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Assessing of programmed
cell death gene signature
for predicting ovarian
cancer prognosis and
treatment response

Xin Lian1, Bing Liu1, Caixia Wang2, Shuang Wang2,
Yuan Zhuang2 and Xiao Li2*

1Department of Otolaryngology Head and Neck Surgery, Shengjing Hospital of China Medical
University, Shenyang, China, 2Department Obstetrics and Gynecology, Shengjing Hospital of China
Medical University, Shenyang, China
Background: Programmed cell death (PCD) is an overwhelming factor affecting

tumor cell metastasis, but the mechanism of PCD in ovarian cancer (OV) is

still uncertain.

Methods: To define the molecular subtypes of OV, we performed unsupervised

clustering based on the expression level of prognosis related PCD genes in the

Cancer Genome Atlas (TCGA)-OV. COX and least absolute shrinkage and

selection operator (LASSO) COX analysis were used to identify the OV

prognostic related PCD genes, and the genes identified according to the

minimum Akaike information criterion (AIC) were the OV prognostic

characteristic genes. According to the regression coefficient in the multivariate

COX analysis and gene expression data, the Risk Score of OV prognosis was

constructed. Kaplan-Meier analysis was conducted to assess the prognostic

status of OV patients, and receiver operating characteristic (ROC) curves were

conducted to assess the clinical value of Risk Score. Moreover, RNA-Seq date of

OV patient derived from Gene Expression Omnibus (GEO, GSE32062) and the

International Cancer Genome Consortium (ICGC) database (ICGC-AU), verifying

the robustness of the Risk Score via Kaplan-Meier and ROC analysis.Pathway

features were performed by gene set enrichment analysis and single sample

gene set enrichment analysis. Finally, Risk Score in terms of chemotherapy drug

sensitivity and immunotherapy suitability was also evaluated in different groups.

Results: 9-gene composition Risk Score system was finally determined by COX

and LASSO COX analysis. Patients in the low Risk Score group possessed

improved prognostic status, immune activity. PI3K pathway activity was

increased in the high Risk Score group. In the chemotherapy drug sensitivity

analysis, we found that the high Risk Score group might be more suitable for

treatment with PI3K inhibitors Taselisib and Pictilisib. In addition, we found that

patients in the low-risk group responded better to immunotherapy.
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Conclusion: Risk Score of 9-gene composition of PCD signature possesses

promising clinical potential in OV prognosis, immunotherapy, immune

microenvironment activity, and chemotherapeutic drug selection, and our

study provides the basis for an in-depth investigation of the PCD mechanism

in OV.
KEYWORDS

programmed cell death, ovarian cancer, prognosis, chemotherapeutic drug
selection, immunotherapy
Introduction

Ovarian cancer (OV) in females is challenging to diagnose in a

timely manner due to the challenges of clinical sampling and the lack

of early typical symptoms (1), as the ovaries are deep in the pelvis and

small in size. In consequence, OV remains one of the deadliest causes

of cancer death in females worldwide, with more than 300,000 cases

of OV and 190,000 deaths (2) currently. Frustratingly, approximately

70% of OV patients treated with conventional surgery and platinum-

based chemotherapy recur or develop chemoresistance, with 5-year

survival rate of less than 40% (3). Considering the extremely poor

prognostic status of OV, effective prognostic signatures and the

development of innovative therapeutic targets are urgent to

improve OV survival rates.

Programmed cell death (PCD) is a genetically dominated mode

of cellular normal death (4). Currently, 12 PCD mechanisms were

investigated and confirmed, which include, apoptosis, necroptosis,

ferroptosis, pyroptosis, netotic cell death, entotic cell death,

lysosome-dependent cell death, parthanatos, autophagy-

dependent cell death, oxeiptosis, and alkaliptosis and cuproptosis,

cuproptosis was the recently revealed PCD pathway (5, 6). Studies

revealed confirmed that PCD was the essential factor for tumor cells

capable of developing as well as metastasizing; in normal

environment, cells are unable to replicate and metastasize

permanently, and when PCD is inhibited, the normal way of cell

death is dysregulated, which in turn develops into cancer cells;

therefore, overcoming the PCD mechanism is the fundamental

cause of tumor cell formation (7). According to the relevance of

PCD for cancer development, several theories of relevant targeted

therapeutic approaches were proposed. For example, BCL-2
cell death; TCGA, The
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essed genes; GO, Gene
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ment analysis; ssGSEA,
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inhibitors modulate the apoptotic process and were approved by

the FDA as new therapeutic options for lymphoma (8). The

GSDME mechanism-based approach to cell scorching was novel

immunotherapeutic therapy (9). The transformation between

pyroptosis and apoptosis was also current topical direction in the

attempt (10). A comprehensive summary of the current PCD

mechanism in OV remains incomplete, and the detailed function

of PCD in OV is thinly investigated.

