the use of appropriate cell surface

markers. These techniques have been validated in mice (26–28) and

humans (29–31). In addition, an in vivo lineage-tracing approach

using cell type-specific constitutively active cre or tamoxifen-

inducible creER genetic mice with fluorescent reporter strains has

been very useful (1, 22, 23, 32–34). Recently, single-cell RNA

sequencing (scRNA-seq) has revealed the heterogeneity of skeletal

cells at the single-cell level, and this technique has also accelerated

research in this field (35). Moreover, a combination of these methods

has improved our understanding of skeletal biology.

Osteosarcoma (OS) is the most common malignant bone tumor

in children and adolescents. The most favorable sites for OS to

develop are in the femur, tibia, and humerus (36). According to the

WHO classification of bone tumors, OS can be divided into various

subtypes, including conventional (osteoblastic, chondroblastic, and

fibroblastic), telangiectatic, small-cell, low-grade central, parosteal,

periosteal, high-grade surface, and secondary types (37). Thus, the

pathological nature of OS varies, and patient samples in which

complete transformation has occurred are generally not suitable for

elucidating the mechanisms of OS development. This highlights the

need for establishing experimental animal models that faithfully

reproduce the development of OS in humans. Above all, studies that

make full use of well-constructed mouse models to identify the cells

of origin for OS will be indispensable.

A comprehensive understanding of the relationship between

skeletal cells and OS is essential for investigating the dynamics and

mechanisms of osteosarcomagenesis. Mouse genetic approaches are

helpful for discovering the cells of origin and cellular dynamics of

OS. In this mini-review, we discuss the progress of skeletal cell

research and OS research over the past decade in terms of OS

initiation from skeletal cells, as well as future directions and issues.
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Novel techniques to elucidate the
skeletal systems in the past decade
In the past decade, significant progress has been made in bone

research due to technological improvements and new

developments. In particular, FACS-based cell isolation using cell

surface markers (26, 27), an in vivo lineage-tracing approach using

cell-type-specific constitutively active cre or tamoxifen-inducible

creER genetic mice (32, 38, 39), and current scRNA-seq analyses

(35) have all been applied to study the diversity and the dynamics of

skeletal cells. Furthermore, all these techniques have been well-

developed and now exist as robust technologies. Among these,

mouse in vivo lineage-tracing analysis has been commonly used to

investigate spatiotemporally specific cell fates and the functions of

skeletal cell subpopulations. This approach uses the cre-loxp system

(32). Crossing transgenic mice that express cre recombinase in

specific target cells expressing a gene-specific promoter region with

knock-in mice that have a loxp-stop-loxp site and a subsequent

artificial fluorescent reporter gene in the Rosa26 locus (40–42)

results in offspring with target cells that express fluorescent

protein when the gene of interest is expressed. Importantly, after

cre recombination occurs, the target cells will continue to express

the fluorescent protein even after proliferation or differentiation

and will not stop unless they undergo apoptosis. Constitutively

active cre systems are useful in cases in which gene mutations

always occur during the initial stages of embryogenesis. All cells

with the gene mutations can be fluorescently labeled after cre

recombination occurs. However, constitutively active cre systems

are not useful for determining the precise cell lineage of target cells

because recombination is induced whenever the promoter is

activated and temporal factors cannot be controlled. To avoid

these problems, the creER system can be used, and the

recombinat ion wil l only be induced after tamoxifen

administration (38, 39).

Technology based on RNA-seq is widely used for the

comprehensive analysis of gene expression in cell populations.

Previous bulk RNA-seq methods only quantified the average gene

expression of target cell populations. However, scRNA-seq

analysis can be used to study gene expression at the single-cell

level. These analyses have revealed cellular heterogeneity, as well

as distinct molecular signatures in individual cells. The use of

scRNA-seq analysis has rapidly progressed over the past decade

(43, 44). Recently, various single-cell-based analyses have been

developed, including assays for transposase-accessible chromatin

(ATAC)-seq, combined multiome seq (mRNA + ATAC), cellular

indexing of transcriptomes and epitopes by sequencing (CITE-

seq, mRNA + protein), and single-cell spatial transcriptome

analysis (45–49). The combination of in vivo lineage-tracing

and single-cell sequencing has provided new insights into the

diversity of skeletal cells and dynamics of distinct skeletal

cells (50).
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ScRNA-seq reveals cellular diversity in
the skeletal system

The skeleton is composed of many types of skeletal cells,

including osteoblasts, osteocytes, bone marrow stromal cells,

chondrocytes, and periosteal cells. However, the large number of

hematopoietic and vascular cells in the bone marrow can make it

difficult to find bone marrow skeletal cells. Bone marrow stromal

cells are vaguely defined as cells that are located between the outer

surfaces of the marrow blood vessels and the bone surfaces that

encase the hematopoietic space and tissue (51). In addition, a small

percentage of skeletal cells can be isolated from whole bone marrow

(16, 52). Therefore, the diversity of skeletal cells in bone marrow has

not been fully elucidated.

