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The pancreas plays a critical role in maintaining glucose homeostasis through the

secretion of hormones from the islets of Langerhans. Glucose-stimulated insulin

secretion (GSIS) by the pancreatic b-cell is the main mechanism for reducing

elevated plasma glucose. Here we present a systematic modeling workflow for

the development of kinetic pathway models using the Systems Biology Markup

Language (SBML). Steps include retrieval of information from databases, curation

of experimental and clinical data for model calibration and validation, integration

of heterogeneous data including absolute and relative measurements, unit

normalization, data normalization, and model annotation. An important factor

was the reproducibility and exchangeability of the model, which allowed the use

of various existing tools. The workflow was applied to construct a novel data-

driven kinetic model of GSIS in the pancreatic b-cell based on experimental and

clinical data from 39 studies spanning 50 years of pancreatic, islet, and b-cell
research in humans, rats, mice, and cell lines. The model consists of detailed

glycolysis and phenomenological equations for insulin secretion coupled to

cellular energy state, ATP dynamics and (ATP/ADP ratio). Key findings of our

work are that in GSIS there is a glucose-dependent increase in almost all

intermediates of glycolysis. This increase in glycolytic metabolites is

accompanied by an increase in energy metabolites, especially ATP and NADH.

One of the few decreasing metabolites is ADP, which, in combination with the

increase in ATP, results in a large increase in ATP/ADP ratios in the b-cell with

increasing glucose. Insulin secretion is dependent on ATP/ADP, resulting in

glucose-stimulated insulin secretion. The observed glucose-dependent

increase in glycolytic intermediates and the resulting change in ATP/ADP ratios

and insulin secretion is a robust phenomenon observed across data sets,

experimental systems and species. Model predictions of the glucose-

dependent response of glycolytic intermediates and biphasic insulin secretion

are in good agreement with experimental measurements. Our model predicts

that factors affecting ATP consumption, ATP formation, hexokinase,

phosphofructokinase, and ATP/ADP-dependent insulin secretion have a major

effect on GSIS. In conclusion, we have developed and applied a systematic

modeling workflow for pathway models that allowed us to gain insight into key

mechanisms in GSIS in the pancreatic b-cell.
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1 Introduction

The pancreas plays a vital role in maintaining glucose

homeostasis (1) through the secretion of hormones from the islets

of Langerhans. The most important hormones are insulin, secreted

by the pancreatic b-cells, and glucagon, secreted by the a-cells, both
of which play key roles in regulating glucose homeostasis (2).

Glucose-induced insulin secretion (GSIS) is a physiological

process by which the pancreas releases insulin in response to an

increase in blood glucose levels. When glucose enters the

bloodstream after a meal, it is taken up by b-cells in the pancreas

through glucose transporters, primarily GLUT2 (3). Once inside the

b-cells, glucose is metabolized via glycolysis, which produces energy

in the form of ATP.

The coupling of glycolysis with the insulin secretion mechanism

in the b-cell is established by the regulatory effects of glycolytic

intermediates on the levels of energy metabolites such as ATP and

NADH (4, 5). The rise in ATP levels triggers a series of events that

lead to the release of insulin. Specifically, the high ATP levels close

ATP-sensitive potassium channels (6), which leads to

depolarization of the cell membrane and opening of voltage-gated

calcium channels. The influx of calcium triggers the exocytosis of

insulin-containing vesicles, leading to the release of insulin into the

bloodstream (7, 8). The KATP/Ca
2+ independent signaling

mechanisms and the other metabolites besides glucose contribute

to the amplification of the signaling events that trigger insulin

secretion (9).

GSIS by the pancreatic b-cell is the primary mechanism for

lowering elevated plasma glucose levels. The amount of insulin

released increases with the glucose in the bloodstream. This process

is crucial for the regulation of blood glucose levels by promoting the

uptake and use of glucose by cells throughout the body, such as

muscle, fat tissue, and the liver (10, 11).

Glycolysis is the primary metabolic pathway responsible for GSIS.

It involves the uptake of glucose and its conversion to pyruvate, which

is critical for ATP synthesis and maintenance of ATP levels.

Experimental data from metabolic profiling studies in islet cells

support the key role of glycolysis in GSIS (12–14). As glucose levels

increase, glycolytic flux and most glycolytic intermediates increase in a

dose-dependent manner. Changes in adenine nucleotide levels due to

variations in glycolytic flux lead to changes in nucleotide ratios, with

increasing glucose levels resulting in a positive correlation between the

ATP/ADP ratio and Ca2+ response and insulin release. This trend is

consistent across several studies (15–17), including isolated islets

perfused with glucose, rat and mouse tissue homogenates, and

insulin-secreting cell lines. The increase in ATP/ADP ratio ranges

from 2 to 7 when glucose levels are increased from 2.8mM to 30mM,

indicating similar behavior in different experimental systems studying

insulin secretion by the pancreas (18).

Mathematical models have been developed to investigate the

metabolic and signaling mechanisms that trigger and amplify

insulin secretion. Early models of b-cells focused on examining

the relationship between glycolytic oscillations and pulsatile insulin

release to understand GSIS (19, 20). Minimal models of GSIS have

examined the effect of dosing patterns such as slow and fast ramps

of glucose on the phasic nature of insulin secretion (21–24). Merrins
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et al. analyzed the oscillations in glycolytic intermediates (i.e.

fructose-6-phosphate, fructose-2,6-bisphosphate, and fructose-1,6-

bisphosphate) and their effect on pulsatile insulin secretion (25),

while other models integrated glycolytic flux with mitochondrial

ATP production to study the role of reducing equivalents such as

pyridine nucleotides in enhancing insulin secretion (26, 27). Jiang

et al. further combined previously developed models of glycolysis,

citric acid cycle, b-oxidation, pentose phosphate shunt, and

respiratory chain and studied the local and global dynamics of

the GSIS mechanism in response to parameter perturbations. These

models were coupled with the calcium signaling pathway of

Fridyland et al. to create an integrated metabolic model (28, 29).

To investigate the synergistic insulinotropic effect of other

nutrient sources, Salvucci et al. (17) developed a model by

integrating alanine metabolism with glucose metabolism, the

citric acid cycle, and the respiratory chain. Gelbach et al.

developed a system of 65 reactions integrating glycolysis,

glutaminolysis, the pentose phosphate pathway, the citric acid

cycle, the polyol pathway, and the electron transport chain to

study the kinetics of insulin secretion (30).

However, the majority of these models are based on earlier

models that were developed using kinetic data from organisms

other than humans or non-pancreatic tissues, such as a glycolysis

model that utilized kinetic data from experiments on yeast cell

extract, or a glycolysis model based on kinetic data from

mammalian muscle (31). Often, the data used to build these

models is limited and comes from a single experimental study. In

most models specific to b-cells, reaction kinetics are described by

simple mass-action rate laws. There exists no detailed kinetic model

of the changes in glycolysis during GSIS that can effectively

integrate the observed changes in glycolytic and energy

intermediates from a wide range of GSIS experiments.

In systems biology and systems medicine, ensuring the

reproducibility of computational models and integrating diverse

data from multiple sources into these models are critical challenges.

Standards for model description, such as the Systems Biology

MarkupLanguage (SBML) (32, 33), have been developed to enable

the reusability and reproducibility of existing models, but they have

yet to be utilized in the field of pancreatic GSIS modeling.

Furthermore, there is a need to address how to integrate

heterogeneous data from multiple studies conducted in different

organisms and experimental systems in the context of GSIS modeling.