In this study, we successfully constructed a prognostic Risk

assessment algorithm (Risk Score) for OV patients. According to

our results, Risk Score was also significantly correlated with the

immune microenvironment status and chemotherapy/

immunotherapy sensitivity of OV patients, which could guide the

personalized treatment of cancer patients.
Materials and methods

Data acquisition

Somatic mutation data, clinical data, and RNA-Seq data of OV

samples were obtained from The Cancer Genome Atlas (TCGA,

https://portal.gdc.cancer.gov/) database (TCGA-OV, FPKM). The

Gene Expression Omnibus (GEO, https://www.ncbi.nlm.nih.gov/

gds) database was searched for “Ovarian cancer”, and RNA-Seq

data and clinical data for GSE32062 were obtained. The ICGC-AU

dataset was also extracted from The International Cancer Genome

Consortium (ICGC, https://dcc.icgc.org/). In this study, TCGA-OV

was considered as the training set, and GSE32062 and ICGC-AU

were considered as the validation set. 1078 PCD-correlated genes

were acquired from a previous research (11).
Data pre-processing

RNA-Seq data were processed through the sangerbox website

(http://sangerbox.com/home.html) (12) Samples with incomplete

clinical information with survival times<30 days were eliminated,

and normal samples were removed and only tumor samples were

retained. The number of OV samples with complete clinical data in

TCGA-OV, GSE32062 and ICGC-AU were 363, 260, and 93.

Samples with missing somatic mutation data were removed and
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428 samples in TCGA-OV with complete somatic mutation data

were retained during the analysis of somatic data.
Identification of molecular subtypes
of PCD

Univariate COX analysis was conducted to determine

prognosis-related PCD-related genes. Consistent cluster analysis

was then conducted on samples in TCGA-OV based on the

expression matrix of the above genes to obtain PCD molecular

subtypes (13) following the method of Wilkerson et al. According to

the “pam” algorithm and “pearson” as the metric distance, we

performed 500 bootstraps, and each bootstraps procedure included

80% of the training set patients. The number of clusters was set

from 2 to 10, and the optimal number of clusters was determined

based on the consistency matrix and the consistency cumulative

distribution function.
Differential expression analysis and
functional enrichment analysis

To address the molecular subtypes of PCD, differential

expression analysis of subtypes was conducted through the limma

package (14) to access the differentially expressed genes (DEGs) in

subtypes. To explore the biological functions as well as pathways

involved in DEGs, Gene Ontology (GO) and Kyoto Encyclopedia of

Genes and Genomes (KEGG) enrichment analysis (FDR<0.05) was

conducted by clusterProfiler package (14).
Construction of risk score

Univariate COX analysis was performed for all DEGs in the

subtype and genes influencing OV prognosis were identified

(p<0.05). Then LASSO COX analysis was further performed by

glmnet package (15) and low similarity and more significantly genes

were retained. Finally, genes that markedly affected OV prognosis

were obtained by multivariate COX analysis. Based on the

corresponding regression coefficients and expression data of the

signature genes, we constructed the Risk Score and calculated it by

the following equation.

RiskScore =ocoefii ∗ expression i

In the formula, coef and expression indicated the regression

coefficient and expression data of genes.
Assessment and validation of risk score

The surv_cutpoint() function in the survminer package was

conducted to group samples in TCGA-OV. According to the Risk

Score, the surv_cutpoint() function evaluated the likelihood of all
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potential groups. When the outcome variable was “time to event”,

the threshold at this time was considered to be the best grouping

threshold (16). According to the optimal grouping threshold

determined by survminer, in the TCGA-OV cohort, the Risk

Score>grouping threshold was defined as the high Risk Score

group, and the Risk Score<grouping threshold was defined as the

low Risk Score group. Kaplan-Meier model was constructed to

assess median survival time and overall survival time in both

groups. ROC curves were plotted and Risk Score prediction

power was determined based on 1-, 3-, and 5-year AUCs.

Validation was performed in GSE32062 and ICGC-AU.
Functional analysis

For biological pathways with discrepancies in molecular

subtypes and Risk Score groups. HALLMARK gene sets were

accessed from The Molecular Signatures Database (MSigDB,

https://www.gsea-msigdb.org/gsea/msigdb/) database database.