The landscape of skeletal cell populations has been revealed by

scRNA-seq studies. Multiple studies have confirmed the

heterogeneity of skeletal cells in bone (35, 53–61). In many

studies, scRNA-seq analyses are performed in combination with

cell surface marker- and/or mouse cell type-specific fluorescence

reporter-based FACS. The heterogeneity of mouse bone marrow

stromal cells was revealed using these methods. An scRNA-seq

analysis of FACS-isolated non-hematopoietic bone marrow cells

revealed many skeletal clusters, which included leptin receptor

(LepR)+ reticular cells, osteoblast lineage cells, pericytes, and

fibroblasts (59). These clusters can be further divided into sub-

populations. The heterogeneity of LepR+ bone marrow perivascular

lineage cells and alpha-1 type I collagen (2.3kb Col1a1)+ osteoblast

lineage cell populations were shown in detail using Lepr-cre and

Col1a1(2.3kb)-creER mice at a steady state. Lepr-cre+ cells can be

divided into four clusters, including adipogenic and osteogenic

populations, whereas Col1a1(2.3kb)-creER+ cells can be divided

into three clusters, including mature and immature osteoblasts

(59). C-X-C motif chemokine 12 (CXCL12, also known as

stromal cell-derived factor 1 [SDF1]) and LepR are co-expressed

in bone marrow reticular cells (16), and CXCL12-abundant

reticular (CAR) cells and LepR+ cells mostly overlap. The results

of scRNA-seq analyses using Cxcl12-GFP+ cells from Cxcl12GFP/+

mice or FACS-isolated non-hematopoietic mouse cells have shown

that these CAR cells form heterogeneous populations, including

adipogenic (Adipo-CAR cells) and osteogenic (Osteo-CAR cells)

populations (60–62), as Lepr-cre+ cells do. Currently, the diversity

of all skeletal cells, which can be positively selected using Col2a1-cre

(53) or Prrx1-cre in young and old mice, has been revealed, and

these cells cluster into major differentiated cell types. These include

chondrocytes, osteoblasts, stromal/adipocytes, and their transitional

populations (18). Multiple studies have identified unique clusters,

and their dynamics and molecular mechanisms have been

computationally inferred. Trajectory analyses using pseudo-time

and RNA velocity can also predict skeletal cell lineages (63–66).

However, the results of these analyses are only predictions that

depend heavily on bioinformatics. Validation analyses will be

required to investigate the lineage and molecular mechanisms of

gene expression in distinct cell types.
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In vivo lineage-tracing reveals cellular
dynamics in the skeletal system

Lineage-tracing approaches have been widely used to track the

fates of skeletal cells. Multiple cre or creER lines have been used to

reveal the cellular dynamics involved (Figure 1A). Spatiotemporally

specific line choices were also used to precisely determine skeletal

cell dynamics.

In fetal long bone development, undifferentiated limb bud

mesenchyme marked by Prrx1-cre gives rise to Sox9-expressing

mesenchymal condensations at the first step (90, 91). Prrx1-cre

lineage cells differentiate into all skeletal cells, and the

condensations with Sox9-cre or Sox9-creER provide most groups

of skeletal cells as osteo-chondro progenitors (92, 93). During the

next condensation step, the cartilage template and surrounding

perichondrium are formed. The Col2a1-cre+ or Col2a1-creER+ cells

appear in both the cartilage template and perichondrium at this

stage, and these cells differentiate into postnatal chondrocytes,

osteoblasts, stromal cells, marrow adipocytes, pericytes, and

periosteal cells (53, 94). Gli1-creER predominantly marks

perichondrial cells and a few chondrocytes at this stage. These

cells give rise to multiple cell types associated with the skeleton (95).