This study aims to develop a detailed kinetic model of GSIS and

the associated changes in glycolysis in the pancreatic b-cell. The
novel contributions of this work include a systematic curation and

integration of changes in glycolytic metabolites from multiple

experimental studies across different species and experimental

systems to construct a new model of GSIS. Based on this unique

data set, a detailed kinetic model of glycolysis and GSIS was

constructed using a systematic approach with a focus on

reproducibility. This approach allowed the establishment of a

consensus model of the changes that occur in insulin secretion

with varying glucose concentrations. The overall goal was to

provide a better understanding of the mechanisms underlying

GSIS and to contribute to the development of improved

computational models of these processes.
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2 Results

Our study introduces a detailed kinetic model of GSIS in the

pancreatic b-cell, which has the ability to simulate alterations in

glycolytic intermediates and ATP/ADP ratio due to glucose levels

and the effect of change in the energy state of the b-cell on biphasic

insulin secretion.
2.1 Systematic curation of data set of
changes in GSIS

In the course of this study, we compiled a comprehensive data set

(Table 1) of GSIS based on experimental and clinical data from 39

studies spanning half a century of research on pancreatic, islet, and b-
cell function in humans, rats, mice, and cell lines. Specifically, we

systematically curated metabolomics data from studies conducted

between 1970 and 2020, comprising information on the

concentration of glycolytic intermediates and cofactors in both time-

course and steady-state experiments, as well as the corresponding

glucose doses. The data set contains 17 metabolites, comprising 359

data points from steady-state experiments and 249 data points from

time-course studies. It includes both absolute and relative

measurements of metabolite changes, and an overview of the

available information for each metabolite and study is presented

in Figure 1.

This data set represents the first open and FAIR (findable,

accessible, interoperable, and reusable) large-scale collection of data

on changes in glycolysis and insulin secretion in the pancreatic b-
cell during GSIS. We used the absolute and relative measurements

of glycolysis metabolites and insulin secretion rates in this data set

for model calibration and evaluation. To the best of our knowledge,

this dataset is the first open-access resource on pancreatic b-cell
glycolysis that is easily accessible to the scientific community for

further use.

The data set is available under a CC-BY4.0 license from https://

github.com/matthiaskoenig/pancreas-model.
2.2 Reproducible modeling workflow

In this study, we describe a comprehensive modeling workflow

for building small kinetic pathway models (Figure 2) using SBML

(32, 33).

In our model-building workflow, we followed several steps to

construct a novel kinetic SBMLmodel of glycolysis in the pancreatic

b-cell. A) First, we built an SBML model based on the stoichiometry

of glycolytic reactions and intermediates from existing models and

pathway databases. B) We then annotated metabolites and reactions

with metadata information which was extended by querying VMH

and the BiGG database, resulting in mappings to additional

resources such as HMDB, BioCyc, MetaNetX, ChEBI, and SEED.

C) and D) We collected and retrieved kinetic parameters such as

KM, KI, KA, and Keq constants from databases and integrated them

with synonyms associated with each queried metabolite using
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resulting parameters and assigned median values to the model

parameters. F) Next, we curated data from studies reporting

metabolite concentrations and changes, and insulin secretion in

pancreatic, islet, and b-cell lines through a literature search. G) Unit

normalization was then performed to convert reported metabolite

concentrations and insulin secretion to mmol/l (mM) and nmol/

min/ml (b-cell volume), respectively. H) Data normalization was

performed to remove systematic differences between data reported

in different studies and experimental systems. I) Next, values for

kinetic parameters, initial concentrations, volumes, rate equations,

and annotations were integrated into the stoichiometric model. J)

We calibrated the model by parameter optimization using time-

course and steady-state data and K) generated the final SBML

kinetic model using all the information. L) Finally, we performed

model predictions of glycolytic intermediates and insulin response

as a function of varying glucose concentrations. Steps were

performed iteratively to fill gaps and extend the data set and model.
2.3 Computational model

Using the established data set, we utilized the aforementioned

workflow to develop a novel data-driven kinetic model of GSIS in the

pancreatic b-cell. The model is comprised of detailed glycolysis and

equations for insulin secretion which are coupled to the cellular

energy state (ATP/ADP ratio) and change in ATP (dATP/dt). The

metabolites and reactions incorporated into the kinetic model are

depicted in Figure 3, and their biochemical interactions are

represented through a system of ordinary differential equations.

The model consists of 21 enzyme-catalyzed reactions, 25

metabolites, and 91 parameters, and also includes an empirical

model that connects the energy state of the b-cell to insulin secretion.

When glucose levels are high, GLUT transporter allows glucose to

enter the cell, and glucokinase converts glucose to glucose-6-phosphate.

The upper glycolysis produces fructose-6-phosphate, fructose-

1,6-phosphate, and triose phosphates like dihydroxyacetone

phosphate and glyceraldehyde phosphate. Lower glycolysis then

leads to the creation of 3-phosphoglycerate, 2-phosphoglycerate,

phosphoenolpyruvate, and pyruvate. Pyruvate can be transformed

into lactate or transported to the mitochondria. For each glucose

molecule, two ATP molecules are produced. Changes in ATP/ADP

ratio and ATP trigger insulin secretion.

The SBML model is available under a CC-BY4.0 license from

https://github.com/matthiaskoenig/pancreas-model.
2.4 Normalization of data

The aim of this study was to investigate variations in glycolysis,

glycolytic intermediates, energy metabolites, and insulin secretion

during GSIS using the established model. In order to integrate

heterogeneous experimental data for each metabolite and insulin

secretion rate, we conducted a two-step normalization process to

standardize time course and dose-response measurements. The
frontiersin.org
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TABLE 1 Overview of studies reporting concentrations of metabolites used for model calibration.

Measurement Steady-
state

Time
course

DOI

Absolute ✓ link

Absolute ✓ link

Absolute ✓ ✓ link

Absolute ✓ ✓ link

Absolute ✓ link

Absolute ✓ link

Absolute ✓ link

Absolute ✓ link

Absolute ✓ link

Absolute ✓ ✓ link

Absolute ✓ link

Absolute ✓ ✓ link

Absolute ✓ ✓ link

Absolute ✓ link

Absolute ✓ link

Absolute ✓ ✓ link

Absolute ✓ link

Absolute ✓ link

Absolute ✓ link

Absolute ✓ link

Absolute ✓ ✓ link

Absolute ✓ ✓ link

Absolute ✓ link

Absolute ✓ link

Absolute ✓ link

Absolute ✓ link
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Study PMID Metabolites Species

Matschinsky, 1968 (34) 4870741 GLC, G6P, FBP, ATP Mice

Ashcroft, 1970 (35) 4919469 G6P Albino mice

Ashcroft, 1973a (36) 4148924 ATP, IRS White mice

Ashcroft, 1973b (37) 4199014 G6P Theillers original strain mice, Wistar rats

Matschinsky, 1976 (38) 136453 GLC, ATP Sprague-Dawley rats

Akhtar, 1977 (39) 19330 G6P Wistar rats

Sugden, 1977 (40) 332570 PEP Albino Wistar rats

Malaisse, 1978 (41) 27353 ATP, ADP, ATP+ADP, ATP/ADP, NAD, NADH, NADH+NAD,
NADH/NAD

Albino rats

Sener, 1978 (42) 29912 NAD, NADH, NADH+NAD Albino rats

Ammon, 1979 (43) 36318 NAD, NADH/NAD, NADH+NAD, NADH Wistar rats

Ashcroft, 1979 (44) 44196 PYR Wistar rats

Trus, 1979 (45) 220227 G6P, NADH, PHOS, IRS Rats

Trus, 1980 (46) 6991311 G6P, ATP, ADP, ATP+ADP, NADH, PHOS, IRS Holtzman rats

Ewart, 1983 (47) 6313455 PEP, IRS Sprague-Dawley rats

Giriox, 1984 (48) 6388570 PEP, IRS Albino rats

Sener, 1984 (49) 6383351 F26BP Albino rats

Meglasson, 1986 (50) 2943567 F26P Rats

Hedeskov, 1987 (51) 3551925 PYR, LAC, NADH/NAD, IRS, Theillers original strain mice