Gene set enrichment analysis (GSEA) was conducted for groups

(17). Single sample Gene Set Enrichment Analysis (ssGSEA) was

implemented through the GSVA package (18) and was designed to

identify biological pathways activated/repressed in groups. Cancer-

related pathway activity was determined by PROGENy

algorithm (19).
Evaluation of tumor microenvironment

For infiltrating immune cell abundance, stromalscore, and

tumor purity in the tumor microenvironment (TME), the

ESTIMATE algorithm (20) was performed to assess TME activity

in OV patients, and the CIBERSORT algorithm (21) was performed

to assess the infiltrating abundance of 22 immune cell types in OV

patients. The 7 steps of cancer immune cycle (step 1: releasing

cancer cell antigens, step 2: cancer antigen presentation, step 3:

priming and activation, step 4. trafficking immune cells to tumors,

step 5: infiltration of immune cells into tumors, step 6: recognition

of cancer cells by T cells, step 7: killing cancer cells) of the

characteristic gene sets, and the cancer immune cycle activity in

the groups was assessed by the ssGSEA method.
Response to immunotherapy

Immune checkpoint genes were obtained from Hu et al. A total

of 79 genes (22) were examined for the expressions of these immune

checkpoint genes in OV samples. The Myeloid-derived suppressor

cells (MDSC), Dysfunction Score, TIDE Score, Tumor-Associated

Macrophages M2 (TAM.M2) Score , Exclusion Score ,

Cancer-associated fibroblast (CAF) Score of OV samples were

obtained from the Tumor Immune Dysfunction and Exclusion

(TIDE, http://tide.dfci.harvard.edu/) database to determine

immunotherapy response.
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Sensitivity to chemotherapy

OV cell expression data of 70 chemotherapy drug treatments in

OV patients were obtained from the Genomics of Drug Sensitivity

in Cancer (GDSC, https://www.cancerrxgene.org/) database, and

the oncoPredict package (23) was conducted to calculate the half-

maximal inhibitory concentration (IC50) data of drugs to compare

drug IC50 differences in Risk Score groups, and the Spearman

correlation among Risk Score, prognostic signature genes and drug

IC50 was compared to explore the most adaptable chemotherapy

for patients.
Statistical analysis

The R packages employed in this study were obtained from the

Bioconductor R project (24) and data analysis was performed by R

software (version: 4.1.1). sangerbox contributed to data pre-

processing. p<0.05 was considered statistically significant for all

statistical tests.
Results

Variation landscape of programmed cell
death-related genes in OV patients

In this study, the number of samples with mutation data in

TCGA-OV was 428 cases. First, we analyzed the molecular

landscape of mutations in programmed cell death-related genes in

the TCGA-OV samples. We observed that 401 (98.2%) OV samples

possessed top 20 mutations, among which the top 3 mutated genes

were TP53 (88%), WDFY3 (6%), and HUWE1 (5%) (Figure 1A).

We also found that co-occurrence was occurred more frequently

between top 20 genes, and there were remarkable co-occurrence

between MTOR with MADD, HTT, SMG1, DIDO1, VPS13C, and

BIRC6 (Figure 1B). Furthermore, by ssGSEA analysis, we evaluated

12 PCD signature ssGSEA scores in those samples and analyzed the

spearman correlation among them and Stage, Grade, and Age. The

results showed that apoptosis, necroptosis, cuproptosis, and

alkaliptosis showed negative significant correlations (spearman’s

p< 0.01) with Age (Figure 1C). Further, we found higher Apoptosis,

Pyroptosis, Autophagy, Necroptosis, Cuproptosis, Alkaliptosis

signature ssGSEA scores in the lower age group (age<=

60) (Figure 1D).
Molecular subtypes of programmed cell
death-related genes

In this study, we obtained 363 samples with corresponding

clinical information and expression data from the TCGA-OV

cohort. Univariate COX analysis confirmed that 78 of 1078 PCD-

related genes were markedly correlated with OV patients’ prognosis

(Supplementary Figure S1), and the prognostic genes contained 40

apoptosis genes, 22 pyroptosis genes, 10 ferroptosis genes, 10
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autophagy genes, and 10 necroptosis genes (Figure 2A). Then,

according to the 78-gene expression matrix, the results of the

consistency clustering analysis of 363 OV samples showed that

these patients could be classified into four subtypes (C1, C2, C3, C4)

(Figures 2B–D). Compared with C1, C2, and C3 patients, OV

patients in C4 experienced better OS and PFS (Figures 2E, F). 78-

gene expression levels and the distribution of Stage, Grade, and Age

information in the four subtypes were demonstrated in Figure 2G,

we found that prognostic related PCD genes showed more active

expression levels in the C1 subtype. The 12 PCD signature ssGSEA

scores were remarkably distinct in all four subtypes, with the

majority scoring higher in C1 and C4 (Figure 2H).
Investigation of the immune
microenvironment of molecular subtypes

