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A specific gut microbiota
signature is associated with an
enhanced GLP-1 and GLP-2
secretion and improved
metabolic control in patients
with type 2 diabetes after
metabolic Roux-en-Y
gastric bypass
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Objective: To determine changes in incretins, systemic inflammation, intestinal

permeability and microbiome modifications 12 months after metabolic RYGB

(mRYGB) in patients with type 2 diabetes (T2D) and their relationship with

metabolic improvement.

Materials and methods: Prospective single-center non-randomized controlled

study, including patients with class II-III obesity and T2D undergoing mRYGB. At

baseline and one year after surgery we performed body composition

measurements, biochemical analysis, a meal tolerance test (MTT) and lipid test

(LT) with determination of the area under the curve (AUC) for insulin, C-peptide,

GLP-1, GLP-2, and fasting determinations of succinate, zonulin, IL-6 and study of

gut microbiota.
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Abbreviations: RYGB: Metabolic Roux-en-Y gastric

diabetes; MTT: Meal tolerance test; LT: Lipid test; AUC

GLP-1: Glucagon-like peptide-1; GLP2: Glucagon

interleukin-6; IR: Insulin resistance; LPS: Lipopolysacch

Y gastric bypass; SG: Sleeve gastrectomy; BMI: Body m

weight loss.

Hernández-Montoliu et al. 10.3389/fendo.2023.1181744

Frontiers in Endocrinology
Results: Thirteen patients aged 52.6 ± 6.5 years, BMI 39.3 ± 1.4 kg/m2, HbA1c

7.62 ± 1.5% were evaluated. After mRYGB, zonulin decreased and an increase in

AUC after MTT was observed for GLP-1 (pre 9371 ± 5973 vs post 15788 ± 8021

pM, P<0.05), GLP-2 (pre 732 ± 182 vs post 1190 ± 447 ng/ml, P<0.001) and C-

peptide, as well as after LT. Species belonging to Streptococaceae,

Akkermansiacea, Rickenellaceae, Sutterellaceae, Enterobacteriaceae,

Oscillospiraceae, Veillonellaceae, Enterobacterales_uc, and Fusobacteriaceae

families increased after intervention and correlated positively with AUC of

GLP-1 and GLP-2, and negatively with glucose, HbA1c, triglycerides and

adiposity markers. Clostridium perfringens and Roseburia sp. 40_7 behaved

similarly. In contrast, some species belonging to Lachnospiraceae,

Erysipelotricaceae, and Rumnicocaceae families decreased and showed

opposite correlations. Higher initial C-peptide was the only predictor for T2D

remission, which was achieved in 69% of patients.

Conclusions: Patients with obesity and T2D submitted to mRYGB show an

enhanced incretin response, a reduced gut permeability and a metabolic

improvement, associated with a specific microbiota signature.
KEYWORDS

incretin, microbiota, type 2 diabetes remission, severe obesity, bariatric surgery
1 Introduction

Bariatric surgery (BS) is a highly effective therapy for patients

with obesity and type 2 diabetes mellitus (T2D), and many

mechanisms have been proposed for its metabolic benefits (1).

One of the main drivers of T2D improvement is the enhanced

delivery of nutrients and bile to the distal gastrointestinal (GI) tract

as a consequence of anatomical rearrangement, along with a rapid

gastric emptying leading to increased nutrient-stimulated secretion

of such gut hormones as glucagon-like peptide 1 (GLP-1), peptide

YY and oxyntomodulin, implicated in the improvement of bcell
function and food intake regulation (2) (3) (4). Also, caloric

restriction, weight loss, reduction in insulin resistance (IR) and

decreased pancreatic and hepatic fat deposits have been implicated

in T2D remission. More recently, bile acid diversion and gut

microbiome have been recognized as important factors in the

complex network of glucose homeostasis after BS (5) (6) (7) (8)

(9). Although current knowledge links gut microbiota to host

glucose metabolism, the mechanisms are still unclear (10) (11).

Low concentrations of Firmicutes and an increase in the relative

abundance of Gammaproteobacteria and Akkermansia muciniphila

after Roux-en-Y gastric bypass (RYGB) have been observed among
bypass; T2D: Type 2
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humans (12) (13) (14) (15) and rodents (16) (17) (18). These

changes seem to contribute to decreased intestinal permeability,

improving IR. Few previous studies have characterized the

microbiota directly linked to metabolic improvement and T2D

remiss ion af ter RYGB, a l though findings have been

heterogeneous. In some, a more significant number of

Actinobacteria was observed (19). In others, there was a higher

abundance of Eubateriaceae and Alistipes putredinis pre-surgery,

and Lachnospiraceae and Roseburia 12 months after surgery, in

patients achieving T2D remission (20). However, studies analyzing

the direct relationship between incretin secretion and specific gut

microbiota species are scarce in human subjects with obesity (21)

and absent in subjects with severe obesity and T2D.