Malaisse, 1987 (41) 2434137 ATP, ADP, ATP+ADP, ATP/ADP Albino rats

Corkey, 1989 (52) 2689441 IRS HIT b-cell line

Brun et al., 1996 (53) 8549864 IRS HIT-T15 b-cell line

Detimary, 1996 (16) 8702800 ATP, ADP, ATP+ADP, ATP/ADP, IRS NMRI mice

Ammon, 1998 (54) 9582515 NAD, ATP/ADP, NADH, NADH+NAD, IRS, NADH/NAD Wistar rats

Detimary, 1998 (55) 9852040 ATP, ADP, ATP+ADP, ATP/ADP Wistar rats

Liu, 1998 (56) 9576750 G6P, IRS Sprague-Dawley rats

Miwa, 2000 (57) 10919261 G6P, F6P, FBP, GRAP, DHAP Wistar rats
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TABLE 1 Continued

Species Measurement Steady-
state

Time
course

DOI

TP Wistar rats Absolute ✓ ✓ link

Sprague-Dawley rats Absolute ✓ link

Human, Sprague-Dawley rats, C57BL6 mice, MIN6
b-cell line

Absolute ✓ link

Sprague-Dawley rats Absolute ✓ link

C57BL/6 mice, Sprague-Dawley rats, MIN-6 b-cell
line

Absolute ✓ link

INS 832/13 b-cell line Relative ✓ link

D, IRS INS 832/13 b-cell line Relative ✓ link

AC INS-1 832/13 b-cell line Relative ✓ link

INS-1 832/13 b-cell line Relative ✓ ✓ link

INS 832/13 b-cell line Absolute ✓ ✓ link

C, IRS INS-1 832/13 b-cell line Relative ✓ ✓ link

Human, C57BL6/J mice Absolute ✓ ✓ link

INS-1 b-cell line Relative ✓ link
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Taniguchi, 2000 (12) 10731696 G6P, F6P, FBP, GRAP, DHAP, A

Liu, 2004 (58) 14660628 G6P, PYR, IRS

Johnson, 2007 (59) 17360975 IRS

Xu, 2008a (60) 18769905 IRS

Xu, 2008b (61) 18802677 IRS

Lamontagne, 2009 (62) 19406947 APT, IRS

Guay, 2013 (9) 24130841 DHAP, ATP, PYR, LAC,NADH/NA

Malmgren, 2013 (63) 23476019 GLC, G6P, DHAP, PG3, PYR, L

Spegel, 2013 (13) 23282133 PG2, PG3, PEP, PYR, LAC

Huang, 2014 (18) 24564396 G6P, DHAP, PG3, PYR, LAC

Spegel, 2015 (14) 25774549 G6P, ATP, PG2, PG3, PEP, PYR, LA

Alcazar, 2019 (64) 31632354 IRS

Malinowski, 2020 (65) 32963286 PYR, LAC
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normalization process involved unit normalization (as discussed in Sec.

4.7) and data normalization (as discussed in Sec. 4.8) to normalize the

diverse data and eliminate systematic deviations for individual studies.

We present the case of glucose 6-phosphate as an example of the

normalization process (see Figure 4). The experimental curves were

converted to relative (fold) and unit-normalized absolute
Frontiers in Endocrinology 06
measurements (Figures 4A, B). To combine the fold data and

absolute data, we multiplied the fold values by the basal

concentration to obtain absolute values (Figure 4C). If the basal

metabolite concentration was not reported, we used the mean curve

of the absolute data at the pre-incubation glucose dose of the

experiment to determine the basal value. For metabolites consisting
FIGURE 1

Curated data for model development and evaluation. The data description is detailed from the periphery to the center of the Circos plot. 1. Model
elements: The outermost layer provides an overview of the metabolites included in the data set. GLC: glucose, G6P: glucose 6-phosphate, F6P:
fructose 6-phosphate, FBP: fructose 1,6-bisphosphate, F26BP: fructose 2,6-bisphosphate, DHAP: dihydroxyacetone phosphate, GRAP:
glyceraldehyde 3-phosphate, BPG: 1,3-biphosphoglycerate, 3PG: 3-phosphoglycerate, 2PG: 2-phosphoglycerate, PEP: phosphoenolpyruvate, PYR:
pyruvate, LAC: lactate, PHOS: phosphate, NAD: nicotinamide adenine dinucleotide, NADH: reduced nicotinamide adenine dinucleotide, NADH total:
NADH + NAD; NADH ratio: NADH/NAD; ATP: adenosine triphosphate, ADP: adenosine diphosphate, ATP total: ATP + ADP, ATP ratio: ATP/ADP, IRS:
insulin secretion rate. The metabolites were grouped in the following categories: Color code: • glycolytic intermediates, • cofactors, • cofactor ratio
or sum, • insulin secretion rate (IRS); 2. Studies: The second layer depicts the islet-cell specific metabolite profiling studies curated from the
literature; 3. Animal species: The third layer indicates the animal species or cell line from which the data was curated. Color code: • Rat, • Human, •
Mouse, and • Cell line data; 4. time course data: The fourth layer shows a bar graph illustrating the number of data points collected from studies
reporting time course data of metabolites. Color code: • relative (or fold), • concentration, • ratio, • rate measurements; 5. Steady-state data: The
fifth layer indicates the number of data points collected from studies reporting steady-state/dose-response data of metabolites. Color code: •
relative (or fold), • concentration, • ratio, • rate measurements; 6. Data used for parameter estimation: The innermost layer indicates the subset of
data used for parameter fitting.
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of only relative measurements, we used the half-saturation Km value of

the metabolite as an estimate for the basal concentration. Using this

strategy, we converted all fold-changes and time courses to absolute

data with standardized units, which was then combined with the

existing absolute data. However, the variability of the combined

measurements was high, and large systematic differences between
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studies could be observed. We determined scaling factors for every

study to minimize the difference between all studies based on least-

squares minimization (as discussed in Sec. 4.8.1). The resulting

normalized data (Figure 4D) was then used for model calibration.

We applied this procedure to all metabolites in the model as well as the

insulin secretion rate, reducing the variability in the data substantially.
B C

D E

F G

H

I J K L

A

FIGURE 2

Kinetic model development workflow. (A) Initial stoichiometric model in SBML. Glycolytic reactions were collected from VMH database and existing
models of glycolysis. (B) Metadata integration. VMH and BiGG database field identifiers were used to retrieve additional metadata such as HMDB,
BioCyc, MetaNetX, ChEBI, and SEED database field identifiers. (C) Synonym mapping. The synonyms associated with each metabolite were queried
using compound identifier mapping services. (D) Kinetic parameters. EC number and KEGG reaction identifiers were used to query half-saturation/
Michaelis-Menten KM, inhibition KI, activation KA, and equilibrium Keq constants (synonym mapping was applied for all compounds). (E) Model
parameters. The parameter values retrieved from different databases were merged and median values were assigned to the model parameters. (F)
Data curation. A systematic literature search was performed and metabolite concentrations from islet cell studies were curated. (G) Unit
normalization. Absolute and relative quantification of metabolite concentrations reported in heterogeneous units were converted to mM. (H) Data
normalization. Systematic bias observed in the unit-normalized data was removed by performing least-squares minimization to minimize the
distance between the mean curve of the unit-normalized data curves and the experimental curves of the unit-normalized data. (I) Model inputs.
Values of kinetic parameters, initial concentrations, volumes, equations, and annotations have been assigned to the model entities. (J) Model
calibration. Time course and steady-state data were used for parameter estimation. (K) Kinetic SBML model. The final kinetic SBML model was
generated. (L) Model prediction. Glycolytic intermediates and insulin response were predicted as a function of varying glucose concentrations.
Created with BioRender.com.
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2.5 Changes in glycolytic metabolites and
insulin secretion in GSIS

Our work has uncovered several key findings related to GSIS. First,

we found that almost all glycolytic intermediates increase in a glucose-

dependent manner across a wide range of glucose concentrations, as

illustrated in Figures 5A–C. This increase in glycolytic intermediates is

accompanied by a corresponding increase in energy metabolites,

especially ATP and NADH. However, one notable exception is ADP,

which decreases with increasing glucose levels. As a result, there is a

significant increase in ATP/ADP ratios in b-cells with increasing

glucose, a key factor in insulin secretion. This phenomenon is robust

across different data sets, experimental systems, and species. An

important observation is that not only ATP and NADH increase

with increasing glucose, but also the total ATP (ATP + ADP) and total

NADH (NAD + NADH).