We further explored the TME status of the 4 subtypes of

patients.ESTIMATE results showed that C1 patients had the

highest StromalScore, ESTIMATEScore, and the lowest

TumorPurity (Figure 3A). Further, the relative infiltration

abundance of 22 immune cells in each group was analyzed, and

C4 patients had higher abundance of Macrophages_M1,

T_cells_CD8, T_cells_regulatory_Tregs, T_cells_follicular_helper

(Figure 3B). The ssGSEA enrichment analysis was performed

with genes characteristic of the 7 stages of the cancer immune

cycle to explore the differences between the tumor immune cycle

activities of patients with the 4 subtypes. ssGSEA scores for all 7

stages of the C2 subtype were remarkably lower than those of the

other subtypes, whereas compared with those of the C2 and C3

subtypes, ssGSEA scores for the 7 stages of the C1 and C4 subtypes

were significantly higher (Figure 3C). Finally, we drew a heat map to

show the profile of tumor immune cycle score, immune cell score

and ESTIMATE score in all samples in C1, C2, C3 and C4. Overall,

pat ients with C1 exhibited higher StromalScore and

ESTIMATEScore, low levels of TumorPurity, and active tumor

immune cycle activity (Figure 3D).
TIDE and TMB analysis suggests
immunotherapy potential benefits for
molecular subtypes

Immune checkpoint blockade (ICB) therapy that inhibits the

expression of immune checkpoint is an emerging option in cancer

treatment. We evaluated the expression levels of 79 immune

checkpoints in patients with four subtypes, and it was clearly

observed that the expression levels of immune checkpoint were

lower in C2 and C3 subtypes, higher in C1 and C4 subtypes, and

highest in C4 (Figure 4A). The current clinically approved ICB

drugs are mainly PDCD1 (PD-1), CTLA4, CD274 (PD-L1), and the

results showed that the highest expression levels of CTLA4, PDCD1

(PD-1), CD274 (PD-L1) were found in C4 patients (Figure 4B). We

also observed that patients with C1 subtype had high levels of CAF

score, Exclusion score, Dysfunction score, and TIDE score, and

patients with C4 subtype had the lowest levels of MDSC score, CAF
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score, TAM.M2 score, Exclusion score, and Dysfunction score, and

TIDE score, suggesting that C4 patients were more sensitive to ICB

treatment and had a higher likelihood of benefit (Figure 4C).

Additionally, the TMB of C4 subtype was found to be slightly higher

than other subtypes, but there was no statistical difference (Figure 4D).

In contrast, there was no remarkable difference in Intra-tumor genetic

heterogeneity among the four subtypes (Figure 4E). According to the
Frontiers in Endocrinology 05
molecular subtype study ofOV in the pan-cancermolecular landscape

by Thorsson et al, the majority of patients in C1 defined in this study

belonged to the Mesenchymal subtype and the majority of patients in

C4belonged to the Immunoreactive (Figure4F). In contrast, according

to Thorsson et al. molecular subtypes based on immune signatures, a

higher proportion of patients with C2 immune subtypes in C3 and C4

(Figure 4G). Overall, the molecular subtypes of PCD we defined are
A

B

D

C

FIGURE 1

PCD-related gene mutation landscape (A) Top 20 gene mutation landscape waterfall map (B) Mutual exclusivity and co-occurrence phenomenon
correlation heat map among Top 20 genes (C) PCD signature ssGSEA score is correlated with Stage, Grade, and Age Sex heat map (D) PCD
signature ssGSEA score in Age group. * for p < 0.05, ** for p < 0.001,*** for p < 0.0001, **** for p < 0.00001, and ns for no significance, p > 0.05.
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complementary to the new molecular characterization typing of OV

and enrich the existing clinical typing criteria.
Pathway activity among PCD molecular
subtypes

Accord ing to GSEA enr i chment ana l y s i s , PATH

WAYS_IN_CANCER, WNT_SIGNALING_PATHWAY,
Frontiers in Endocrinology 06
TGF_BETA_SIGNALING_PATHWAY, MAPK_SIGNA

LING_PATHWAY, VEGF_SIGNALING_PATHWAY in C1

subtype which were EMT-related pathways were activated, and

TYPE _ I _D IABETES _MELL I TUS , T _CELL _RECEP

TOR _ S I GNA L I NG _ PATHWAY , B _ C E L L _ R EC E P

TOR_SIGNALING_PATHWAY, which were immune-related

pathways were activated in C4 subtype (Figure 5A). According to

ssGSEA functional analysis, 48 KEGG pathways were remarkably

different among the four subtypes (kruskal.test, p<0.05), and C1 and
A B

D E F

G H

C

FIGURE 2

PCD molecular subtype (A) upset plot showing the distribution of prognosis-related genes in 12-PCD (B) cumulative distribution function (C) CDF
Delta area curve (D) sample clustering heat map when k=4 (E) OS curves of 4 molecular subtypes (F) PFS curves of 4 molecular subtypes (G)
prognostic-related PCD-related gene expression heat map (H) 12 PCD signature ssGSEA score in 4 molecular subtypes. * for p < 0.05, ** for p <
0.001,*** for p < 0.0001, **** for p < 0.00001, and ns for no significance, p > 0.05.
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C4 subtypes were mainly enriched in immune-related pathways, for

e x am p l e , I N F LAMMATORY _R E S PON SE , I NT ER

FERON_ALPHA_RESPONSE, and IL6_JAK_STAT3_SIGNA

LING, INTERFERON_GAMMA_RESPONSE, it was notable that

the scores of these pathways were higher in C4 subtypes (Figure 5B).