In this scenario, we aimed to determine the changes in

enteroendocrine hormones, systemic inflammation, intestinal

permeability and microbiome modifications 12 months after

metabolic RYGB (mRYGB) in patients with obesity and T2D.

Also, we studied the relationship between these changes and the

metabolic improvement. The follow-up time was set at 12 months

since this is the point where the weight reaches its nadir after

bariatric surgery and then stabilizes (22). For this reason, we

consider that it is the best time to study changes in body

composition, metabolism, and microbiota.
2 Materials and methods

A prospective single-center, non-blinded non-randomized

controlled trial study was conducted, including patients with

classes II and III obesity and T2D undergoing mRYGB. Patients
frontiersin.org
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were consecutively recruited from the obesity outpatient clinic of

Bellvitge University Hospital. The inclusion criteria were as follows:

age between 18 and 60 years old, body mass index (BMI) 35–43 kg/

m2, T2D on hypoglycemic agents, insulin, or both. The exclusion

criteria were the following: type 1 diabetes or positivity for glutamic

acid decarboxylase autoantibodies, secondary forms of diabetes,

acute metabolic complications in the previous 6 months, liver

disease, renal dysfunction, previous BS, pregnancy, breastfeeding,

or desired pregnancy in the 12 months following inclusion, and

corticoid use by oral or intravenous route for more than 14

consecutive days in the previous three months. All patients signed

informed consent, the protocol study (PI14/01997) was approved

by the Clinical Research Ethics Committee (reference PR 198/14)

and conducted in according with the principles of the Declaration

of Helsinki.

At baseline and one year after surgery, patients underwent an

anthropometric and body composition analysis with DEXA

(HoQDR 4500; Hologic Inc., Waltham, MA), a complete

biochemical examination, a standardized meal tolerance test

(MTT), and a lipid test (LT). MTT consisted in the intake of

200ml of a standard meal (16% proteins, 49% carbohydrates, and

30% lipids [320 kcal]; Isosource Energy®, Nestle Health Science)

over 5 min. Blood was sampled before meal ingestion (time 0 min)

and at 15, 30, 60, and 120 min after meal ingestion. The LT was

performed using an oral lipid solution ingested over 5 min,

containing 50 g of fat in 100 mL of solution, of which 30% was

saturated , 49% was monounsaturated , and 21% was

polyunsaturated. Blood samples were drawn at fasting state (time

0 min) and at 60, 120, and 180 min after lipid ingestion.

All pharmacological treatment was stopped three days before the

functional tests, except insulin treatment which was stopped 12 hours

before the tests. Proton pump inhibitors were prescribed after surgery

for only three months. In the month preceding the surgical

procedure, all patients adhered to a very low-calorie diet,

characterized by an intake of <800 kcal/day. This dietary regimen

was achieved through the implementation of meal replacement with

Optifast® Nestle HealthScience, which is composed of 0.7 kcal/ml

with a macronutrient distribution of 40% proteins, 30%

carbohydrates, and 30% fats. Following the surgical intervention,

diligent oversight was maintained over all patients by licensed

dietitians, who provided guidance on adhering to a well-balanced

diet, inclusive of all essential nutrients as stipulated by clinical

guidelines for gastric bypass surgery (23). Probiotics were not

administered to any of the patients to prevent potential

interference with the microbiota analysis outcomes.

During the MTT and LT, plasma, insulin, C-peptide, GLP-1 and

GLP-2 were determined at all-time points, whereas succinate, IL-6

and zonulin concentrations were only determined in the fasting

state. Plasma insulin and C-peptide were determined by

immunochemiluminometric assay (ADVIA Centaur, Siemens

Healthcare, Erlangen, Germany), total plasma GLP-1 and GLP-2

by ELISA technique (respectively, EZGLP1T-36K and EZGLP-2-

37K, Merck KGaA, Darmstadt, Germany, respectively) and plasma

succinate on plasma filtrate (10.000 kD) using a fluorometric assay

(EnzyChromTM Succinate Assay Kit, BioAssay Systems; USA).