Our model was able to predict the glucose-dependent response

of glycolytic intermediates and insulin secretion with good

agreement to most experimental measurements, as summarized in

Table 1. We observed a dose-dependent increase in glycolytic

intermediates when glucose concentrations were increased from 1

mM to 35 mM. The model predicts that steady states of glycolytic

metabolites under constant glucose are reached after approximately

20 minutes, which is in good agreement with the data.
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Figure 6A illustrates the relationship between glucose dose and

insulin release, and the time course profiles describe the dynamic

first phase and the sustained steady-state release of biphasic insulin

secretion. The ATP and ADP concentrations of the b-cell increase
and decrease, respectively, with the external glucose dose, resulting

in an increased ATP/ADP ratio that triggers insulin release. The

model is able to reproduce the fast initial insulin release in the first

phase and the steady-state insulin secretion in the second phase

depending on glucose concentration. For the second phase, the

constants of the Hill function were parameterized to fit the

normalized data of adenine nucleotide ratio and steady-state

insulin release rates. Experimental observations suggest that the

parameters of the response function, such as the slope of the

response function and the half-maximal response, can vary

between animal species due to differences in the expression levels

of glucose transporter (64). In this study, the data corresponds to

both human and murine islets.
2.6 Sensitivity analysis of parameters
affecting GSIS

To determine how the model parameters affect the rate of

insulin release, we performed a local sensitivity analysis (67).
FIGURE 3

Computational model of glucose-stimulated insulin secretion (GSIS) in the pancreatic b-cell. The model consists of glycolysis and insulin secretion coupled
to the energy state (ATP/ADP ratio). The GLUT transporter facilitates the uptake of glucose from the plasma into the cell. Glucose undergoes
phosphorylation and the subsequent reactions lead to the production of pyruvate. Pyruvate can either be converted to lactate and exported into blood or
transported to the mitochondria where it serves as a fuel source for the production of tricarboxylic acid cycle (TCA) intermediates (the TCA cycle has not
been modeled). Depending on the external glucose concentrations, glycolysis intermediates and energy metabolites such as ATP, ADP, NAD, and NADH
change. An increase in the ATP/ADP ratio as a result of changes in glucose triggers the cascade of signaling mechanisms that promote insulin secretion by
the pancreatic b-cell. Phosphate, water, and hydrogen ions have been omitted from the diagram for clarity (but are included in the model for mass and
charge balance). The network diagram was created using CySBML (66). Created with BioRender.com
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Figure 6B shows the sensitivity of insulin flux to a 10% change in

model parameter values at different glucose concentrations. The

rate of insulin secretion depends on the ATP/ADP ratio, so

perturbing parameters that affect ATP formation and

consumption has strong effects. Figure 6C shows the highly

sensitive parameters that have positive and negative effects on

insulin secretion, including factors affecting ATP consumption,

ATP formation, hexokinase, phosphofructokinase, and ATP/

ADP-dependent insulin secretion.

In conclusion, our systematic pathway modeling workflow

provides insights into the key mechanisms of GSIS in the

pancreatic b-cell.
3 Discussion

We have developed a comprehensive kinetic model of GSIS in

the pancreatic b-cell that can simulate glucose-dependent changes

in glycolytic intermediates, ATP/ADP ratio, and their effect on

insulin secretion. The main objective of this study was to establish a
Frontiers in Endocrinology 09
standardized workflow for data integration and normalization to

construct a tissue-specific model of glycolysis and GSIS in the b-cell.
Although we did not model other important pathways related to

ATP homeostasis, such as the citric acid cycle, the pentose

phosphate pathway, and the respiratory chain, our workflow can

be easily extended to include them. Incorporating these pathways

into our model will enable us to explicitly model the regulatory

effect of downstreammetabolites on the ATP/ADP ratio and insulin

secretion. Previous studies have shown that fatty acids and amino

acids can also induce insulin secretion in addition to glucose (4, 17,

68–71). Therefore, linking glucose metabolism with fatty acid and

amino acid metabolism could help in understanding the

insulinotropic effects of other fuel sources.

The increase in ATP levels triggers a cascade of events that

culminate in the release of insulin from b- cells. Precisely, high ATP

levels prompt the closure of ATP-sensitive potassium channels (6).

Consequently, the cell membrane depolarizes, opening voltage-

gated calcium channels, which allows calcium influx. The influx

of calcium triggers exocytosis of insulin-containing vesicles, leading

to the release of insulin into the bloodstream (7, 8). A biphasic time
B C DA

FIGURE 4

Normalization of steady-state and time course data for glucose 6-phosphate (G6P). (A) Relative data. Experimental curves from b-cell studies
reporting relative levels of G6P, expressed as fold to baseline value; (B) Absolute data. Experimental curves from b-cell studies reporting absolute
concentrations of G6P, the plot displays the unit-normalized absolute data. (C) Combined data. The relative (fold) measurements were converted to
absolute units and combined with the unit-normalized absolute data. (D) Normalized data. Systematic biases between different studies of the
combined data were removed by data normalization. Data normalization was performed by minimizing the offset (sum of squared residuals)
between the mean curve and the experimental curves. The mean curve was computed as the weighted average of the experimental curves and
spline curve is the piecewise-polynomial interpolation of the data points in the mean curve. For steady-state data, the legend indicates studies
associated with the experimental curves. For time course data, the legend indicates the pre-incubation glucose dose (☆), incubation glucose dose
(□), experimental study, and the value of scale transformation parameter fa (▭) of experiment a. (top panel) and (bottom panel) show the data of
dose-response and time course experiments, respectively. Data from (12, 14, 18, 34, 35, 37, 39, 45, 46, 48, 56–58, 63). For more details, please refer
to Sec. 2.1.
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course of insulin secretion is observed in vitro and in vivo studies,

with a rapid initial phase followed by a sustained steady-state

release. The biphasic release is attributed to the time-dependent

formation, translocation, exocytosis of insulin granules, and decline

in the amplitude of action potential contributing to the termination

of first-phase insulin secretion (7, 72). These electrophysiological

changes resulting in insulin secretion were not modeled explicitly,

but a minimal model was used to capture first-phase insulin
Frontiers in Endocrinology 10
secretion and the effect of the ATP/ADP ratio on insulin

secretion. The model’s predictive capacity is limited to the

biphasic glucose-insulin secretion dynamics. Expanding the

model to explicitly describe the b-cell electrophysiology would

allow us to study experimentally observed patterns such as

pulsatile insulin secretion (23).