Differences in the activities of oncogenic-related pathways were

examined in the four molecular subtypes, TGFb, Hypoxia, p53,

MAPK, EGFR, TNFa, NFkB, Trail, JAK.STAT, VEGF, and PI3K

pathway activities were assessed by the PROGENy algorithm. We

found that TGFb, Hypoxia, p53, MAPK, EGFR, TNFa, and Trail

pathway activity scoreswere significantly higher inC1 than inC2,C3,

and C4 subtypes (Figures 5C, D), indicating that patients with C1

subtypehadhigh cancer cell activity and increased risk ofmetabolism

and metastasis, which promoted cancer progression.
Frontiers in Endocrinology 07
Functional analysis of differentially
expressed genes in molecular
subtypes of PCD

To investigate the reasons for the differences in the activity of the

four subtypes of pathways, we identified DEGs in the groups and

performed functional analysis. First, the “C1_VS_C2&C3&C4” (C1),

“C2_VS_C1&C3&C4” (C2), “C3_VS_C1&C2& C4” (C3), and

“C4_VS_C1&C2&C3” (C4) were analyzed for differences. 354

DEGs (4 down-regulated and 350 up-regulated) were identified in

the C1 group, 300 DEGs (277 down-regulated and 23 up-regulated)

were identified in the C2 group, and 82 DEGs were identified in the

C3 group identified 82 DEGs (11 up-regulated and 71 down-

regulated), and 90 DEGs (79 up-regulated and 11 down-regulated)
A

B

D

C

FIGURE 3

TME activity in molecular subtypes (A) ESTIMATE result (B) CIBERSORT result (C) 7-cancer immune cycle signature ssGSEA score (D) heat map
showing ESTIMATE, CIBERSORT, 7-cancer immune cycle difference. * for p < 0.05, ** for p < 0.001,*** for p < 0.0001, **** for p < 0.00001, and ns
for no significance, p > 0.05.
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in the C4 group (FDR< 0.05, |log2FC| > log2(1.5)) (Supplementary

Figure S2). Functional analysis was then performed for upregulated

DEGs in C1 and C4 groups. By KEGG analysis, ECM-receptor

interaction, PI3K-Akt signaling pathway, Cytokine-cytokine

receptor interaction were the major upregulated biological

pathways in the C1 group, and Phagosome, Cell adhesion

molecules (CAMs), and Epstein-Barr virus infection were the

major upregulated biological pathways in the C4 group

(Figures 6A, E). According to GO analysis, an increase in

extracellular matrix, collagen containing extracellular matrix, and

an improvement in extracellular matrix structural constituent and

extracellular matrix structural constituent conferring increased

extracellular matrix organization and extracellular structure

organization in C1 group (Figures 6B–D). The increase of MHC

class II protein complex, MHC protein complex, and the

enhancement of cytokine binding, MHC protein complex binding,

and MHC protein binding, MHC class II receptor activity led to type
Frontiers in Endocrinology 08
I interferon signaling pathway, cellular response to type I interferon,

T cell activation, response to type I interferon upregulation of these

functions (Figures 6F–H). These findings also further validated that

the TME activity in the C4 subtype was higher than that in

other subtypes.
Establishment and evaluation of risk score

Univariate COX analysis was performed on DEGs in groups C1,

C2, C3 and C4 and 67 genes affecting OV prognosis were identified,

of which 48 genes with HR > 1 were considered risk factors and 19

genes with HR< 1 were considered protective factors. The high

number of genes in the model will increase the operational

complexity as well as the accuracy of the clinical test. Further

LASSO COX analysis of the 67 genes affected OV prognosis was

performed to reduce the number of genes with high similarity but
A B

D E F G

C

FIGURE 4

Relationship between molecular subtypes and immunotherapy (A) Immune checkpoint gene expression heat map (B) PDCD1 (PD-1), CTLA4, CD274
(PD-L1) expression (C) TIDE results (E) Intra-tumor Genetic heterogeneity (F) molecular subtype comparison. * for p < 0.05, ** for p < 0.001,*** for p
< 0.0001, **** for p < 0.00001, and ns for no significance, p > 0.05.
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low weight in the model, and the results showed that 23 significant

low similarity genes were identified (Figure 7A). Finally, 9 genes

were identified as PCD-related genes affecting OV prognosis, with

HR>1 for GAS1, MMP17, CX3CR1, PI3, and PYGB as risk factors

and HR<1 for ISG20, UBD, BTN3A3, and AADAC as protective

factors (Figure 7B). Based on the COX regression coefficients of the

9-gene and the expression data, we constructed the Risk Score, a

prognostic assessment system for OV based on PCD signature, with

the specific formula Risk Score=+0.162*GAS1 + 0.172*MMP17 +

0.134*CX3CR1-0.187*ISG20-0.103*UBD-0.247*BTN3A3-

0.208*AADAC+0.16*PI3 + 0.259*PYGB.