Fasting IL-6 and zonulin were analyzed by using ELISA high
Frontiers in Endocrinology 03
sensitivity kit (HS600C, USA R&D Systems, Inc., Minneapolis,

MN) and ELISA (K5601, Immundiagnostik AG, Bensheim,

German), respectively. Glucose and cholesterol were quantified

using molecular absorption spectrometry, employing the Cobas®

8000 system by Roche Diagnostics. Specifically, glucose levels were

determined using the GLUC3 Gen.3 assay on the cobas c503

platform (Roche Diagnostics, reference number 08057800190),

while LDL cholesterol levels were assessed with the HiCo Gen.2

assay, comprising 2100 tests on the cobas C platform (Roche

Diagnostics, reference number 5168538190). Additionally, HDL

cholesterol levels were measured using the Cobas C-Col HDL rct

500d assay (Roche Diagnostics, reference number 07528582190).
2.1 Surgical procedures

mRYGB combined restriction, creating a small gastric pouch of

100 ml, with hypo absorption that was accomplished by a 200 cm

biliopancreatic limb and an alimentary limb of 100 cm.
2.2 T2D Remission

After one year of follow-up, complete remission was defined as

an HbA1c <6% in the absence of hypoglycemic treatment (24). To

consider that the patients achieved complete remission, we verified

that they had an HbA1c <6% one year after surgery and without

hypoglycemic treatment for at least 3 months previous to follow-

up evaluation.
2.3 Stool sample collection, DNA
extraction, and metagenomic sequencing

To assess taxonomic and functional changes in fecal samples

collected we used shotgun sequencing of stool DNA for whole

metagenome analysis. Patients collected their fresh stool samples at

home, which were then immediately frozen in their home freezer at

-20°C. Frozen samples were delivered to the hospital within two

days using insulating polystyrene foam containers and were kept at

-80°C until analysis. DNA extraction was performed using the

QIAamp DNA stool kit (Qiagen, Hilden, Germany). DNA

quantification was performed using a Qubit 3.0 Fluorometer

(Thermo Fisher Scientific, Carlsbad, CA), and one ng of each

sample (0.2 ng/mL) was used for shotgun library preparation

using the Nextera XT DNA Library Preparation Kit (Illumina,

Inc., San Diego, CA). Sequencing was carried out on a NextSeq

500 sequencer (Illumina) with 150-bp paired-end chemistry at the

Sequenc ing and Bio in format i c Se rv i ce o f F ISABIO

(Valencia, Spain).

Taxonomic assignments of total DNAmetagenomic sequencing

were carried out through Kaiju (25), a program for computationally

efficient and sensitive taxonomic classification of high-throughput

sequencing reads from metagenomics sequencing experiments, by

which each sequencing read is assigned to a taxon in the NCBI

taxonomy (https://www.ncbi.nlm.nih.gov/taxonomy) by
frontiersin.org
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comparing it to the microbial subset of the NCBI BLAST non-

redundant protein database, not including fungi and

microbial eukaryotes.
2.4 Statistical analysis of taxonomical and
clinical features

Sequence data were analyzed using the phyloseqR (version 1.28.0)

(26), vegan (version 2.5-5) (27), metagenomeSeq (version 1.26.2) (28)

and ggplot2 packages implemented in R. Taxonomical analysis reached

species level if possible unless otherwise stated (-uc annotated).

Abundance raw-data counts were normalized using the

cumulative sum scaling (CSS) method (28). The zero-inflated

Gaussian mixture model (FitZig), was applied over the cumulative

sum scaling-normalized data to account for abundance differences

of species between pre-and post-treatment, by including the patient

identifier variable (IDPAT) as a covariate in the analysis to account

for the paired nature of the data. This approach has proven to be

more effective than comparable differential abundance methods

such as DESeq, edgeR or Voom (29).

To evaluate alpha diversity of bacterial communities, Shannon’s

index and OTUs (Observed species) were calculated using the

phyloseqR package. The proportion and composition of the most

abundant species in the data was aggregated at both Phylum and

Family levels. The beta diversity was computed under the Bray-Curtis

dissimilarity index (30) and linked to clinical variables using the

distance-based Adonis procedure (31). Implementation in the

principal component analysis (PCA) on the CSS normalized data

was applied to represent the percentage of explained data variation in

the most relevant clinical variables, as well as to identify potential

outliers and rare species. Clinical variables were tested for normality

using the Shapiro-Wilk test before running inferential statistics. Non-

parametric data were evaluated by the Wilcoxon rank-sum test, while

normally distributed variables were examined by Student’s t-test. P-

values less than 0.05 were considered significant after applying the

Benjamini-Hochberg multiple testing procedure. The relationship

between clinical variables and alpha diversity measures was evaluated

using a linear mixed effect model, considering the alpha diversity as

response variable, the clinical variable as fixed effect and the patient as

random effect. Spearman’s rank correlation was used to investigate

associations between microbial data and reported clinical variables

using a customized z-score metric supported by a global signature

correction approach (32) (33) (34).