Hypertrophic chondrocytes marked by Col10a1-cre or Col10a1-

creER differentiate into postnatal osteoblasts and marrow stromal

cells without perichondrial or periosteal cells (96, 97). Fgfr3-creER+

cells in the central area of the cartilage template predominantly

become postnatal growth plate chondrocytes and metaphyseal

skeletal cells, but not to the diaphyseal skeleton (98). In contrast,

the outer layer of perichondrial cells marked by Dlx5-creER become

postnatal diaphyseal osteoblasts, periosteal cells, and stromal cells

with adipogenic properties. Interestingly, the inner layers of

osteogenic perichondrial cells marked by Osterix (Osx)-creER or

Col1a1-creER transiently become skeletal cells in the bone and bone

marrow at the neonatal stage but they disappear from the bone at

the postnatal stage (98–100). The Cathepsin K (Ctsk)-cre marker is

present in the perichondrial area during the embryonic stage and

cells with this marker differentiate into the periosteal cells (15).

In the postnatal stage, SSPCs and differentiated cell dynamics

can be studied using lineage-tracing analyses. Cell type-specific

SSCs in the young stage have been reported in the bones, including

Pthrp-creER+ growth plate stem cells in the early postnatal resting

zone (14) and Ctsk-cre+ early postnatal periosteal stem cells (15,

101), whereas Lepr-cre+ and Ebf3-creER+ CAR cells in the bone

marrow stroma behave like SSCs in the adult stage (16, 102).

Recently, it was discovered that endosteal stromal cells marked by

Fgfr3-creER in bone marrow in the young stage behave like SSCs,

and they have been named endosteal stem cells (18). These

endosteal stem cells differentiate into osteoblasts, CXCL12+LepR+

reticular cells, and their lineage cells under physiological conditions,

and become all skeletal cells under in vivo transplantation

conditions. Multiple cell lines target SSPCs during postnatal

development. Growth plate chondrocytes, marked by Sox9-creER,

Aggrecan-creER, Col2a1-creER, and Col10a1-creER, become
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osteoblasts and CXCL12+LepR+ reticular cells (94, 96, 97).

Importantly, these lines predominantly mark growth plate

chondrocytes, but they also mark skeletal cells in the metaphyseal

area after a short chase of tamoxifen injection. In addition, Gli1-

creER+ cells residing in the growth plate and immediately beneath

the growth plate are essential for cancellous bone formation as

metaphyseal mesenchymal progenitors (95). Grem1-creER+ cells,

which are found in the marrow space adjacent to the growth plate

and trabecular bone, differentiate into chondrocytes, osteoblasts,

and stromal cells (103).

To address osteoblast lineages, osteoblast differentiation-related

genes have been applied as cre or creER driver genes. Osx is an

essential transcription factor expressed in osteoblasts and osteoblast

precursor cells during the postnatal stage (104, 105). Osx-cre marks

the cortical and trabecular osteoblasts, periosteal cells, and reticular

and perivascular stromal cells (106–108). On the other hand, Osx-

creER shows intriguing cell dynamics. Osx-creER+ cells behave as

skeletal progenitors in the early postnatal stage; they mark

osteoblasts, osteocytes, and preosteoblast-like cells in the

endosteal space overlaying osteoblasts on the bone surface, and

they differentiate into osteoblast lineage cells and stromal cells

adjacent to blood vessels in the marrow cavity. However, in

adults, Osx-creER-marked cells become only osteoblast lineage
Frontiers in Endocrinology 04
cells (100). Osteocalcin (OCN) and dentin matrix protein 1

(DMP1) are expressed in osteoblasts and osteocytes during later

stages of osteogenesis. Ocn-cre and Dmp1-cre are commonly used to

target osteoblast lineage cells (109, 110). Several studies have

revealed that these cre lines mark broader stromal cell

populations in the bone marrow, as well as in osteoblast lineage

cells (111, 112), although Ocn-creER and Dmp1-creER specifically

mark osteoblast lineage cells (113, 114). Col1a1-cre targets

osteoblast lineage and periosteal cells (115, 116), whereas Col1a1-

creER mainly marks osteoblasts and osteocytes (117). Several cre

and creER lines have been described and may be used for

experimental purposes.
Cells of origin in osteosarcoma

MSCs are a rare cell population, but they are present in many

tissues and serve as a source of mesenchymal progenitor cells (118).

Growing evidence suggests that bone marrow (BM)-MSCs (a.k.a.

BM-SSCs) may contain sarcoma- or tumor-forming cells, and they

have attracted attention in OS research as a possible source of the

cells of origin. They have also been used to help elucidate the

molecular mechanisms of OS development. Several types of
frontiersin.or
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FIGURE 1

(A) Endochondral bone development and cell type-specific cre and creER lines, During the development, SSPCs contribute to bone formation.
These SSPCs and their differentiated cells are targeted by multiple lines. Lineage-tracing approaches reveal cellular dynamics of distinct skeletal cells.
(B) Approach to the identification of cell-of-origin in OS using p53-targeting mice. OS incidence in each cell linage-specific p53-targeting mouse
line listed in Table 1 is shown in %. ** show the results of studies using two different length promoters of Col1a1-cre.
g
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sarcomas have been modeled by transforming BM-MSCs with

different oncogenic events (119, 120). Although the development

of in vivo OS mouse models is essential for establishing more

efficient and specific therapies for OS, the key question is how to

create mouse models that can target the BM-MSCs that appear to be

the OS cells of origin.

