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Objective: Diabetic kidney disease (DKD) has been reported as a main

microvascular complication of diabetes mellitus. Although renal biopsy is

capable of distinguishing DKD from Non Diabetic kidney disease(NDKD), no

gold standard has been validated to assess the development of DKD.This study

aimed to build an auxiliary diagnosis model for type 2 Diabetic kidney disease

(T2DKD) based on machine learning algorithms.

Methods: Clinical data on 3624 individuals with type 2 diabetes (T2DM) was

gathered from January 1, 2019 to December 31, 2019 using a multi-center

retrospective database. The data fell into a training set and a validation set at

random at a ratio of 8:2. To identify critical clinical variables, the absolute

shrinkage and selection operator with the lowest number was employed.

Fifteen machine learning models were built to support the diagnosis of

T2DKD, and the optimal model was selected in accordance with the area

under the receiver operating characteristic curve (AUC) and accuracy. The

model was improved with the use of Bayesian Optimization methods. The

Shapley Additive explanations (SHAP) approach was used to illustrate

prediction findings.

Results: DKD was diagnosed in 1856 (51.2 percent) of the 3624 individuals within

the final cohort. As revealed by the SHAP findings, the Categorical Boosting

(CatBoost) model achieved the optimal performance in the prediction of the risk

of T2DKD, with an AUC of 0.86 based on the top 38 characteristics. The SHAP

findings suggested that a simplified CatBoost model with an AUC of 0.84 was built

in accordance with the top 12 characteristics. The more basic model features

consisted of systolic blood pressure (SBP), creatinine (CREA), length of stay (LOS),
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thrombin time (TT), Age, prothrombin time (PT), platelet large cell ratio (P-LCR),

albumin (ALB), glucose (GLU), fibrinogen (FIB-C), red blood cell distribution width-

standard deviation (RDW-SD), as well as hemoglobin A1C(HbA1C).

Conclusion: A machine learning-based model for the prediction of the risk of

developing T2DKD was built, and its effectiveness was verified. The CatBoost

model can contribute to the diagnosis of T2DKD. Clinicians could gain more

insights into the outcomes if the ML model is made interpretable.
KEYWORDS

type 2 diabetes mellitus, diabetic kidney disease, machine learning, prediction,
CatBoost model
Introduction

Diabetes mellitus refers to a chronic epidemic metabolic disease

with high blood glucose. The latest statistics from the International

Diabetes Federation (IDF) suggested that approximately 463

million adults (aged 20-79 years) worldwide would have diabetes

by 2019; the number of people with diabetes was estimated to reach

700 million by 2045 (1). Complications of diabetes have been found

as the leading cause of death in diabetic patients (2), with 76.4% of

diabetic patients reporting at least one complication (3). Diabetic

kidney disease (DKD) has been reported as a main microvascular

complication of diabetes mellitus, which is characterized by high

prevalence, mortality, and treatment costs, but low awareness and

poor prevention and treatment rates (4). In China, nearly 20-40% of

diabetic patients suffer from DKD, while the awareness rate of DKD

is lower than 20%, and the treatment rate is even lower than

50% (5).

The typical progression of DKD refers to an initial increase in

urinary albumin excretion (called microalbuminuria), which is

accompanied with progression to massive albuminuria and

subsequent rapid decline in renal function. As a result,

proteinuria has been considered the initial pathway for the

progression of declining renal function from the traditional

perspective (6). However, the above theory has been challenged

since numerous patients with proteinuria have been found to return

to normal albumin excretion rates either spontaneously or based on

the integrated risk management with DKD (7–11). On that basis,

the effectiveness of microalbuminuria as a traditional marker of

DKD and the optimal opportunity for intervention are challenged

since DKD is generally insidious during onset (12). Although renal

biopsy is capable of distinguishing DKD from Diabetic kidney

disease (NDKD), no gold standard has been validated to assess

the development of DKD. Although increased screening frequency

can avoid delayed diagnoses, this is not uniformly implemented.

Furthermore, the prevention, early diagnosis and treatment of DKD

take on a critical significance in reducing the incidence of

cardiovascular events in diabetic patients and improving their

survival and quality of life. Accordingly, there is an urgent need
02
for a simple and convenient clinical tool to assess DKD in daily

clinical practice.