Spearman’s rank correlation was also used to investigate

associations between normalized microbial abundance counts, at a

species level, with reported clinical variables. P-values were then

adjusted with the false rate discovery method. Correlations and

adjusted P-values were computed with R package stats (version 4.0.5).
2.5 Statistical analysis

Data are presented as mean ( ± SD) or percentage for normally

distributed quantitative variables or median and interquartile range

for non-normally distributed quantitative variables. The categorical
Frontiers in Endocrinology 04
variables were described as the number of cases and the percentage

concerning the total. When necessary, the correlation between

quantitative variables was calculated using Pearson’s or

Spearman’s test. Paired t-tests and Wilcoxon signed-rank tests

were used to evaluate the impact between groups according to

each metabolic distribution. The area under the time concentration

curve (AUC) for GLP-1, GLP-2, insulin, and glucose, was calculated

using the trapezoidal rule (35).

Logistic regression analysis was used to determine variables

associated with T2D remission. The model included the following

variables: initial C-peptide levels, HbA1c, succinate concentrations,

time of T2D duration, insulin treatment, total weight loss, and GLP-1

and 2 responses. Spearman’s rank correlation was used to investigate

associations between normalized microbial abundance counts, at a

species level, with reported clinical variables. P-values were then

adjusted with the false rate discovery method. Correlations and

adjusted P-values were computed with R package stats (version 4.0.5).
3 Results

From June 2016 to June 2017, 15 patients with severe obesity

and T2D were consecutively recruited and included in the study;

two could not complete the follow-up due to sudden death (n=1)

and severe pneumonia with prolonged hospitalization in another

patient (n=1). Finally, 13 patients were included in the analysis. The

studied cohort had a mean age of 52.6 ± 6.5 years, a mean BMI of

39.3 ± 1.4 kg/m2, and an initial HbA1c of 7.62 ± 1.5%, with 69.2% of

patients under insulin treatment. Table 1 summarizes the

characteristics of the participants.
3.1 Metabolic profile changes after surgery

Twelve months after mRYGB, a dramatic reduction was

observed in weight with 34.2 ± 6.1% of total weight loss (TWL) at

the expense of a fat mass of 36.1 ± 5.1%. As expected, a significant

metabolic improvement after surgery was found with a decrease in

fasting plasma glucose, HOMA-IR, HbA1c levels, and lipid profile

(Table 1). T2D remission was achieved in 69% of patients.

Following MTT, AUC for glucose significantly decreased after

the intervention (pre 1677 vs post 1049 mmol/L, P<0.05), whereas

an increase in C-peptide AUC was observed (pre 277 vs post 325

mmol/L, P<0.001) (Figure 1). Postprandial serum C-peptide to

plasma glucose concentration ratio significantly increased after

surgery 0.24 ± 0.27 vs 0.98 ± 0.91, P <0.05.

As markers of systemic inflammation, IL-6 showed a trend to

decrease after surgery, but without reaching statistical significance,

and fasting plasma succinate was significantly reduced after surgery

at 79.74 ± 28.8 vs. 50.97 ± 15.3 µmol/L, P=0.001.
3.2 Evaluation of intestinal permeability

Zonulin plasmatic levels are a reliable biomarker of the

intestinal barrier integrity of the small intestine (36). It circulates
frontiersin.org
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in the blood and binds to a receptor in the enterocytes leading to

dysfunction of tight junctions that finally increases small intestine

permeability (37)

Zonulin significantly decreased after mRYGB 3.13 ± 0.45 vs

2.49 ± 0.41 ng/mL, (P=0.01).
3.3 Incretin profile changes with surgery

When analyzing the incretin profile after MTT, a restoration of

the typical slope for GLP-1 and GLP-2 was observed with the

corresponding increase in AUC for both hormones after surgery:

GLP-1 AUC pre 9731 vs post 15788 pM, P<0.05 and GLP-2 AUC

pre 732 vs post 1190 ng/ml, P<0.001 (Figure 2). The same behavior
Frontiers in Endocrinology 05
was found after LT for both GLP-1 (AUC pre 13751 vs. post 21070

pM, P=0.01) and GLP-2 (AUC pre-1160 vs. post-1654 ng/

ml, P=0.01).