Most OS cases are sporadic in humans, and patients with OS

frequently present with alterations in p53 (68, 121, 122). The

hereditary p53 mutations associated with Li-Fraumeni syndrome

also predispose patients to OS (123, 124). In mice, OS develops
Frontiers in Endocrinology 05
along with various tumors, mainly lymphomas, in both systemic

p53-null and heterozygous individuals (125, 126). Thus, although

the pathology of conventional p53-deficient mice indicates that p53

abnormalities contribute to OS development, these mice are not

suitable for detailed analyses of the molecular mechanisms

underlying osteosarcomagenesis. Therefore, mice with bone-

associated cell lineage-specific p53 gene alterations have been

widely generated and used, as shown in Table 1 (67–89). By

crossing these mice with p53-deficient mice, the functions of

other candidate oncogenes and anti-oncogenes in OS have been
TABLE 1 Cell lineage-specific gene-targeting mouse studies for osteosarcoma.

Cre lines Tumor suppressors Oncogenes References

Osx/Sp7-ere (Osx/Sp 7-tTA) p53 Recql4 Ng et al. (67)

Runx3/Myc Otani et al. (68)

Pourebrahim et al. (69)

p53/Rb E2Fs Wu et al. (70)

UHRF1 Wu et al. (71)

Runx2 Lu et al. (72)

Berman et al. (73)

Calo et al. (74)

Mutsaers et al. (75)

Walkley et al. (76)

p53/Wwox Del Mare et al. (77)

RanGAPI Gong et al. (78)

p53R172H/Ets2 Pourebrahim et al. (69)

p53R172H/SBmut Moriarity et al. (79)

Wls/c-fos Matsuoka et al. (80)

Col1a1-cre 2.3kb p53 NICD Tao et al. (81)

Lin et al. (82)

p53/Rb Quist et al. (83)

p53/Rb/Dlg Shao et al. (84)

p53+/- (systemic) JABl Samsa et al. (85)

3.6kb p53 Lengner et al. (86)

Prrxl-cre p53/Rb Calo et al. (74)

Lin et al. (82)

Quist et al. (83)

Recql4 Lu et al. (87)

Ocn-cre p53/Ptch l Chan et al. (88)

p53/Rb Quist et al. (83)

SV40 T/t antigen Molyneux et al. (89)

Fgfr3-creER p53 Matsushita et al. (18)
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verified. Rb is a representative tumor suppressor gene candidate for

OS pathogenesis. Patients with hereditary retinoblastoma have a

significant predisposition for developing OS (127). However, the

deficiency of Rb by itself does not cause OS, although it has been

found to potentiate p53-deficient OS development (73, 74, 76). This

shows the importance of the tumor-suppressive role of p53 in

osteosarcomagenesis. Therefore, selecting cell lineage-specific p53-

deficient mice that can effectively develop OS at a high rate may

allow us to identify the cells of origin for OS and the molecular

mechanism of OS development in these cells.

The oncogenicity of p53-deficiency in early undifferentiated

mesenchymal cells has been studied using a Prrx1-cre transgenic

line. Prrx1-cre; p53fl/fl mice efficiently developed sarcomas, and OS

accounted for approximately 60% of these tumors. The other 40%

were tumors of other types, including rhabdomyosarcoma and

undifferentiated sarcoma (74, 82) (Figure 1B). On the other hand,

restricted p53 deletion in cells committed to osteoblast or

terminally differentiated osteoblast cells using Col1a1-cre or Ocn-

cre lines, respectively, can cause OS in mice. However, not all

individuals develop OS (82), and in the case of Ocn-cre, only about

40% of individuals develop OS even when Rb is deleted along with

p53 (Ocn-cre; p53fl/flRbfl/fl) (83) (Figure 1B). However, in osteoblast

precursor-specific p53-deleted mice using Osx-cre (Osx-cre; p53fl/

fl), nearly 100% of the sarcomas that developed in most individuals

were OS (68, 73, 74, 76), suggesting that the OS cells of origin are

enriched in Osx-positive cells (Figure 1B). Recently, early onset of

OS development was reported in mice with restrictive deletion of

Ran GTPase-activating protein 1 (RanGAP1) using Osx-cre.

