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Plasma cortisol-linked gene
networks in hepatic and adipose
tissues implicate corticosteroid-
binding globulin in modulating
tissue glucocorticoid action and
cardiovascular risk

Sean Bankier1,2,3*, Lingfei Wang3, Andrew Crawford1,4,
Ruth A. Morgan1,5, Arno Ruusalepp6,7,8, Ruth Andrew1,
Johan L. M. Björkegren8,9,10, Brian R. Walker1,11

and Tom Michoel2,3
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Edinburgh, Edinburgh, United Kingdom, 2Computational Biology Unit, Department of Informatics,
University of Bergen, Bergen, Norway, 3Division of Genetics and Genomics, The Roslin Institute, The
University of Edinburgh, Edinburgh, United Kingdom, 4MRC Integrative Epidemiology Unit, University
of Bristol, Bristol, United Kingdom, 5SRUC, The Roslin Institute, Edinburgh, United Kingdom,
6Department of Cardiac Surgery, Tartu University Hospital, Tartu, Estonia, 7Department of Cardiology,
Institute of Clinical Medicine, Tartu University, Tartu, Estonia, 8Clinical Gene Networks AB,
Stockholm, Sweden, 9Department of Medicine, Karolinska Institutet, Karolinska Universitetssjukhuset,
Huddinge, Sweden, 10Department of Genetics & Genomic Sciences, Institute of Genomics and
Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, NY, United States, 11Clinical
and Translational Research Institute, Newcastle University, Newcastle upon Tyne, United Kingdom
Genome-wide association meta-analysis (GWAMA) by the Cortisol Network

(CORNET) consortium identified genetic variants spanning the SERPINA6/

SERPINA1 locus on chromosome 14 associated with morning plasma cortisol,

cardiovascular disease (CVD), and SERPINA6 mRNA expression encoding

corticosteroid-binding globulin (CBG) in the liver. These and other findings

indicate that higher plasma cortisol levels are causally associated with CVD;

however, the mechanisms by which variations in CBG lead to CVD are

undetermined. Using genomic and transcriptomic data from The Stockholm

Tartu Atherosclerosis Reverse Networks Engineering Task (STARNET) study, we

identified plasma cortisol-linked single-nucleotide polymorphisms (SNPs) that

are trans-associated with genes from seven different vascular and metabolic

tissues, finding the highest representation of trans-genes in the liver,

subcutaneous fat, and visceral abdominal fat, [false discovery rate (FDR) =

15%]. We identified a subset of cortisol-associated trans-genes that are

putatively regulated by the glucocorticoid receptor (GR), the primary

transcription factor activated by cortisol. Using causal inference, we identified

GR-regulated trans-genes that are responsible for the regulation of tissue-

specific gene networks. Cis-expression Quantitative Trait Loci (eQTLs) were

used as genetic instruments for identification of pairwise causal relationships

from which gene networks could be reconstructed. Gene networks were

identified in the liver, subcutaneous fat, and visceral abdominal fat, including a

high confidence gene network specific to subcutaneous adipose (FDR = 10%)
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under the regulation of the interferon regulatory transcription factor, IRF2. These

data identify a plausible pathway through which variation in the liver CBG

production perturbs cortisol-regulated gene networks in peripheral tissues and

thereby promote CVD.
KEYWORDS

cortisol, corticosteroid-binding globulin, gene networks, systems genetics,
causal inference
1 Introduction

The steroid cortisol is the major glucocorticoid hormone

involved in mediating the human stress response, with effects on

metabolism, cardiovascular homeostasis, and inflammation (1).

Excessive cortisol production occurs in Cushing’s syndrome

either in response to chronic activation of the hypothalamic-

pituitary-adrenal (HPA) axis by increased adrenocorticotropic

hormone (ACTH) secretion or through autonomous production

of cortisol in an adrenocortical tumor (2). The incidence of

Cushing’s syndrome is low, with the number of cases estimated to

be between 0.7 and 2.4 cases per million (3). It results in insulin

resistance, obesity and hypertension with increased risk of

cardiovascular disease (CVD). Similarly, higher plasma cortisol

within the population, in the absence of overt Cushing’s

syndrome, is associated with risk factors for CVD such as

hypertension (4) and type II diabetes (1, 5).