Within the study sample comprising 13 participants, of which 9

were female, representing over 50% of the cohort, an investigation

into potential differences in GLP-1 and GLP-2 levels before and

after surgical intervention was conducted among the female

subgroup, consisting of 4 pre-menopausal and 5 post-menopausal

individuals. The analysis revealed that there were no statistically

significant distinctions in GLP-1 and GLP-2 levels between the pre-

menopausal and post-menopausal groups before and after the

surgical procedure.
3.4 Changes in gut microbiota
and relationship with
anthropometric parameters

The surgical intervention had no significant impact on richness

and evenness, measured by the Shannon diversity index.

Nonetheless, it affected beta diversity (P=0.005) estimated by the

Bray distance as a metric to describe overall microbiota structure. A

common feature of microbiome data analysis was the statistical

sparsity and the lack of homogeneously distributed variables among

individuals. This limitation was overcome by applying the FitZig

mixture model (28). This analysis of the elapsed studied time

revealed that 111 different species significantly increased (P

adj<0.05) after the follow-up, and 67 other species reduced

considerably (P adj<0.05) in abundance after the intervention.

Most of the significantly increased taxa after the follow-up

belonged to the Streptococcaceae (Streptococcus salivarius,

Streptococcus_uc., Streptococcus vestibularis and Streptococcus

parasanguinis), Akkermansiaceae (Akkermansia sp. CAG:344),

Rickenellaceae (Alistipes sp. HGB5 and Alistipes finegoldii

CAG:68) , Sutterel laceae (Suttere l la_uc and Suttere l la

wadsworthensis), Enterobacteriaceae (Escherichia coli, Shigella

sonnei, Klebsiella pneumoniae, and Klebsiella_uc.), Oscillospiraceae

(Oscillibacter sp. 57_20), Veillonellaceae (Veillonella _uc, Veillonella

atyp ica , Vei l lone l la dispar and Vei l lone l la parvula) ,

Enterobacterales_uc, and Fusobacteriaceae (Fusobacterium_uc)

families. They showed a significant negative correlation (P

adj<0.05) with some clinical and metabolic parameters studied

(weight, BMI, waist circumference, body fat, HbA1c, glucose and

triglycerides). (Figure 3)

Of note, Clostridium perfringens (Clostridiaceae family) and

Roseburia sp. 40_7 (Lachnospiraceae family) that increased after

follow-up showed a significant negative correlation with body fat

and BMI, even belonging to families that generally decreased after

the intervention and had opposite correlations.

On the other hand, downregulated species after surgery belong

to the Clostridiaceae family (Clostridium sp. CAG:169, Clostridium

sp. KLE 1755, and Clostridium phoceensis), Lachnospiraceae family

(Blautia sp. CAG257, Lachnospiraceae bacterium 1_4_56FAA,

Blautia Marseille-P3201T), Erysipelotricaceae (Holdemania_uc

and Coprobaccillus_uc), Clostridia_uc, and Rumnicocaceae

(uncultured Faecalibacterium sp., Subdoligranulum variabile,
TABLE 1 Participant characteristics at baseline and 1 year post-surgery.

Pre-
surgery

Post-
surgery

P
overall

N=13 N=13

Sex (male/female) 4/9 4/9

Age (years) 52.6 ±6.56 53.6 ±6.56

Weight (kg) 103 ±13.2 68.1 ±14.2 <0.001

BMI (kg/m²) 39.3 ±1.44 25.8 ±2.08 <0.001

Waist (cm) 125 ±16.4 92.4 ±11.3 <0.001

Hip (cm) 125 ±13.1 100 ±6.62 <0.001

Fat Mass (%) 31.5 ±13.6 20.1 ±4.95 0.01

Lean Mass (%) 40.7 ±18.7 46.2 ±10.9 0.37

Body Fat (%) 43.1 ±5.30 29.6 ±6.13 <0.001

Insulin treatment,
N (%):

Yes (%) 9 (69.2) 1 (7.69)

No (%) 4 (30.8) 12 (92.3)

FPG (mmol/l) 9.9 ±4.6 5.29 ±1.4 0.03

HbA1c (%) 7.62 ±1.5 5.44 ±0.85 <0.001

HOMA-IR 8.87 ±6.45 1.50 ±0.75 <0.001

Total Cholesterol
(mmol/L)

4.90 ±1.01 4.07 ±0.66 0.02

HDL (mmol/l) 1.18 ±0.43 1.28 ±0.25 0.50

LDL (mmol/l) 2.93 ±0.87 2.30 ±0.6 0.08

Triglycerides (mmol/L) 2.93 ±2.97 1.25 ±0.58 0.07

IL-6 (pg/mL) 3.49 ±1.74 2.49 ±2.01 0.20

Zonulin (ng/mL) 3.13 ±0.45 2.49 ±0.41 <0.001

Succinate (uMol) 79.74 ±28.8 50.97 ±15.3 <0.001
Data are expressed as mean ± SD. P values were calculated using paired t-test. Fat, lean and
body mass were measured by DEXA. BMI, Body mass index; FPG, Fasting plasma glucose;
HOMA-IR, Homeostatic model assessment of insulin resistance; IL-6, Interleukin 6.
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Faecalibacterium sp. CAG:82, Ruminococcus sp. 37_24,

Ruthenibacterium lactatiformans , Faecalibacterium_uc ,

Ruminococcus sp. CAG:177 and Rumnicoccaceae_uc) showed a

significant positive correlation with some clinical and metabolic

parameters reported (Figure 3).