Developing a risk scoring system based on simple predictors,

i.e., clinical data, is considered a vital for monitoring and diagnosing

DKD. Machine learning algorithm (ML) show significant

advantages in processing a considerable number of data with

high-dimensional properties and numerous cases. It is extensively

employed for disease prediction (13). Machine learning algorithms

can efficiently predict the DKD (14–17). Identification of risk

factors for the progression of DKD to ESRD is expected to

improve the prognosis by early detection and appropriate

intervention (18). Most studies on predictive models for DKD

have adopted a single classifier for statistical analysis, and most of

them achieved small sample sizes. Under excessive samples and

variables, the models will be prone to underfitting or overfitting,

and the performance and efficiency could be enhanced. Most of the

prediction models developed by foreign researchers apply to

the white population, and they are likely to be less applicable

to the Asian population (19, 20). Thus, it is of clinical significance

in developing ancillary diagnostic models for DKD with the use of

ML. However, few large-scale studies have investigated the use of

machine learning analysis of clinical characteristics to predict DKD

in the Chinese population. A retrospective cohort study was

conducted, which involved the collection of clinical parameters

and the application of machine learning models to differentiate

between DKD and NDKD.
Materials and methods

Study population

The data originated from Chongqing Medical University’s

Medical Data Intelligence Platform(Yidu-Cloud (Beijing)

Technology Co, Ltd, China), which consisted of the data

from seven institutions and over 40 million electronic medical

records (during 1 January 2010 to 31 May 2020) (21–23). Only

the information from the first hospitalization was applied in the
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event of subsequent hospitalizations. Xiaozhu Liu (Account

Number: cy2014223346)and Minjie Duan (Account Number:

MI2020111943) were permitted to access data directly on the

platform system where all information is anonymous and has a

unique identifying code to preserve privacy, while an informed

consent from the patient is unnecessary. The local institutional

ethics committee gave us their authorization.The inclusion and

exclusion criteria below were employed for screening:

Inclusion criteria: (1) hospitalization for T2DM or T2DKD; (2)

following the WHO 1999 diagnostic criteria for diabetes mellitus;

(3) age >18 years; following the diagnostic criteria of the KDOQI US

commentary on the 2012 KDIGO clinical practice guideline for

Chronic kidney disease (24).

Exclusion criteria: (1) combination of other possible

complications such as urinary tract infection, malignancy; (2)

immune diseases (e.g., systemic lupus erythematosus and

vasculitis); (3) Other endocrine diseases; (4) type 1 diabetes,

gestational diabetes and other diabetes with unclear classification;

(5) hospitalization days <1; (6) discharge against medical advice; (7)

patients lost to follow-up or death during index hospitalization; and

(8) patients with >25% of data missing.

In accordance with the inclusion and exclusion criteria, 3624

patients with T2DM were recruited, which consisted of 1856

patients with T2DKD (Figure 1). In this study, DKD was defined

in accordance with the National Health Insurance Administration’s

definition of catastrophic illness ICD-9 and ICD-10 codes for DKD.

The definition of CKD in the 2012 KDIGO clinical practice

guideline was adopted (24, 25).
Data collection and data preprocessing

The latest literature on DKD was reviewed and combined with

clinical experience to acquire relevant clinical data and laboratory

characteristics (25–28). 53 clinical characteristics with missing
Frontiers in Endocrinology 03
values ≤ 25% were covered. Since most models cannot analyze

data with missing values, Multivariate Imputation by Chained

Equations (MICE) algorithm was used for data filling.

Baseline data were compared in patients with DKD and T2DKD

from the first examination and test results after admission (Table S1)
Model development and
performance evaluation

The data set was randomly assigned to a training set (80%) and

a validation set (20%) based on stratified random sampling. Our

models were developed using the training set, and their

performance was assessed using the validation set. The least

absolute shrinkage and selection operator (LASSO) was employed

for selecting the risk predictors to eliminate unnecessary and

redundant information and increase the model’s discriminative

capacity. Finally, non-zero regression coefficient variables were

selected to build the prediction models.

To select the prospective algorithms for our prediction models,

we first analyzed the performance of 15 machine learning

algorithms without hyper-parameters tuning. After that, an

algorithm with the optimal performance was selected in

accordance with the model’s accuracy and the area under the

receiver operating characteristic curve (AUC). PyCaret (version

2.3.3), an open source, low-code machine learning library in

Python, was employed to perform the screening procedure.