Next, in order to evaluate the Risk Score as a prognostic

assessment parameter, patients’ survival status, ROC curves, and

Kaplan-Meier survival curves were assessed in the training set

(TCGA-OV) and validation set (GSE32062, ICGC-AU). Based on

the optimal grouped Risk Score thresholds in the survminer

package, OV patients in the three datasets were established as

high Risk Score and low Risk Score groups, and it was observed
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that there was gradual increase in deaths over time and with higher

Risk Scores (Figures 7C, E, G). Kaplan-Meier analysis showed that

median and overall survival was better in the low Risk Score group.

The ROC curves for all three data sets also showed an AUC value

for Risk Score predicting survival at 1, 3 and 5 years greater than 0.6

(Figures 7D, F, H). Risk Score could serve as a tool for

OV prediction.
Surveys of clinical information in
risk score groups

The distribution of Risk Scores of patients in different

clinicopathological subgroups was analyzed. We found no

remarkable differences in Risk Score between the Stage, Grade

and age groups (Figures 8A–C). Compared to surviving patients,

death patients had considerably higher Risk Scores (p<0.0001)

(Figure 8D). In contrast, the highest Risk Score was found in C1
A B

D
C

FIGURE 5

Pathway activity of molecular subtypes in China (A) GSEA (B) ssGSEA (C) Heat map showing cancer-related pathway activity (D) Cancer-related
pathway activity boxplot. * for p < 0.05, ** for p < 0.001,*** for p < 0.0001, **** for p < 0.00001, and ns for no significance, p > 0.05.
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and the lowest in C4 among the 4 subtypes of patients (Figure 8E).

The proportion of patients with the four subtypes in the Risk Score

subgroup was calculated, with a higher proportion of patients with

good prognosis in the C3 and C4 subtypes in the low Risk Score

group and a higher proportion of patients with poor prognosis in

the C1 and C2 subtypes in the high Risk Score group (Figure 8F).

From the heat map of 9-gene combined with clinical information in

the subgroup of patients, the expression levels of risk factors GAS1,

MMP17, CX3CR1, PI3, and PYGB were found to be upregulated

with increasing Risk Score, while the expression levels of protective

factors ISG20, UBD, BTN3A3, and AADAC decreased with

increasing Risk Score (Figure 8G).
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Survey of TME activity in risk score groups

Compared to the high Risk Score group, we found that patients

in the low Risk Score group had higher ImmuneScore and lower

StromalScore (Figure 9A), suggesting that the immune system was

more active in the low Risk Score group and that there was less

activity of pro-cancer related molecules in the stromal cells, which

in turn increased their survival. We further observed higher

abundance of cancer-suppressing T_cells_CD8, immune cells,

Macrophages_M1, NK_cells_activated in the low Risk Score

group and higher pro-cancer immune ce l l f rac t ion

Macrophages_M2 in the high Risk Score group (Figure 9B). The
A B

D

E F

G H

C

FIGURE 6

GO and KEGG enrichment analysis (A–D) KEGG, Biological Process, Cellular Component, Molecular Function results in C1 (E–H) KEGG, Biological
Process, Cellular Component, Molecular Function results in C4.
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low Risk Score group also showed stronger cancer immune cycle

activity (Figure 9C). In addition, we also compared the 12 PCD

signature ssGSEA score differences in the Risk Score subgroups and

showed that the low Risk Score group was significantly enriched in

Necroptosis (Figure 9D). Finally, spearman correlations between 9-

gene expression levels and TME activity, immune cell infiltration
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abundance, and cancer immune cycle activity were also assessed,

with heat map showing significant correlations between UBD,

ISG20, CX3CR1 and the cancer immune cycle, multiple

programmed death modalities associated, and multiple immune

cells (Figure 9E). These results demonstrated that the low Risk Score

group had better immune activity and tumour-associated immune
A B

D

E

F

G

H

C

FIGURE 7

Risk Score construction and verification (A) LASSO COX analysis (B) 9-gene forest plot (C, D) Risk Score distribution, ROC curve, Kaplan-Meier curve
of patients in TCGA-OV (E, F) Risk Score distribution of patients in GSE32062, ROC curve, Kaplan-Meier curve (G, H) Risk Score distribution of
patients in ICGC-AU, ROC curve, Kaplan-Meier curve. * for p < 0.05, ** for p < 0.001,*** for p < 0.0001, **** for p < 0.00001.
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cell fractions, suggesting a more active immune system and better