We also analyzed the correlation of microbiota families with

other variables, such as gut permeability markers (zonulin) but

found no association. Of note, pre-surgical zonulin correlated

positively with weight (r=0.61, P=0.027), and with pre-surgical

AUC glucose (r=0.750, P=0.03).
3.5 Gut microbiota and incretin response

A close relationship between gut microbiota and incretin

response after BS was found in our study. Most of the species

that increased after BS that were previously mentioned belonged to
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the Streptococcaceae (Streptococcus salivarius, Streptococcus_uc.,

Streptococcus vestibularis and Streptococcus parasanguinis),

Akkermansiaceae (Akkermansia sp. CAG:344), Rickenellaceae

(Alistipes sp. HGB5 and Alistipes finegoldii CAG:68),

Sutterellaceae (Sutterella_uc and Sutterella wadsworthensis),

Enterobacteriaceae (Escherichia coli, Shigella sonnei, Klebsiella

pneumoniae, and Klebsiella_uc.), Oscillospiraceae (Oscillibacter sp.

57_20), Veillonellaceae (Veillonella _uc, Veillonella atypical,

Veillonella dispar and Veillonella parvula), Enterobacterales_uc,

and Fusobacteriaceae (Fusobacterium_uc) families, revealed a

significant positive correlation (P adj<0.05) with AUC of GLP-1

and/or GLP-2 after MTT and LT. Moreover, Clostridium

perfringens (Clostridiaceae family) and Roseburia sp. 40_7

(Lachnospiraceae family) that increased after follow-up showed a

positive correlation with AUC GLP-1 during the MTT. (Figure 3).

By contrast, some species that were downregulated after surgery

belong to Lachnospiraceae (Lachnospiraceae bacterium
FIGURE 1

Insulin, glucose, and C-peptide response to MTT at baseline and 1 year post-surgery. These figures show mean and standard deviation of insulin,
glucose and C-peptid (expressed in mmol/L) at each time point after meal tolerance test (MTT). Baseline represented in blue and follow-up in red.
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1_4_56FAA, Blautia sp. Marseille-P3201T), Erysipelotricaceae

(Coprobaccillus_uc), Rumnicocaceae (Subdoligranulum variabile

and Faecalibacterium sp. CAG:82) families, and showed a

significant negative correlation with AUC for GLP-1 and/or GLP-

2 after MTT and LT (Figure 3).
3.6 T2D remission

Patients achieving complete T2D remission (69% of the sample)

had higher initial C-peptide 1.83 ± 0.95 vs 0.67 ± 0.26 nmol/L

(P=0.040), higher postprandial serum C-peptide to plasma glucose

concentration ratio 1.28 ± 0.93 vs 0.30 ± 0.22 (P=0.015), lower T2D

duration 9.6 ± 8.3 vs 16.2 ± 8.4 years (P=0.216), but similar

proportion of insulin treatment compared to non-remitters.

Higher pre-surgical and post-surgical AUC for C-peptide and

insulin after MTT were observed in patients achieving T2D

remission. However, AUC for GLP-1 and GLP-2 before and after

surgery were similar, independently of metabolic outcomes.

In the multiple regression analysis, only higher initial C-peptide

levels predicted better metabolic outcomes (R2 = 0.331, P=0.040),

whereas pre-surgery HbA1c, TWL, AUC for GLP-1, GLP-2, or
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succinate were not found to be determinants of T2D remission.

Despite the association of the above species with some metabolic

parameters, no specific species were linked to T2D remission.
4 Discussion

This study points to an association between a specific

microbiome signature with a restoration of the incretin response,

and metabolic improvement after mRYGB in patients with T2D,

including a new player in post-surgery diabetes remission.
4.1 Association between gut
microbiota, incretin response
and metabolic parameters

A significant increase in GLP-1 and GLP-2 secretion during the

MTT and LT after mRYGB was associated with changes in

the microbiome.