Interindividual variation in plasma cortisol levels has a genetic

basis with heritability estimated between 30% and 60% (6). The

Cortisol Network (CORNET) consortium conducted a genome-

wide association meta-analysis (GWAMA) with the intention of

uncovering genetic influences on the HPA axis function (7). This

was followed in 2021 with an updated GWAMA of 25,314

individuals across 17 population-based cohorts of European

ancestries (8), expanded from 12,597 individuals in the original

GWAMA. In an additive genetic model, the new CORNET

GWAMA identified 73 genome-wide significant single-nucleotide

polymorphisms (SNPs) associated with variation for plasma cortisol

at a single locus on chromosome 14. These SNPs were used in a

two-sample Mendelian randomization analysis showing that higher

cortisol is causative for CVD (8).

The locus on chromosome 14 spans the genes SERPINA6 and

SERPINA1 that both play roles in the regulation of corticosteroid-

binding globulin (CBG), a plasma protein produced in the liver that

is responsible for binding 80%–90% of cortisol in the blood (9, 10).

SERPINA6 encodes CBG (11), and SERPINA1 encodes a1-
antitrypsin, an inhibitor of neutrophil elastase, a serine protease

that can cleave the reactive center loop of CBG resulting in a 9–10-

fold reduction in binding affinity to cortisol (12, 13).

The CORNET GWAMA showed that 21 cortisol-associated

SNPs were also cis-expression Quantitative Trait Loci (eQTLs) for

SERPINA6 in the liver and demonstrated that the genetic variation
02
associated with plasma cortisol is driven by SERPINA6 rather than

SERPINA1 (8). However, although variation in CBG production

could explain changes in total plasma cortisol, it is the free fraction

of cortisol that is considered to equilibrate with target tissue

concentrations and signal through intracellular glucocorticoid

receptors (GR) (14, 15). While CBG deficiency may be associated

with symptoms (16–18), variations in CBG have not been shown

conclusively to influence the tissue response to cortisol in humans.

To test the hypothesis that cortisol-associated genetic variants

in the SERPINA6/SERPINA1 locus influence cortisol delivery to,

and hence action in, extrahepatic tissues, we investigated

transcriptome-wide associations between cortisol-associated SNPs

and gene transcripts across seven different vascular and metabolic

tissues from the Stockholm Tartu Atherosclerosis Reverse Networks

Engineering Task (STARNET) study (19). As well as conducting a

multi-tissue eQTL analysis using STARNET transcriptomics and

plasma cortisol-associated SNPs, we identified tissue-specific trans-

eQTL-associated genes under the regulation of GR. Moreover, we

used a causal inference framework, with cis-eQTLs as genetic

instruments, for the reconstruction of causal gene networks

within STARNET tissues.

These results provide evidence that genetic variations in CBG

production in liver influence extra-hepatic cortisol signaling and

provide plausible pathways leading to CVD.
2 Materials and methods

2.1 Data

STARNET is a cohort-based study of 600 individuals undergoing

coronary artery bypass grafting (CABG) for coronary artery disease

(CAD) and was used as the primary discovery cohort in this study.

These individuals underwent blood genotyping preoperatively for

951,117 genomic markers, and during surgery, seven different tissue

samples were obtained and underwent RNA-sequencing (RNA-seq):

liver, skeletal muscle, atherosclerotic aortic root, internal mammary

artery, visceral abdominal fat, subcutaneous fat, and whole blood.