prognosis for the low Risk Score group.
Immunotherapy sensitivity

In this study, we compared the differences in immune

checkpoint gene expression among the Risk Score subgroups. 24

differentially expressed immune checkpoint genes were identified,

with most of them being significantly more highly expressed in the
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low Risk Score group (Figure 10A). We further found a significant

negative correlation between Risk Score and CTLA4 and CD274

(PD-L1) expression (Figure 10B). We also analysed the difference in

response to immunotherapy benefit in the Risk Score grouping. The

CAF score, TAM.M2 score, Exclusion score and TIDE score were

lower in the low Risk Score compared to the high Risk Score group,

suggesting that the lower the Risk Score, the lower the occurrence of

immune escape (Figure 10C). The lower the Risk Score, the lower

the immune escape and the higher the ICB treatment sensitivity

(Figure 10C). Furthermore, Risk Score was negatively correlated
A B
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C

FIGURE 8

Relationship between clinical data and Risk Score (A–D) Risk Score distribution in Stage, Grade, Age, Status grouping (E) Risk Score distribution in
four subtypes (F) Proportion of patients in four subtypes in Risk Score grouping Statistical analysis (G) heat map shows 9-gene expression heat map
in Stage, Grade, Age, Status, Risk Score groups. * for p < 0.05, ** for p < 0.001,*** for p < 0.0001, **** for p < 0.00001, and ns for no significance,
p > 0.05.
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with TMB, with TMB being higher in the low Risk Score group than

in the high Risk Score group, but the difference was not statistically

significant (Figures 10D, E). These findings suggested that the Risk

Score could be used as potential biomarkers for the population for

which ICB therapy was prescribed.
Chemotherapy drug
resistance susceptibility

To explore the relationship between the model and drug

susceptibility, the Risk Score was assessed in relation to the IC50

of chemotherapeutic drugs. The results showed that the IC50 of 70

drugs was remarkably correlated with the Risk Score (Figure 11A).

In addition, we found higher IC50s for cisplatin and erlotinib and

lower IC50s for pictetinib and taselisib in the high-risk score group,
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suggesting that OV patients in the high-risk score group are more

likely to develop resistance to standard chemotherapy regimens

and, instead, possibly more adapted to the non-standard

chemotherapy drugs Pictetinib, Taselisib (Figures 11B, C).
Discussion

Programmed cell death is a life-rule for cellular self-repair and

regulation, and multiple homeostatic PCD mechanisms ensure the

continuity of life activity; however, disordered PCD processes

provide necessary assistance for malignant tumor development

and metastasis (7). Based on the information we retrieved, the

present study was the first to discern novel molecular subtypes in

OV and establish prognostic signatures according to 12 PCD

signature-related genes.
A

B

D E

C

FIGURE 9

TME activity in Risk Score grouping (A) ESTIMATE (B) CIBERSORT (C) 7-cancer immune cycle signature ssGSEA score (D) 12 PCD signature ssGSEA
score (E) heat map showing Risk Score and ESTIMATE, CIBERSORT, 7- Correlation between cancer immune cycle signature ssGSEA score and 12
PCD signature ssGSEA score. * for p < 0.05, ** for p < 0.001,*** for p < 0.0001, **** for p < 0.00001, and ns for no significance, p > 0.05.
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In this study, we analyzed the influence of PCD on OV

progression in the direction of PCD-related genes in OV. 98.2%

of OV patients had mutations in PCD-related genes, with TP53

mutations being the most common and prone to co-occurrence

between genes. High frequency mutations in TP53 drive high-grade

serous ovarian cancers, and furthermore, high frequency TP53

mutations were important molecular phenotypes for the

development of some poor prognostic subtypes in cancer (25).

The frequency of TP53 mutations in OV patients was 88%.

Tumors distinguished from conventional diseases were

characterized by high degree of heterogeneity, and the unique

genetic information of individuals was elusive to describe

uniformly (26). Traditional pathological staging was based on the

histological staging of patients as well as the degree of tissue

differentiation. In this study, PCD-related genes based on

prognostic traits in OV were subdivided by consistent clustering

analysis into four molecular subtypes with different prognosis based

on molecular features and exhibiting different immune activities.

Functional analysis also explained the different prognosis among

molecular subtypes, with the enhanced components of extracellular

matrix, collagen-containing extracellular matrix in C1 exacerbating

ECM-receptor interaction, PI3K-Akt The increase in the
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immunoreactive components of MHC protein complex and MHC

class II protein complex in C4 enhanced their TME activity. This

result was further validated in the TME activity analysis as well.