However, no OS developed in cells using Ocn-cre, Col1a1-cre,

periosteum-derived mesenchymal progenitor (PDMP)-specific

Ctsk-cre chondrocyte-specific Col2a1-cre/Col10a1-cre, or Prrx1-

cre (embryonic lethal with Prrx1-cre) (78). This observation also

suggests that Osx-cre can target the cells of origin in OS or the cell

population that contains them.

What makes Osx-positive osteoblast precursor cells/BM-MSCs

tumorigenic when p53 is inactivated? The root of the tumorigenic

process that occurs after the loss of p53 is the upregulation of Myc

by Runx3, a Runx transcription factor (68) (Figure 1B). The

oncogenicity of Runx2 in OS has been reported (128–130), but

deletion of p53 markedly upregulates Runx3 rather than Runx2.

The upregulation of Runx3 leads to dysregulation of Myc and the

oncogenic Runx—Myc axis (68). This results in a malignant link

between the loss of p53 and activation of Myc (131), the most

potent oncogene in human cancer, including OS (132). The

oncogenic Runx (Runx1)—Myc axis was also found to be

essential for p53-deficient lymphomagenesis (133).

Thus, there are multiple OS mouse models using cell lineage-

specific cre lines (134). However, all of them have been developed

using conventional cremouse lines, which do not allow for accurate

cell-lineage tracing or make it possible to identify the genuine cells

of origin for OS. In a recent study using creER mouse lines,

Matsushita et al. found that p53 deletion in Fgfr3-creER+

endosteal stem cells, Osx-creER+ osteoblast precursors, Gli1-

creER+ growth plate chondrocytes and metaphyseal mesenchymal
Frontiers in Endocrinology 06
progenitors, Pthrp-creER+ growth plate stem cells in the resting

zone, and Lepr-cre+ marrow reticular stromal and their lineage cells

showed distinct bone phenotypes. Among these models, Fgfr3-

creER-expressing p53-deleted cells in young mice effectively

generated OS, which broadly destroys pre-existing cortical bone

from the endosteal marrow surface at or before 9 months of age

(18). These results suggest that Fgfr3+ cells contain the cells of origin

for OS, as do Osx+ cells (Figure 1B), and that novel Fgfr3+ SSCs can

provide a new perspective for the identification of the cells of origin

for OS. They may also allow for the more precise redefinition of

conventional BM-MSCs in vivo.
Future challenges

In the past decade, we have acquired the powerful tool of

scRNA-seq analysis, which can reveal the diversity of skeletal cells

and predict their trajectories, as well as a mouse lineage-tracing

approach for spatiotemporal validation. A comprehensive

understanding of the dynamics of skeletal lineage cells has led to

the elucidation of the biology of skeletal diseases, such as OS. The

platforms and algorithms for scRNA-seq analysis are rapidly

advancing. Although one of the disadvantages of scRNA-seq is

the loss of spatial information, the latest single-cell spatial

transcriptome analysis technique will accelerate research in all

fields over the next decade (48, 135–140). Current studies using

scRNA-seq have uncovered new skeletal cell types, which have

received their own names. Understanding the actual cell clusters

involved is becoming complicated because some of these

computationally identified new cell types in distinct studies might

overlap. Further communication between members of the research

fields will be required for future investigations.

As of now, OS research has progressed exclusively through a series

of analyses combining cell lineage-specific conventional cremouse lines

and floxed mice carrying cancer-related genes, mainly p53. However,

the identification of the genuine cells of origin for OS is difficult because

the conventional cre system continuously deletes target genes in a

variety of cells, starting at the embryonic stage and continuing through

all other life stages. Cancer research should focus on the creER line,

which allows more precise control of recombination timing and cell

type, in combination with fluorescent reporters and floxed lines of

oncogenes and anti-oncogenes, to determine the cells of origin. This

system can also provide a more precise molecular mechanism of

tumorigenesis due to genomic alterations in a temporal and cell-

specific manner and has already been implemented in other research

fields involving major cancers. Therefore, it should be used more

actively in future OS studies.

In this context, the mouse OS model generated from Fgfr3-

creER+ intraosseous stem cells lacking p53 is informative.

Interestingly, OS is also caused by p53 deletion in Osx-creER+

cells located downstream of Fgfr3-creER+ endosteal stem cells. In

other words, multiple types of skeletal cells may behave as cells of

origin for OS. The conventional cre system that has been used for

OS research to date should be replaced by a more precisely
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controlled creER system, and future research should focus on

clarifying cellular diversity and dynamics.
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