Second, the Bayesian Optimization approach with 10-fold cross

validation was adopted for adjusting a prediction model based on

the training set to find the ideal hyper-parameter configuration. The

above algorithm is an efficient constrained global optimization tool,

which was performed based on the functions of the bayes_opt

Python package (version 1.2.0). AUC, accuracy and sensitivity were

obtained to assess the models performance based on the

independent validation set.
FIGURE 1

The flowchart of the study.
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To reduce the black-box nature of machine learning and to

allow clinicians to understand the results of the provided model,

SHapley Additive exPlanations (SHAP) was adopted to interpret

the model with the use of SHAP python package (version 0.39.0).

The significance of input features was obtained with the use of a

game-theoretic algorithm based on the independent validation set.

It is noteworthy that all 38 variables would not always be available

in clinical practice. Accordingly, the top 12 were taken from SHAP

summary plots to build the simpler model, and the discriminative

power was compared between the full model and simpler models.
Statistical analysis

For baseline comparison of data sets, categorical variables were

denoted as percentages, and Chi-square test or Fisher’s exact test

was performed for comparison between groups. Continuous

variables were examined for normality using Kolmogorov-

Smirnov test, and measures following normal distribution were

denoted as mean ± standard deviation, and Student’s t-test was used

for comparison between groups, and measures not following

normal distribution were denoted as median (interquartile range),

and Mann-Whitney U rank sum test was performed for comparison

between groups. R (version 4.0.2) was adopted for statistical

analysis. A two-sided P < 0.05 was considered to achieve

statistical significance.
Results

Patient characteristics

The data were assigned to a training set and a validation set at

8:2. The training set consisted of 2899 cases, including 1485 cases of

T2DKD (51.2%) and 1414 cases of T2DM (48.8%); the validation

set consisted of 725 cases, including 371 cases of T2DKD (51.2%)

and 354 cases of T2DM (48.8%) (see Table S2 for details).
Feature selection

Least absolute shrinkage and selection operator(LASSO) was

employed to select the most significant features, so as to classify

individuals diagnosed DKD. All features (a total of 53 variables) were

included in the LASSO regression analysis and narrowed down to

38 features with non-zero b coefficients in the LASSO regression

model. The above features were Sex, Smoke, Drink history, Age,

length of stay (LOS), Systolic blood pressure (SBP), diastolic blood

pressure (DBP), total protein (TP), albumin (ALB), gamma

glutamyltransferase (GGT), alanine aminotransferase (ALT),

alkaline phosphatase (ALP), total cholesterol (TC), triglyceride

(TG), high-density lipoprotein cholesterol (HDL-C), phosphorus

(P), glucose (GLU), apolipoprotein A1 (ApoA1), Hemoglobin A1C

(HbA1C), creatinine (CREA), urea, uric acid (UA), fibrinogen (FIB-

C), platelet count (PLT), prothrombin time (PT), thrombin time

(TT), monocyte percentage (Mon%), basophil count (Bas),
Frontiers in Endocrinology 04
eosinophil count (Eos), neutrophil count (Neu), platelet large cell

ratio (P-LCR), mean corpuscular volume (MCV), mean corpuscular

hemoglobin concentration (MCHC), lymphocyte count (Lym), red

blood cell distribution width-standard deviation (RDW-SD),

hematocrit (HCT), platelet distribution width (PDW), mean

platelet volume (MPV) (Figure 2A).
Performance of models in predicting DKD

Figure 3 lists the predictive performance of 15 ML models after

10-fold cross validation for internal training. Almost all classic ML

methods capable of conducting classification analysis were

considered. The top six models consisted of CatBoost Classifier,

Light Gradient Boosting Machine, extreme gradient Boosting, Extra

Trees Classifier, Gradient Boosting Classifier, Random Forest

Classifier, with AUC over 0.8. As revealed by the results, the

CatBoost model indicated the maximum performance in

predicting DKD risk with AUC and accuracy of 0.840 and 0.755,

respectively. As a result, the CatBoost model was selected and

optimized in the following step.