To summarize, the advancements presented in our work were

employed to study GSIS in the pancreatic b-cell. While the existing
A

FIGURE 5 (Continued)
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FIGURE 5 (Continued)

(A) Effect of variations in blood glucose on glycolytic intermediates. (left column) Time course scan. The effect of variation in blood glucose dose on the
transient concentration of metabolites; ▪ indicates the mean value of experimental steadystate measurements. (middle column) Dose-response scan.
Glucose scan was performed for the calculation of steady-state concentration of metabolites in the model. The steady-state concentrations predicted by
the model at various glucose doses were compared with the normalized values of experimental measurements; (right column) Time course. Time course
values of glycolytic intermediates and cofactors from multiple experimental studies and the model simulations carried out at the corresponding pre-
incubation and incubation doses of glucose. (⭐) in the legend indicates the pre-incubation glucose dose. GLC, glucose; G6P, glucose 6-phosphate; F6P,
fructose 6-phosphate; FBP, fructose 1,6-bisphosphate; F26BP, fructose 2,6-bisphosphate; DHAP, dihydroxyacetone phosphate; GRAP, glyceraldehyde 3-
phosphate. Data from (12, 14, 18, 34, 35, 37, 39, 45, 46, 48, 49, 56–58, 63). (B) Effect of variations in blood glucose on glycolytic intermediates. The plot is
analogous to (A). BPG, 1,3-biphosphoglycerate; 2PG, 2-phosphoglycerate; 3PG, 3-phosphoglycerate; PEP, phosphoenolpyruvate; PYR, pyruvate; LAC,
lactate; PHOS, phosphate. Data from (9, 13, 14, 18, 44, 47, 51, 63, 65; 40, 45, 46). (C) Effect of variations in blood glucose on glycolytic cofactors. The plot is
analogous to (A). NAD, nicotinamide adenine dinucleotide; NADH, nicotinamide adenine dinucleotide reduced. ATP, adenosine triphosphate; ADP,
adenosine diphosphate Data from 9, 12, 14–16, 34, 35, 38, 41–43, 45, 46, 51, 54, 55, 62).
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models have certain limitations, they also have strengths and

features that our model does not include, such as the

electrophysiology of calcium handling and insulin granule

dynamics (28, 73), the pulsatile insulin response to glucose (23,

74), and the potentiating effects of other fuel sources on insulin

secretion (4, 17). Although our model has limitations, it represents

the first data-driven approach to integrate information from diverse

sources and experimental setups. Moreover, it provides the first

systematic analysis of the glycolytic changes that occur during

insulin secretion in response to different glucose levels. Our study

reveals that in GSIS, almost all glycolytic intermediates increase in a

glucose-dependent manner as do total ATP and NADH, which is a

significant finding.

Model predictions deviate from the dataset for some glycolytic

intermediates, despite incorporating condition-specific experiments

with pre-incubation and incubation glucose doses in the model
Frontiers in Endocrinology 13
parameterization. Possible reasons for the deviations in the time

course and steady-state model predictions of fructose 6-phosphate

(F6P), fructose 2,6-bisphosphate (F26BP), glyceraldehyde-3-

phosphate (GRAP), and dihydroxyacetone phosphate (DHAP)

from the experimental data include the following. For species such

as F26BP, the time course data was obtained from a single study at a

specific incubation glucose dose. We observed that for the initial

concentration specified in the model, the concentration of F26BP and

F6P saturates to a value higher than that observed in the normalized

dataset of time-course experiments. Since F6P and F26BP are

involved in the same reaction, an offset in one metabolite has an

effect on the other. Therefore, better initial concentrations can only be

defined if additional data are available at different combinations of

glucose pre-incubation and incubation doses. In addition, the fit can

be improved by improving the kinetics associated with the conversion

of F6P to F26BP. The dynamics of these upper glycolytic
A

B C

FIGURE 6

(A) Effect of variations in blood glucose on insulin secretion. The plot is analogous to Figure 5C. Data from 9, 13, 14, 16, 18, 36, 42, 45–47, 50–56,
58–62, 64). (B) Sensitivity analysis indicating the effect of perturbation in model parameters on insulin secretion. Heatmap illustrating the values of
scaled local sensitivities illustrating the effect of parameter perturbations on the amount of insulin secretion at varying glucose doses. Highly
sensitive values are colored in red and blue. The parameters which cause less than 1% change in insulin response for 10% perturbation were not
displayed for clarity. For more details, please refer to Sec. 2.6. (C) Effect of change in model parameters on insulin secretion as a function of glucose
dose. The rate of insulin secretion in response to perturbation in the values of ATPconsumption_Vm, HEX1_Vm, IRS_Katp_ratio, IRS_hillKatp_ratio.
The vertical line indicates the model value.
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intermediates may also be influenced by other pathways not modeled

in the current study. Lower glycolysis reactions are sequential, and

missing data for an intermediate species may affect the fluxes

involved in the reaction chain that forms or consumes the

intermediate (i.e., a fast first step and a slow second step and vice

versa are the same). The fluxes of reactions such as glyceraldehyde-3-

phosphate dehydrogenase and phosphoglycerate kinase could

potentially be affected due to the lack of steady-state and time-

course data for 1,3-biphosphoglycerate (BPG), and the estimates of

the associated parameters may not be optimal. Therefore, the

uncertainty in the prediction of BPG can lead to a deviation in the

prediction of the concentrations of GRAP and DHAP, which are

in equilibrium.

The comparative analysis, which shows the dynamics of the

model output and the experimental data (Figures 5A–C, right

panel), was performed for combinations of the experimental pre-

incubation and incubation glucose doses. When the pre-incubation

and incubation glucose doses are the same (e.g., in the study by

Taniguchi et al. (12), islets were pre-incubated in glucose at 2.8 mM

followed by incubation at 2.8 mM, low glucose dose), the system

evolves and saturates in the pre-incubation phase. Consequently,

steady-state behavior is observed in time-course profiles plotted at

incubation conditions. Results are presented for incubation because

data points curated from experimental studies correspond to

incubation conditions.

The initial concentrations observed in the experimental dataset

differ between experiments due to complex experimental designs,

such as the islet cells subjected to different pre-incubation and

incubation conditions. Moreover, the experimental time course

profiles of most of the metabolic intermediates are only available

at two incubation conditions, low and high glucose doses (12–14,

18). Therefore, only when experimental time course data at

intermediate glucose doses are available, better initial states can

be defined to predict the steady-state response of the system

accurately. Therefore, in specific experimental cases, appropriate

model extensions, improved kinetics, and data integration into our

standardized workflows may be needed to refine the model and deal

with experimental uncertainties. Otherwise, the simulation explains

well the predictions of other metabolic intermediates, thus

demonstrating the correctness of our methodology.

Existing models (17, 27, 30, 75) often suffer from several

drawbacks such as limited evaluation to a single data set, non-

standardized formats of experimental data and kinetic parameters,

and non-reproducible formats. To overcome these limitations, we

have created open, free, and FAIR assets that can be used for the

study of pancreatic physiology and GSIS. These assets include a

fully reproducible SBML model of pancreatic b-cell glycolysis, a
data curation workflow, strategies for unit and data normalization,

and a large database of metabolic data of the pancreatic b-cell. Our
model can be extended further to study glucose-insulin regulatory

mechanisms by for example integrating calcium handling in b-cell
(28, 29, 76) or paracrine regulation of the release of counter-

regulatory hormones such as glucagon by gap-junctional coupling

of a-, b-, and d-cells present in the islets (77, 78). Overall, our

systematic model-building workflow can be used as a blueprint to

construct reproducible kinetic models of cell metabolism.
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Computational modeling faces a significant challenge due to the

substantial variation in data across different experimental systems,

species, and cell lines. Often, relative data instead of absolute data is

reported, further complicating the task of data integration. In this

study, we developed a reliable data normalization workflow that was

applied to experimental and clinical data from 39 studies conducted

over the past 50 years on pancreatic, islet, and b-cell function in

various species and cell lines. Our approach substantially reduced

data heterogeneity and revealed a highly consistent response in

glycolytic metabolites and insulin secretion. The high degree of

conservation in the system of GSIS may have contributed to the

effectiveness of the normalization workflow, as similar mechanisms

are at play in different species, and the general changes can be

observed across various experimental systems.