To our knowledge, no previous study has analyzed the

relationship between incretin response and the gut microbiota
FIGURE 2

GLP-1 and GLP-2 response to MTT at baseline and 1 year post-surgery. These figures show mean and standard deviation of GLP-1 (expressed in pM)
and GLP-2 (expressed in ng/ml) at each time point after meal tolerance test (MTT). Baseline represented in blue and follow-up in red.
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profile after metabolic surgery in patients with severe obesity

and T2D.

In our cohort, a greater presence after surgery of species belonging to

the families of Streptococcaceae, Akkermansiaceae, Rickenellaceae,

Enterobacteriaceae, Oscillospiraceae, Veillonellaceae, Enterobacterales_uc,

and Fusobacteriaceae, typically observed after massive weight loss in these

patients, was associated with the improvement in the incretin (AUC for

GLP-1 and GLP-2) and metabolic profile. Interestingly, species belonging

to Ruminococcaceae, Erysipelotrichaceae, and Lachnospiraceae families

that decreased after surgery showed an inverse associationwith the incretin

response after an oral stimulus and with metabolic parameters. In contrast

to other of their family species, Clostridium perfringens and Roseburia sp.
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40_7 increased after surgery and correlated inversely with adiposity

parameters and positively with incretin response.

Earlier studies have shown that BS induces a favorable shift into

a healthier microbiome profile characterized by increased microbial

richness (38) (39), and the changes are greater in RYGB compared

to sleeve gastrectomy (SG) (40) (12). In our study, the overall

changes after mRYGB in gut microbiota are similar to those

previously described (40) (12) (41) (42) (43) (44) (45). However,

with current evidence, it is difficult to associate the Firmicutes/

Bacteroidetes ratio with a determined health status, including

obesity (46). Our results showed that the species that decreased

after surgery all belonged to the phylum Firmicutes, but the species
FIGURE 3

Changes and associations between species and metabolic characteristics 1 year post-surgery. Log2 fold-change (FC) expresses the significant
increase or decrease (≥+2/-2, P adjusted <0.001) of microbiota species 1 year after surgery compared to baseline levels. It is based on the fitZig
model. The yellow color denotes increase, and purple denotes decrease. The correlations of the species and metabolic variables are showed in a
heatmap, where red denotes a positive correlation and blue a negative correlation. The intensity of the color is related to the strength of the
correlation. Statistically significant associations (P adjusted <0.05) are marked with *. GLP1, glucagon-like peptide 1; GLP2, glucagon-like peptide 2;
AUC, area under curve; MTT, Meal tolerance test; LT, lipid test. BMI, body mass index.
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that increased were heterogeneous, belonging to both the

Firmicutes and Bacteroidetes phyla, as well as others.

These modifications can be explained by several factors other than

diet modifications, such as the gastrointestinal tract’s rearrangement, a

relevant anatomical shift, a determinant in bile acids production, and

luminal pH changes (47). The lower gastric acid exposure might

promote the proliferation of phylotypes from the oral cavity, such as

Escherichia, Veillonella, Streptococcus genus (48), and also

Akkermansia, which grows in a higher pH than the gastric microbes

(49). Of note, these bacteria can ferment amino acids and

carbohydrates into metabolites such as propionate and butyrate

which have been associated with weight reduction (50), reduced gut

permeability (51) (52) (53) (54) and a beneficial metabolic profile (55)

(56), in line with the findings described in our study. On the other

hand, we observed a decrease in species belonging to the families of

Ruminococcaceae, Erysipelotrichaceae, and Lachnospiraceae, which

belong to the Firmicute sphylum. As a phylum, Firmicutes are more

acid adaptive and the increased alkaline environment following

mRYGB is a factor along with a diet that might explain their

reduction (57). As in other studies, we observed a decrease in the

Clostridium species (with the exception of Clostridium perfringens),

which could be partly explained because bypassing the duodenum

introduces some oxygen to the gastrointestinal tract, inhibiting the

growth of obligate anaerobes (58). However, changes in bile acids

specifically the lower levels of all primary and secondary conjugated

bile acids in the colon content after RYGBP has been linked in rodents

with higher relative abundances of Clostridium perfringens, in

agreement with our findings (59).

One proposed mechanism by which gut microbiota can

influence metabolic outcomes is its potential ability to modify

incretin secretion, among other gastrointestinal hormones (60). In

rodent studies, it has been reported that healthier intestinal

microbiome can provide increased luminal-derived secondary bile

acids and propionate, activating the L-cell secretion of GLP-1 and

GLP-2, enhancing insulin secretion and maintaining gut barrier

integrity, respectively (61) (62). Also in mice, the use of probiotics,

mainly Lactobacillus, has been associated with an enhancement of

GLP-1 response and improvement of metabolic parameters (63).