Bayesian optimization algorithm with 10-fold cross validation

to select the optimal hyperparameter configuration for the CatBoost

model. The optimized CatBoost model exhibited the optimal and

the most stable performance, with an AUC of 0.861, an accuracy of

0.777, a sensitivity of 0.755 (Figure 4). To increase the transparency

and usability in real clinical setting of the prediction model, 12 top

features were selected to construct the simpler prediction model

based on the SHAP values and clinical availability. The top 12 most

significant features consisted of SBP, CREA, LOS, TT, Age, PT,

PLCR, ALB, GLU, FIBC, RDWSD, HbA1c (Figure 2C). As depicted

in Figure 4, the simpler CatBoost model showed slight worse

performance (AUC: 0.840). In this study, our CatBoost model

was illustrated using the SHAP method by Lundberg and Lee

(29). We employ the Shap technique to gain a global

interpretation of our reserved cohort as well as individual patient

interpretations. The SHAP summary plots for the top 38 clinical

characteristics contributing to our ML model’s prediction of DKD

development in our research are shown in Figures 2A, B. The SHAP

summary plots for the top 12 clinical characteristics contributing to

our ML model’s prediction of developing DKD in our research are

shown in Figures 2C, D.

Meanwhile, we show the SHAP explanation force diagram for

two patients from the CatBoost model’s validation set (Figure 5).

Figure 5A depicts a patient who is 48 years old. This patient’s

anticipated risk of having DKD is significant, at 160 percent, in

comparison with a baseline risk of 10%. (average prevalence of the

validation cohort). Lower ALB of 29.5g/l, increased HbA1C of 15.1

percent, increased RDWSD of 52.7 mg/dl, prolonged LOS of 16

days, lower PLCR of 22.9 percent, and PT of 11.1 seconds were the

characteristics found by the model for the prediction of a greater

prevalence in this patient. The patient’s age of 48 years and TT of

18.8 seconds help to mitigate the increased risk. Figure 5B presents

another T2DM patient. This patient’s anticipated risk of getting

DKD was -146 percent, in comparison with a baseline risk of 10%.

(average prevalence of the validation cohort). Normal SBP of
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120mmHg, shorter LOS of 3 days, normal TT of 18.53 seconds,

normal FIBC of 2.06, normal CREA of 42.6 umol/l, and normal

RDWSD of 40.1 mg/dl were the parameters found using the model

for the inhibition of DKD development. The lower risk was

somewhat countered by a 12.8 percent HbA1C and a 22.9

percent PLCR.
Discussion

T2DKD has been recognized as the major cause of end-stage

renal failure (4). Its diagnosis is largely dependent on kidney biopsy,

which is generally used to distinguish diabetic kidney disease from

other kidney diseases. However, biopsy cannot be employed for

early screening and diagnosis of T2DKD, thus resulting in missed
Frontiers in Endocrinology 05
diagnosis and misdiagnosis. The development of chronic

albuminuria followed by a steady drop in GFR (classical

phenotype of DKD) (24) has been adopted to diagnose DKD.

Several studies have indicated the trajectories of renal function

(i.e., changes in GFR and albuminuria with time) that diverge from

this traditional phenotype over the past decade (30). Three non-

classical DKD phenotypes have been identified, each of which are

defined by albuminuria regression, fast GFR decrease, or the lack of

proteinuria or albuminuria, respectively (31). Albuminuria has

limitations in the prediction of the progression of DKD. The

determination of albuminuria values is affected by a wide variety

of factors (e.g., fever, strenuous exercise within 24h, menstruation,

hyperglycemia and hypertension). For atypical DKD, albuminuria

is not sufficiently specific for the diagnosis of DKD, and some

studies have indicated that 30% of patients with albuminuria had
B

DC

A

FIGURE 2

The SHAP summary plots for the CatBoost model. (A) depicts the most 38 effective characteristics on prediction (ranked from showing the highest
to lowest importance). (B) depicts the distribution of the effects of 38 characteristics on the output of the model. (C) depicts the most 12 effective
characteristics on prediction (ranked from showing the highest to lowest importance). (D) depicts the distribution of the effects of 12 characteristics
on the output of the model.For numeric characteristics, the colors indicate the feature values: red for larger values and blue for smaller values. The
thickness of the line is defined by the number of instances at a specific value, and it is made up of individual dots representing each DKD (e.g., most
patients have a low risk of developing of DKD). A lower likelihood is indicated by a negative SHAP value (stretching to the left), while a higher
probability is indicated by a positive SHAP value (reaching to the right). The gray dots reflect particular possible values for non-numeric
characteristics such as main diagnosis, with select diagnoses considerably raising or decreasing the model’s output, while the majority of diagnoses
have just a little influence on prediction.
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negative urine albumin within 10 years, and this phenomenon has