STARNET data are available through a database of Genotypes and

Phenotypes (dbGaP) application (accession no. phs001203.v2.p1). A

detailed description of data processing can be found in the

Supplemental Material of this article (section S1.1).
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The Stockholm Atherosclerosis Gene Expression (STAGE) study

(n = 114) (20) and the Metabolic Syndrome inMan (METSIM) study

(n = 982) (21) were used in the replication of causal gene networks

identified using STARNET. Gene expression data for the METSIM

and STAGE studies are available publicly at Gene expression

omnibus (GEO) (accession no. GSE70353 and GSE40231,

respectively). Microarray data for the liver, subcutaneous fat, and

visceral abdominal fat were used from the STAGE study, and gene

expression data from subcutaneous fat were measured in the

METSIM study using RNA-seq.
2.2 Multi-tissue trans-eQTL discovery

A list of SNPs associated with plasma cortisol was obtained

from the summary statistics of the 2021 GWAMA conducted by the

CORNET consortium (available at https://datashare.ed.ac.uk/

handle/10283/3836) (8). We filtered this list to obtain SNPs that

were found to be associated with plasma cortisol at a level of

genome-wide significance (p< 5 × 10-8) that were taken forward 68

and tested against all genes across STARNET tissues.

The secondary linkage test (P2) is a likelihood ratio test in the

Findr package (22) (version 1.0.8) that was used to identify

associations between a given SNP (E) and a gene (B) using

categorical regression. P2 proposes a null hypothesis where E and

B are independent and alternative hypotheses where E is causal for

B (E→B). Maximum likelihood estimators are then used to obtain a

log likelihood ratio (LLR) between the alternative and null

hypotheses. The LLR is then converted to the posterior

probability of the alternative hypothesis H(P2)
alt being true with

empirical estimation of the local false discovery rate (FDR) as a

value from 0 to 1 (Equation 1).

P(E → B) = P(H(P2)
alt jLLR(P2)) : (1)
2.3 Identification of glucocorticoid-
regulated trans-genes

Multiple datasets were used to identify genes that had prior

evidence of putative regulation by GR (23–27). These datasets have

been filtered to include targets for NR3C1, the gene that

encodes GR.

Trans-genes were categorized according to evidence of GR

regulation from datasets shown in Supplementary Table S1. Genes

were scored against these criteria: 1) appearing in a transcription

factor database (ENCODE, TRANSFAC, CHEA); 2) identified as a

GR target from chromatin immunoprecipitation sequencing (ChIP-

seq) experiment in adipocytes from Yu et al. (23); 3) differentially

expressed in response to dexamethasone treatment in adipocytes

from Yu et al. (23); and 4) murine homolog of human gene

differentially expressed in response to dexamethasone treatment

using adrenalectomized mice (FC >1; p-value<0.05) (24). Genes

were then ranked according to how well they met the criteria for

GR regulation (+1 for each item matched from criteria 1–4).
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2.4 Causal gene network reconstruction

Pairwise causal inference was used for the reconstruction of

cortisol-responsive transcriptional networks across STARNET

tissues using cis-eQTL genotypes as genetic instruments with

gene expression data from STARNET, as implemented by the

Findr software (22). A detailed description of these methods can

be found in the Supplementary Material of this article

(Section S1.2).
2.5 Transcription factor target enrichment

Lists of known transcription factor targets for both NR3C1 and

IRF2 were obtained from ENCODE and TRANSFAC datasets,

respectively. These datasets were used to test for an enrichment of

known transcription factor targets within novel gene sets derived

from gene network targets. This was performed using Fisher’s

exact test from the Python module Scipy Stats (28) and involved

the creation of a 2 × 2 contingency table based on a tissue-

specific background consisting of all genes available in the

corresponding tissue.
2.6 Gene network replication

Correlations between gene network targets were calculated

using gene expression data from STARNET, STAGE, and

METSIM. Gene expression matrices were filtered to only include

the target genes under investigation. Correlation matrices of

corresponding Pearson correlation coefficients as absolute values

were constructed in Python.