In this study, we selected DEGs between subtypes for COX

analysis and identified 9 genes affecting the prognosis of OV

patients. 9-gene composition of Risk Score was significantly

effective in assessing the prognosis of OV patients. Patients with

low Risk Score had more favorable median survival time and overall

survival time and exhibited positive TME environment. The low

Risk Score group exhibited high levels of T_cells_CD8,

NK_cells_activated, and Macrophages_M1 infiltration, and the

high-risk group exhibited high levels of Macrophages_M2

infiltration. CD8+ T cells are the main killer of tumor cells, and

factors such as CAF accumulated in TME can lead to CD8+ T cells

depletion, which in turn led to immune escape of tumor cells (27).

Macrophage M1 was mainly anti-tumor active, and Macrophage

M1 could secrete pro-inflammatory cytokines to inhibit tumor

growth (28). In contrast, M2 macrophages would stimulate tumor

growth by promoting tumor immunosuppression (29). In vivo

mouse studies revealed that IFN-g induced the polarization of

resting macrophages toward a pro-inflammatory and tumor

cytotoxic M1 phenotype to activate anti-tumor immunity and
A B

D E

C

FIGURE 10

Risk Score group immunotherapy analysis (A) Immune checkpoint gene expression heat map (B) RiskScore and CTLA4, CD274 correlation (C) TIDE
results (D) TMB and Risk Score correlation (E) TMB statistics. * for p < 0.05, ** for p < 0.001,*** for p < 0.0001, **** for p < 0.00001, and ns for no
significance, p > 0.05.
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regulate tumor microenvironment with anti-tumor effects (30).

Another point to note was that PCD processes were connected

with anti-inflammatory responses, while Macrophage M1 and

Macrophage M2 were closely associated with inflammatory

responses (31). Targeting the direction of Macrophage

polarization seems to be a viable direction of research in the early

stages of immunotherapy.

Interestingly, Risk Score also had excellent performance in

guiding chemotherapy strategies. This study found that patients

with high Risk Score were more sensitive to Pictilisib and Taselisib.

Pictilisib, also known as GDC-0941, and Taselisib, also known as

GDC-0032, both belong to PI3K inhibitors and shown good tumor
Frontiers in Endocrinology 15
killing ability in solid tumors (31, 32). Some combinations of

Pictilisib and Taselisib were new treatments for some solid

tumors. Pictilisib worked by enhancing sensitivity and reducing

resistance to temozolomide in GBM cell lines (33). The

combination of Pictilisib and Docetaxel enhanced the apoptosis of

breast cancer cells and enhanced the anticancer effect of Docetaxel

(34). Autophagy signaling was increased in breast cancer cells

treated with Taselisib, and chloroquine enhances the antitumor

activity of Taselisib in combination with Paclitaxel by inhibiting

autophagy signaling (35). The PI3K-Akt signaling pathway was

activated in the C1 group in this study, and the proportion of

patients with C1 type was also higher in the high Risk Score group.
A

B

C

FIGURE 11

Chemotherapy sensitivity analysis (A) heat map of the association between Riskscore, genes, and sensitivity to 70 drugs (B) correlation between Risk
Score and Pictilisib, Taselisib, Cisplatin, Erlotinib sensitivity (C) IC50 statistics of Pictilisib, Taselisib, Cisplatin, Erlotinib in the Risk Score groups. * for p
< 0.05, ** for p < 0.001,*** for p < 0.0001, **** for p < 0.00001, and ns for no significance, p > 0.05.
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As PI3K inhibitors, Pictilisib and Taselisib may effectively inhibit

the activity of PI3K−Akt signaling pathway in patients with high

Risk Score and enhanced anti-tumor activity, which might be the

reason why the high Risk Score group is sensitive to Pictilisib

treatment. In addition, we found that patients in the low-risk Score

group exhibited higher TMB. Studies suggested that in lung cancer

and bladder cancer, high TMB predicted that patients could benefit

from ICB treatment (36). Study also revealed that patients with lung

adenocarcinoma with high mutations seemed to be more easily

from the PD1/PD-L1 resistant benefit immune therapy (37). In this

study, we also found that patients in the low-risk Score group had

higher tumor immune cycle activity and immune activation status

overall. Immune activation in cancer patients contributed to

enhance immune checkpoint gene blockade (38). Our constructed

Risk Score appears to be a novel immunotherapy guidance tool.

In conclusion, in this study, we subdivided OV into four

subtypes at the molecular level using PCD-related genes as the

study target, which can effectively distinguish OV patients with

different immune status according to different subtype

characteristics. Further, we also established Risk Score, which

showed excellent predictive performance in the direction of OV

prognosis, TME activity and assessment of immunotherapy and

chemotherapy drug selection, providing a research basis for better

understanding the impact of PCD on OV progression.
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