been more significant in type 2 diabetes patients (32, 33). Urinary

albumin excretion was influenced by many factors (34). It was

recommended that the diagnosis of albuminuria requires three 24-h

urine collections over a 3-month period, with at least two of the

three results exceeding the threshold and not measured by urinary
Frontiers in Endocrinology 06
routine. Thus, the diagnosis of albuminuria as a basis for DKD

should be based on a combination of multiple tests and long-term

follow-up with glomerular filtration rate, and the cause of

albuminuria should be excluded. Thus, the necessity of a simple

and convenient clinical tool to assess DKD in daily clinical practice

is highlighted.
BA

FIGURE 4

Receiver operator characteristic (ROC) curves for the CatBoost model. (A) Shows ROC for CatBoost with most 38 effective characteristics on
prediction (ranked from most to least important). (B) Shows ROC for CatBoost with most 12 effective characteristics on prediction (ranked from
most to least important).
FIGURE 3

Performance of different models in internal validation.
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Accordingly, a multi-center retrospective study was conducted

to analyze clinical indicators of T2DM and T2DKD based on real-

world data, and adopted machine learning algorithms to investigate

potential clinical and Laboratory risk factors for DKD among

patients with T2DM. In this study, 15 ML models for ancillary

diagnosis of T2DKD were initially developed in accordance with the

clinical data from seven hospitals in China, and the efficacy of the

15 ML models was assessed. Meanwhile, we tried the CatBoost

algorithms, which are seldom employed in medical studies. Our

retrospective study showed that CatBoost is very effective for

ancillary diagnosis of DKD. The patients’ clinical and laboratory

parameters were assessed with a CatBoost model, and key features

correlated with an increased risk of DKD, (e.g., SBP, CREA, LOS,

TT, Age, PT, PLCR, ALB, GLU, FIBC, RDWSD, as well as HbA1c)

were identified.

In this study, the differential diagnosis model of T2DKD was

built based on 15 machine learning algorithms, thus solving the

nonlinear relationship between clinical features and diagnosis

results. The CatBoost model with the highest diagnostic accuracy

than the other 14 models, such as light gradient booting model,

Extreme Gradient Boosting and so on, indicating a good predictive

performance. With LASSO analysis, SBP, CREA, LOS, TT, Age, PT,

PLCR, ALB, GLU, FIBC, RDWSD, HbA1c were the top 12 major

influencing factors of the index importance, which achieved

statistical significance in multivariate logistic regression analysis.

Existing studies suggested that SBP, CREA, Age, ALB, and GLU

are factors for DKD. High SBP was reported with rapidly eGFR

decline in the Atherosclerosis Risk in Communities (ARIC) study

(35). As reported by Gross JL et al., hypertension increased the

morbidity of patients hospitalized with kidney disease, and

increased blood pressure was found as a major risk factor for

DKD (36). Sasso FC et al. found in their study that arterial

pressure is a relevant factor for the progression of DKD in

patients with DM, accompanied by hypertension is highly

susceptible to periglomerular microvascular changes leading to

development of DKD (37). Viazzi F et al. investigated the clinical

records of more than 30,000 patients with T2DM combined with

hypertension over 4 years of follow-up. It was found that elevated

long-term blood pressure variability predicted CKD in T2DM and

(38). In the model built in this study, SBP was the primary predictor
Frontiers in Endocrinology 07
of DKD, consistent with previous studies mentioned above. As

revealed by the analysis of the examination of renal function in

patients with DKD hospitalized between 2015 and 2017, CREA

achieved a high predictive value in the diagnosis of patients with

DKD and could effectively assess the status of renal function in

patients with DM (39). This is consistent with the findings of

our study.

Radcliffe NJ et al. found a correlation between elevated age,

early GFR decline and DKD progression, consistent with the results

of the present study (40). Elley et al. demonstrated an independent

relationship between higher age and increased risk of DKD

progression (28). López-Revuelta K et al. also suggested that age

could be a risk factor for DKD development, with a mean age of

58.3 years in terms of DKD (41). The above studies assessed changes

in GFR in predominantly adult patients (28). Several cross-sectional

studies have shown changes in P-LCR, PLT, and FIBC in DKD

patients in comparison with normal, suggesting that the occurrence

of DKD is closely related to abnormal platelet function (42–44).