However, to date, there is scarce information linking specific

bacteria with incretin dynamics after BS in animal models (57)

(64) or humans (65). In other clinical settings, such as in healthy,

normal weight subjects fed with resistant starch, a high baseline

abundance of Streptococcus has been associated with increased

postprandial levels of GLP-1, insulin, and C-peptide (66).

Accordingly in our study, some species of Streptococcaceae family

increased after surgery, and showed a significant positive

association with AUC GLP-1 and GLP-2 after the MTT.

Furthermore, in our study, increased GLP-2 secretion after an

oral lipid load was also associated with some Akkermansiaceae

species, and strikingly, GLP-1 secretion was also associated with the

Veillonellaceae family and Clostridium perfringens. Although we

cannot assume causality in these associations, some in vivo studies

in mice and in vitro using human L-cell found that Akkermansia

muciniphila stimulated GLP-1 by the secretion of a protein named

P9, which binds to ICAM-2 receptors in L-cell (67). In rats
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undergoing RYGB, this bacterium was positively related to GLP-1

levels (64). Regarding Veillonellaceae, no previous direct association

with incretins has been previously described. However, in a study

performed on patients with non-alcoholic fatty liver treated with a

fibroblast growth factor-19 analog, which decreased toxic bile acids,

Veillonella was the only taxa exhibiting a significant increase (68).

Therefore, as Veillonella seems to be a bile acid-sensitive bacterium,

and these are known triggers of GLP-1 secretion, the association

found in our study is reasonable and may be mediated by bile acid

changes after BS. Commensal Clostridia are strongly involved in

maintaining the overall gut function; in a previous study,

Clostridium asparagiforme and Clostridiales bacterium

1_7_47FAA increased and were positively correlated with

postprandial GLP-1 in patients with obesity after SG (65).

Another study increasing Clostridium sp. CAG:127 has been

associated with GLP-2 response in subjects without severe obesity

after diet-induced weight loss (21). Nevertheless, our finding of

Clostridium perfringens association with GLP-1 has never been

reported and requires further analysis as it may reflect potential

beneficial effects of this species in the context of a hypoabsorptive

technique. It is important to highlight that although C. perfringens

can be a potential pathogen, it is a ubiquitous bacterium and part of

the ecological community in the intestinal tract of humans (69).

Our data revealed that a better metabolic and incretin profile

after surgery was linked to a specific gut microbiota composition.

Still, the study failed to characterize a particular gut microbiota

related to T2D remission, probably because it was underpowered to

reach significance. Previous studies have described an increase in

Roseburia intestinalis in patients achieving remission after RYGB

and SG (20) (19), and Akkermansia muciniphila has been linked to

a better metabolic profile mainly after SG (40) (70). As previously

exposed, we observed an increase in Roseburia sp. and

Akkermansiaceae family that was positively related to an

enhanced incretin response and inversely with adverse adiposity

and metabolic parameters.

It is important to take into account that there are numerous

interspecies and inter-gut section interactions that profiles

microbial functionality.
4.2 Gut permeability

Although microbiota has been linked to a reduction in gut

permeability, we were unable to find an association of plasma

zonulin with the gut microbiome studied.
4.3 T2D remission predictors

Some predictive pre-surgical factors of metabolic outcomes

after BS have been identified, such as younger age, shorter disease

duration, preoperative C-peptide levels, and the absence of insulin

treatment before surgery, which are all associated with higher

remission rates (21) (64) (71) (72) (73). C-peptide levels were the

only significant predictor of T2D remission in our study.
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4.4 Limitations

We acknowledge several limitations of this study. Sample size

limitations can have influenced the statistical power to detect

changes in T2D remission after surgery. Moreover, we were

unable to study the composition of the diet followed by the

participants after surgery, which may affect the results. We have

also observed a high interindividual variation in gut microbial

composition, which makes the analysis between metabolic

variables and microbiome difficult. We are aware of the absence

of causality in the findings described in our study. For these reasons,

this study should be considered as a hypothesis generator. Further

studies should therefore be conducted to better understand the

changes after BS, especially in microbiota composition, and its

association with metabolic outcomes.
5 Conclusions

Patients with obesity and T2D submitted to metabolic surgery

by mRYGB improve their metabolic phenotype in parallel with

significant modifications in the microbiome composition. Incretin

response is restored after weight loss and is associated with a specific

microbiota signature after one year of follow-up. These changes

operate in parallel with T2D remission. Further studies are

guaranteed to confirm a causal role of the microbiome changes

on incretin response and T2D remission in patients with obesity.
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