The study has laid a strong groundwork for enhancing

our comprehension of the underlying reasons behind impaired

insulin secretion. By mapping proteomics or transcriptomics data

onto specific pathways, the developed model could be utilized

to gain further insight into changes in GSIS, for instance in

diabetic patients.

Furthermore, this model can serve as a crucial component for

physiological whole-body models of glucose homeostasis, allowing

researchers to investigate the relationship between the potentiation

of insulin release and glucose uptake by insulin-responsive tissues.

Evidence suggests that, in addition to nutrient-secretagogues,

hormone potentiators such as incretins contribute to 74% (79, 80)

of postprandial insulin secretion. The role of gut hormones such as

incretins on insulin biosynthesis, insulin secretion and their effect

on b-cell mass can be studied by integrating the subcellular model

developed in our study with whole-body models (81, 82). Incretins

bind to the receptors on b-cells and regulate the ion channels

through signaling mechanisms that augment glucose-stimulated

insulin secretion (83, 84). For example, the insulinotropic effect of

endogenously secreted incretin hormones such as glucose-

dependent insulinotropic polypeptide (GIP) and glucagon-like

peptide-1 (GLP-1) (83), exogenously administered incretin

mimetics such as exenatide and liraglutide on postprandial

insulin secretion and renal elimination rates of these antidiabetic

drugs can be examined (85–89).

The data presented in this study was obtained from experiments

where the incretin effect did not play any role. Specifically, the

experiments involved islet or cell studies where glucose was

systematically varied and controlled. However, if the model is to

be applied in a more physiological context, such as in a

physiological-based pharmacokinetics model of glucose

regulation, it is essential to extend the model to include the

incretins. This is particularly important if the focus of the model

is to describe glucose-stimulated insulin secretion (GSIS) in the

context of oral glucose tolerance tests or meal challenges.

In conclusion, this study utilized a systematic modeling

workflow to gain insight into the key mechanisms involved in

glucose-stimulated insulin secretion (GSIS) in pancreatic b-cells.
Crucially, by establishing a standardized workflow for data

integration, normalization, and data fitting, our approach allows

for easy incorporation of additional data sets and re-fitting of the

model to extend the scope of the model. When extended for
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translational purposes in clinical settings, it can serve to create

reference models to identify variations in subjects which can lead to

useful inferences regarding underlying metabolic conditions with

therapeutic relevance.
4 Methodology

The workflow for building the kinetic model is illustrated in

Figure 2, with the following sections providing information on the

individual steps.
4.1 Stoichiometric model

Chemical formulas and charges were assigned to all metabolites,

and reactions were examined to ensure that they maintained mass

and charge balance. The kinetic model encompasses glycolytic

reactions and correlates the energy status of the b-cell with

insulin secretion. sbmlutils (90) was used to create and validate

the model, while cy3sbml (66) was used to confirm its coherence.

sbmlutils is a collection of python utilities for working with SBML

models and cy3sbml is a java-based SBML plugin for Cytoscape (91)

used for visualization of SBML models. The mass and charge

balance of the system was verified using cobrapy (92).
4.2 Metadata integration

Adding semantic annotations to models is an essential aspect of

improving their interoperability and reusability, as well as facilitating

data integration for model validation and parameterization (93, 94).

To describe the biological and computational significance of models

and data in a machine-readable format, semantic annotations are

encoded as links to knowledge resource terms. Open modeling and

exchange (OMEX) metadata specifications were employed to annotate

model compartments, species, and reactions with metadata

information (Figure 2B).

4.2.1 Case study: phosphoglycerate kinase
The enzyme phosphoglycerate kinase (PGK) catalyses the

conversion of 1,3-biphosphoglycerate (bpg13) and ADP to form

3-phosphoglycerate (pg3) and ATP.

adp + bpg13⇌ atp + pg3

In our model, PGK is described by the following annotations:

SBO:0000176, vmhreaction/PGK, bigg.reaction/PGK, kegg.reaction/

R01512, ec-code/2.7.2.3, biocyc/META : PHOSGLYPHOS-RXN,

uniprot:P00558, uniprot:P07205.

The model components, including physical volumes, reactions,

metabolites, and kinetic-rate laws, were annotated using Systems

Biology Ontology (SBO) terms, which describe the computational

or biological meaning of the model and data (95). Biomedical

ontology services such as Ontology Lookup Service (OLS) (96),
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VMH (97), and BiGG (98) were used to collect these terms.

Additional information for species and reactions were gathered

from various databases such as HMDB, BioCyc, MetaNetX, ChEBI,

and SEED. For instance, the model’s metabolites were annotated

with identifiers from VMH, BiGG, KEGG, HMDB, BioCyc, ChEBI,

MetaNetX, and SEED, while reactions were annotated with VMH,

Rhea, MetaNetX, SEED, BiGG, BioCyc, and KEGG identifiers (99).

Enzymes catalyzing reactions were annotated with identifiers from

enzyme commission (EC) numbers, UniProt (100), and KEGG.

Finally, the annotations were incorporated into the SBML file using

707 sbmlutils (90) and pymetadata (101).

4.2.2 Case study: 1,3-biphosphoglycerate
There is currently a bottleneck in data integration due to the use of

multiple synonyms to refer to a single compound in data repositories.

For instance, bpg13 is identified by different names in SABIO-RK

(Glycerate 1,3-bisphosphate, 3-phospho-D-glyceroyl phosphate) and

BRENDA (3-phospho-D-glyceroyl phosphate). Additionally, the

labeling of 1,3-biphosphoglycerate, abbreviated as DPG, varies across

existing b-cell models (e.g., 1,3-bisphospho-D-glycerate in (75) and 1,3-

biphosphoglycerate in (17). Overall, bpg13 is associated with seven

synonyms: 1,3-Bisphospho-D-glycerate, 13dpg, 3-Phospho-D-

glyceroylphosphate, Glycerate 1,3-bisphosphate, 3-phospho-d-glyceroyl-

phosphate, 1,3-diphosphoglyceric acid, 3-Phospho-D-glyceroyl

phosphate. This issue makes it difficult to integrate data and

information from different resources, highlighting the need to link

chemical entities in the model to knowledge resource terms.

In our model, bpg13 is clearly described by the following

metadata annotations: SBO:0000247, vmhmetabolite/13dpg, bigg.

metabolite/13dpg, biocyc/METADPG, kegg.compound/C00236,

CHEBI:16001, inchikey:LJQLQCAXBUHEAZ-UWTATZPHSA-N.