The study by Zoppini G et al. followed more than 1,000 patients

with DKD and found that HbA1c was a risk factor for the

progression of DKD. A decrease in HbA1c significantly reduced

the risk of complications in patients with DM. A decrease in Hb A1c

from 10% to 9% was also found to have a greater impact on

reducing the risk of complications than a decrease in Hb A1c

from 7% to 6% (45). Yun KJ, et al. found HbA1c variability may

affect the development and progression of DKD in their study (46).

Visit-to-visit variability of HbA1c was an independent risk factor of

microalbuminuria in association with oxidative stress among type 2

diabetes mellitus patients (47, 48). Meanwhile, observational studies

have not consistently demonstrated a glucose threshold (49). In a

referred population of established DKD, higher HbA1c was not

associated with higher risk of ESKD or death (50). In addition, our

study found that HbA1c also influences the progression of DKD, in

agreement with most previous studies.In addition, our study found

that LOS, TT, PT, RDWSD also influence of DKD progression,

which has not been reported in the literature and deserves

further study.

Previously, it was confirmed that metabolic syndrome(MetS)

and associated components (abdominal obesity, elevated BG,

elevated BP and lipid metabolic disorder) are strongly related to
B

A

FIGURE 5

SHAP force plot for two patients of the held-out validation set. (A) patient at high risk of developing T2DKD; (B) patient at low risk of developing
T2DKD. DKD, diabetic kidney disease; ALB, albumin; HbA1C, hemoglobin A1C; RDWSD, red blood cell distribution width-standard deviation; LOS,
length of stay; PLCR, platelet large cell ratio; PT, prothrombin time; TT, thrombin time; SBP, Systolic blood pressure; FIBC,fibrinogen; CREA, creatine.
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CKD and a decreased estimated glomerular filtration rate (eGFR)

(51–55). Over the 4-year follow-up period, Peijia L et al. found that

MetS recovery was associated with a reduced risk of rapid eGFR

decline in middle-aged and older adults, while MetS occurrence was

not related to rapid eGFR decline. Recovery from MetS appeared to

protect against a rapid decline in eGFR (56).

Due to the strong interpretability, logistic regression model is

widely used to explore the risk factors of diseases. However,

problems such as under-fitting, data missing, poor overall

performance of the model are likely to occur in the process of

modeling. In terms of the machine learning algorithms, this study

has been considered the first to assess the risk of patients with DKD

using the CatBoost model. As revealed by this study, the CatBoost

model achieved great performance in the prediction of DKD. By

analyzing clinical indicators of 1768 cases of type 2 diabetes and

1856 cases of type 2 diabetic kidney disease, this study applied the

CatBoost model to the risk assessment of type 2 diabetic kidney

disease for the first time, and analyzed the weight relationship of

influencing factors. A good classification results was

obtained (AUC=0.840).

This study had several limitations. First, although general

clinical data and laboratory indexes were collected more

comprehensively, some of the indexes were not covered in the

model due to the missing values of ≥25%, and the significance of the

correlation with type 2 diabetic kidney disease should be

investigated in more detail when the volume of data is

expanded.However, it was found through our data that some

clinical parameters (cystatin-C, total 24-hour urine protein,

duration of disease, etc.) are missing in many patients and many

indicators cannot be generalized in primary care. Second, We found

in the construction of the model that SBP was included as an

important parameter in the prediction model, considering

hypertension as an important confounding factor that is best

analyzed in a stratified manner. Third, Due to data limitations,

we were unable to select patients with a first diagnosis of T2DKD to

model.Fourth, a cross-sectional study was conducted, and the

results should be validated through a prospective study.
Conclusions

To sum up, this retrospective study suggested that CatBoost

could be highly effective in the early ancillary diagnosis of DKD.

The importance of the model’s correlation to type 2 diabetic

kidney disease should be investigated in depth after the data

volume is expanded. In subsequent research, a greater amount

of data and more machine learning models will be adopted for

modeling research, as an attempt to build a better risk

assessment model.
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