The formula and charge of bpg13 are C3H4O10P2 and

-4, respectively.
4.3 Kinetic parameters

Kinetic parameters, such as half-saturation constants (KM),

inhibition constants (KI), activation constants (KA), and

equilibrium constants (Keq), were gathered from literature and a

variety of databases (see Figure 2C). Values were programmatically

accessed from UniProt (100), BRENDA (102) using brendapy

(103), and SABIO-RK (104). These databases were searched using

an organism’s NCBI taxonomy identifier and reaction EC number

as input search terms. Various parameters, including measurement

type (Km, Ki, and Ka), experimental conditions (pH, temperature),

KEGG reaction identifiers, enzyme type (wildtype or mutant),

associated metabolite identifiers (SABIO compound name or

BRENDA ligand id), UNIPROT identifiers associated with the

isoforms of an enzyme, source tissue, and details of data source

(PubMed identifier) were obtained. Since there is limited availability

of kinetic data for Homo sapiens, we also searched for parameter

values reported in studies of animal species that are closely related

to humans and utilized them if no data were available for humans.
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4.4 Synonym mapping

To map compound synonyms associated with each queried

metabolite, we utilized compound identifier mapping services and

available metadata annotations. First, we associated the name of each

compound with internal database identifiers, such as the internal

identifier of Glycerone-phosphate in SABIO, which is 28. Then, we

linked the internal identifiers to external identifiers, such as those from

ChEBI and KEGG. The external identifiers associated with the SABIO

ligand identifier were obtained from cross-ontology mappings available

in SABIO-RK. Similarly, we queried the REST API of UniChem to

obtain the external identifiers associated with the BRENDA ligand

identifier. By doing so, we were able to map most of the kinetic

parameters to their respective compounds (Figure 2D).
4.5 Model parameters

For each parameter in the model, the median value was

calculated after synonym mapping and the values were assigned

to the model parameters, see Figure 2E. This was performed for

initial concentrations, equilibrium Keq constants, half-saturation

constants Km, inhibition Ki, and activation Ka constants.
4.6 Data curation

The next step involved curating data from studies that reported

metabolite values, insulin secretion, or maximal velocities of

glycolytic reactions Vmax in pancreatic, islet, and b-cell lines

(Figure 2F). Our search for the studies used in model

development was performed by using any combination of the

following words: “glycolytic intermediates”, “metabolite profiling”,

“concentration measurements”, “time course”, “glucose-

dependence”, “pancreatic b-cell”, “pancreatic islets”, “endocrine

pancreas”, “glucose-stimulated insulin secretion”, “fuel-stimulated

insulin secretion”, “insulin response” and the name of the

metabolite or the name of adenine and pyridine nucleotides in

the search string. Relevant studies were identified through a

literature search in PubMed, with a focus on time course and

dose-response profiles of metabolite concentrations for metabolites

and insulin secretion. Tissue homogenates were prepared by

isolating islets from rodents, humans, or insulin-secreting cell

lines (see Table 1). Assays were performed by stimulating the

medium with various pre-incubation and incubation

concentrations of glucose. To curate the data, established curation

workflows from PK-DB (105), which were applied in a recent meta-

analysis (106), were used. The numerical data was digitized by

extracting the data points from the figures and tables using

WebPlotDigitizer (107). The incubation time and glucose

concentration of the stimulation medium were recorded for all

measurements, and meta-information such as organism and tissue

type were documented.
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The data is available under a CC-BY 4.0 license from https://

github.com/matthiaskoenig/pancreas-model. In this study, version

0.9.6 of the data set is used (108, 109).
4.7 Unit normalization

The data measured in different studies is often reported in

different units. Therefore, unit normalization was performed to

integrate the data and convert metabolite concentrations and

insulin secretion to standardized units of mmole/l (mM) and

nmole/min/ml (b-cell volume), respectively (Figure 2G).

Absolute measurements reported in metabolic profiling studies

were found in various units such as per gram DNA, per gram wet

weight or dry weight of the islet tissue, per cell, per islet, etc. To use

these values for model calibration, both the absolute and relative

measurements were first converted to concentration units in mM.

The absolute values were converted to model units by multiplying

the raw values with appropriate unit conversion factors. For

instance, the islet content of glucose 6-phosphate, G6P, (pmol/

islet) was converted to concentration units (mM) using the

distribution volume of water in the islet (2nl/islet) (35) as the

conversion factor. Relative measurements were mainly reported

with reference to a basal concentration. These relative

measurements were converted to absolute quantity by multiplying

the fold values with the respective metabolite concentration at the

basal or pre-incubation concentration of glucose.
4.8 Data normalization and integration

Data collected from experiments performed in different

laboratories, under different experimental conditions, and with

different animal species showed significant variability after unit

normalization. Therefore, data normalization was performed to

eliminate systematic discrepancies between data reported in different

studies (as shown in Figure 2H). To achieve this, least squares approach

was used to minimize the distance between individual experimental

curves and the mean curve, which is the weighted average of all curves

for a given metabolite. The data normalization process involved a two-

step procedure in which the steady-state data were first normalized for

each metabolite. The resulting steady-state normalization was then

used to normalize the time course data for that metabolite (see Figure 4

for the example of glucose-6 phosphate).

4.8.1 Steady-state data normalization
Steady-state (ss) experiments consisted of pre-incubation with

one glucose dose followed by incubation with another glucose dose.

The steady state data of the experiment a, (ca0 , ca1 ,…, can ) observed

at n incubation glucose doses (da0 , d
a
1 ,…, dan ) is expressed by the

piecewise linear-interpolation function Css. Here, a belongs to

the set of steady-state experiments 1 ≤ a ≤ Nass with Nass being

the number of steady-state experimental curves of the metabolite s.
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Mean curve. The mean steady-state curve Css of each metabolite

s is calculated as the weighted average of all experimental curves.

The data points of the mean curve were interpolated using a

piecewise smooth spline function. For data sets consisting of 2

data points, a linear interpolation was used.

We formulate a least-squares problem to minimize the distance

between the individual experimental curves and the mean curve Css.
The cost function F of the minimization problem is given by,

F(f a ) =o
n

i=1
(f a · Css(dai ) − Css(dai ))2 (1)

In Eq. 1, Css(dai )and Css(dai ) are the function values of the

individual and mean interpolation function at the ith value of the

glucose dose. N is the number of glucose values in the dose-response

curve of the experiment a.
For each experimental curve, the factor f a was determined so that

the residual error in Eq. 1 is minimized. The residual error is minimum

at the point where the derivative of the cost function F is zero. Taking

the partial derivative of Eq. 1 with respect to the scale transformation

parameter gives factor fa of the experimental curve a (Eq. 2).

f a = o
 Css(dai )Css(dai )
o (Css(dai ))2

(2)

The scale factors of all steady state curves (f 1,…f N
ass
) were

determined by minimizing the respective cost functions (F(f 1),…

F(f N
ass
). Multiplying the experimental curve Ca by the scaling factor

f a shifts the experimental curve towards the mean curve. A new

mean curve can be calculated with the scaled data. The curves were

scaled iteratively until all f a converged.

The scale transformation factors are chosen by minimizing the

variance with respect to the mean of observations (Eq. 1), which is

the conditional expectation given a set of observations (110). The

minimal variance estimate is the optimal estimate given a set of

observations and this results in smoothing the noise in the data.

4.8.2 Time course data normalization
Time course (tc) experiments consisted of pre-incubation with

one glucose dose followed by incubation with another glucose dose.

The time-dependent data of the time course experiment b  (cb0 , c
b
1 ,

…, cbm) observed at m time points (tb0 , t
b
1 ,…, tbm) is expressed by the

piecewise linear-interpolation function Cb. Here, b belongs to the

set of time course experiments 1 ≤ b ≤ Nbtc with Nbtc being the

number of time course experimental curves of the metabolite s. For

normalization, each time course was scaled by a factor fb.

For a given incubation glucose dose db, the metabolite

concentration at the last time point Ctc(tm) corresponds to the

steady state value reached for the given db:

f b · Ctc(tm) − Css(db ) = 0 (3)

The scaling factor for the time course experiment follows as:

f b =
Css(db )
Ctc(tm)

(4)
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4.9 Model inputs

The SBMLmodel was generated by specifying initial concentrations,

rate expressions, parameter values, and compartmental volumes as the

model inputs, see Figure 2I.

Volume. The physical volume of the cytoplasmic compartment

and the b-cell volume were obtained from the values reported in a

morphometric study of b-cells (111).
Initial concentrations. The initial concentrations of glycolytic

intermediates and adenine nucleotides were obtained from the

mean curve Css (Sec. 2.1) at a basal glucose concentration of 3

mM. The initial value of glucose in the external/blood compartment

is 3 mM.

The initial concentrations of cofactors, phosphate and pyridine

nucleotides, were expressed as polynomial functions passing

through the data points of the mean curve, which is computed as

the weighted average of data normalized experimental curves (Sec.

2.1). In the SBML model, the polynomial expressions were defined

using assignment rules.

Kinetic constants. The median values of the half-saturation or

Michaelis-Menten constants Km (Sec. 4.5), were assigned to the

model parameters.

Equilibrium constants. The values of the equilibrium constants

Keq were collected from NIST (112) and EQUILIBRATOR (113).

Model equations. For all the glycolytic reactions, the

biochemical interactions were expressed using modular rate laws

(114) of the form Eq. 5.

n =

Vmax

Y
i

ai(1 −
G
Keq

)

Y
i

(1 + ai) +
Y
j

(1 + bj) − 1
(5)

Here, ai is Si=Kms, bi is Pi=Kmp, S refers to the substrate and P

refers to the product. Keq is the equilibrium constant and G is the

mass-action ratio (114). The use of detailed mechanistic rate laws

was avoided due to the challenges associated with finding a large

number of parameter values.

Biphasic insulin secretion in response to elevated glucose levels

and change in the energy state of the b-cell was modeled as the sum

of two components, a dynamic first phase and a static second-phase

insulin profile (21, 23, 115). In Eq. 6, the first phase IRSfp accounts

for the rapid rise in insulin. We model this using a function

proportional to the rate of change in ATP. The second phase

IRSsp, which captures the sustained steady-state release, was

modeled via a phenomenological equation depending on ATP/

ADP ratio. The insulin release flux given by Eq. 6, is characterized

by five parameters, the proportionality constant kdfp of the first

phase insulin release, the maximal rate of the second phase V
IRSsp
max

insulin release, Kmfp
half-maximal constant of the first phase and

Kmsp
the ratio of ATP/ADP that results in half-maximal insulin

release of the second phase, and the Hill coefficient nsp of second

phase insulin release.
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nIRS = kdfp
max   ( dATPdt , 0)

max   ( dATPdt , 0) + Kmfp|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
IRSfp(t)

+ V
IRSsp
max

( ATP
ADP )

nsp

( ATP
ADP )

nsp + K
nsp
msp|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

IRSsp(t)

(6)

Boundary metabolites and reactions. Species in the external and

mitochondrial compartments were assumed to be boundary species

with constant concentrations, i.e. glucose and lactate in the external

compartment and pyruvate in the mitochondrial compartment

were held constant. Some boundary reactions were modeled as

irreversible reactions, i.e. the export of lactate and the transport of

pyruvate in the mitochondrion.

Metabolites determined by rate rules. To account for glucose-

dependent changes in the concentrations of phosphate, NAD, and

NADH, polynomial functions were used to express the

concentrations as rate rules. This approach ensured that the

concentration of fixed metabolites in the system increased as a

function of glucose dose.

Changes in total adenine nucleotides. The sum of adenine

nucleotides (ATP + ADP = ATPtot) changes with glucose. To

account for these changes, a reaction DATP was added that

changes the total ATP according to the observed steady-state data

for a given glucose value (Eq. 7).

DATP = f (ATPtot(glc) − (ATP + ADP)) (7)

The ATPtot(glc) values are determined by the interpolating

polynomial of the mean steady-state glucose dose response of the

ATP+ADP data.
4.10 Model calibration

The normalized time-course data was used for model

calibration and parameter estimation (Figure 2J). An overview of

the subset of data used for model calibration is shown in Figure 1.

The following data were not used: NADH and NAD were fixed

metabolites in the model, with NAD/NADH and NADH+NAD

calculated from the metabolites. Total ATP was calculated by

summing ATP and ADP, and ATP ratio was calculated by

finding the ratio. The insulin secretion rate (IRS) was used to

derive the parameters of the IRS function.

A subset of the Vmax parameters was optimized to minimize the

error between model predictions and experimental observations.

The cost function is given by the sum of squares of residuals

F(P) = o
a ,s
(cas − cMs (P))2 (8)

In Eq. 8, cas is the concentration of the metabolite s in the

experiment a and cMs is the concentration of the metabolite s

predicted by the model M. P is the set of 16 parameters of

maximum reaction rates Vmax . The experimental data of all

transient metabolites in the model were stored in spreadsheets.

The parameter estimation simulation experiments were set up using

basiCO (116), the Python interface of COPASI (117).

To enable the simulation of experimental setups such as pre-

incubation and incubation conditions, the corresponding glucose

doses were curated from experimental studies. We perform
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condition-specific model simulations by running pre-simulations

using the pre-incubation glucose dose for 60 minutes. Pre-

simulation or pre-equilibration at given conditions is a task often

performed during model simulation or parameter optimization (118,

119). Following pre-simulation, the system was subjected to the

simulation phase at the incubation glucose dose for the duration

indicated in the experimental studies. We set up the pre-simulation

and simulation phases for the parameter estimation task using

Events . The pre-incubation and incubation glucose

concentrations were mapped to the independent variable (glcext ,

glucose in the external compartment), and incubation time was

mapped to model time. The transient metabolites were assigned to

the model elements as dependent variables. The mean values of Vmax

calculated from the curated values of the enzyme activities were

assigned as initial values. The lower and upper bounds specified for

the reaction rates Vmax were set to 1e-2 and 5000, respectively. When

zero was used as the lower bound, the global optimization resulted in

parameter sets for which reaction fluxes were close to equilibrium

(i.e., zero or negligible flux). For a high upper bound value (10000),

we observed that the concentration profiles rise to saturation faster,

possibly due to the high Vm values of the reactions.

The calculations were performed using Cloud-COPASI, the front-

end to a computer cluster at the Centre for Cell Analysis and

Modelling. Cloud-COPASI is an extension of Condor-COPASI

(120). We carried out a hybrid optimization approach (121),

following the global optimization a local optimization was

performed. 100 iterations of parameter estimation were performed

with random initial guesses on Cloud-COPASI using Evolutionary

Strategy (SRES), a global optimization method (121–124). The

parameter set obtained from the iteration that yielded the minimum

objective value and steady-state was updated in the model. The system

was then subjected to a local optimization run using the Hooke and

Jeeves algorithm to obtain the optimal estimate.
4.11 Kinetic model and model predictions

All information was written into the model, validation was

performed using sbmlutils, and model simulations were performed,

see Figures 2K, L.

Finally, we performed model predictions of glycolytic

intermediates and insulin response as a function of varying

glucose concentrations. The set of differential equations was

numerically integrated using basiCO (116) based on COPASI

(117) and sbmlsim (125) based on libroadrunner (126, 127). Pre-

simulations were performed by simulating the model with optimal

parameter values at a pre-incubation glucose dose of 3 mM for 60

minutes. For the time course simulations, glucose was varied as

linspace (1, 35, num=11), and simulations were run for 60 minutes.

For the glucose dose-response, glucose was varied identically, and

the model was simulated to steady-state. To compare the dynamics

of the model predictions and the experimental data, simulations

were performed using the combinations of the experimental pre-

incubation and incubation glucose doses. The time course

predictions presented in Sec. 3.5 correspond to the simulation

phase. Simulations were performed either with COPASI or
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independently using libroadrunner to ensure reproducibility of key

model results.

The model is available in SBML (33, 128) under a CC-BY 4.0

license from https://github.com/matthiaskoenig/pancreas-model.

In this study, version 0.9.6 of the model is presented (108, 109).
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