A background gene set was constructed from the overlapping

genes between the STARNET gene expression set that was used for

network discovery and the corresponding gene expression set that

was being used for replication. The previously described correlation

analysis was then repeated using a random set of genes (the same

size as the target set) selected from the background gene set. The

Kruskal–Wallis test was implemented in Python using Scipy Stats

(28) to test if the targeted and randomly sampled correlations follow

the same distribution. Both the targeted and random correlations

were then plotted as a boxplot using the Python plotting package

Seaborn (29).
2.7 Gene expression clustering

Hierarchical clustering was performed on correlation values

between network targets using the discovery (STARNET) gene

expression data and hierarchical clustering from Scipy Stats (28)

in Python. The leaves list that resulted from the clustering of the

discovery dataset was then extracted and applied to the correlations

between target genes from the corresponding replication dataset.

Both sets of clustered correlation values were then plotted as

opposing correlation heatmaps with Seaborn (29).
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3 Results

3.1 Cortisol-associated trans-genes

SNPs associated with plasma cortisol at the SERPINA6/

SERPINA1 locus have previously been linked as expression single-

nucleotide polymorphisms (eSNPs) for SERPINA6 in the liver (8).

Using genotype and tissue-specific RNA-seq data from the

STARNET cohort, we explored the hepatic and extrahepatic

consequences of genetic variation for plasma cortisol using 73

cortisol-associated SNPs at genome-wide significance (p< 5 × 10-

8) identified from the CORNET GWAMA (8). We identified 704

eQTL associations in cis and trans between plasma cortisol-

associated SNPs and genes measured across all STARNET tissues,

composed of 262 unique genes and 72 SNPs at a 15% FDR threshold

(Supplementary Tables S2, S3).

The tissues with the greatest number of trans-genes were the

liver, subcutaneous fat, and visceral abdominal fat, with a combined

total of 157 trans-genes and 422 total SNP–gene associations (FDR

= 15%) (Figure 1A). The vast majority of trans-eQTL associations

were specific to a single tissue. A single trans-gene, the

glycosyltransferase-encoding gene OGT, was identified in both the

liver and visceral abdominal fat. However, as this was the only

cross-tissue trans-gene identified, suggesting that the

transcriptional impact of genetic variation at the SERPINA6/

SERPINA1 locus is highly tissue-specific. The CORNET GWAMA

describes four blocks of SNPs in linkage disequilibrium (LD), which

represent the cortisol-associated variation at the SERPINA6/

SERPINA1 locus (8). We observed that LD blocks 2 and 4

represent the majority of the variation across all tissues in the

trans-gene sets (Figures 1B, C).
3.2 GR-regulated trans-genes associated
with plasma cortisol

As the GR is the primary mechanism by which cortisol

influences transcription, we sought to identify a subset of cortisol-

associated trans-genes that were also regulated by the GR. The

cortisol-associated trans-genes identified in this study were

compared to sets of known GR targets identified from different

sources as described in Supplementary Table S1. This included large

projects such as ENCODE, TRANSFAC, and CHEA that predict

transcription factor-binding targets from high-throughput

transcription factor-binding assays. We also included predicted

GR targets from perturbation-based experiments in specific

tissues. ChIP-seq and microarray analysis has been used to

identify 274 glucocorticoid-regulated genes in 3TS-L1 adipocytes,

a murine-derived cell line (23). In addition, RNA-seq data in

subcutaneous fat from adrenalectomized mice treated with

dexamethasone, a GR agonist, have been used to identify genes

that are differentially expressed (24).

The greatest number of unique cortisol-associated trans-genes

was identified in the liver (n = 43), subcutaneous fat (n = 54), and

visceral abdominal fat (n = 59) at a 15% FDR threshold. The

involvement of these tissues in glucocorticoid signaling and
Frontiers in Endocrinology 04
physiological effects has been well documented in the literature

(31–34); therefore, the identification of GR-regulated trans-genes

was restricted to these tissues. Comparisons of genes identified as

glucocorticoid-regulated in 3T3-L1 adipocytes were only made with

subcutaneous and visceral adipose trans-genes. Likewise, as the

murine RNA-seq experiments were restricted to subcutaneous

adipose, only subcutaneous adipose trans-genes were compared to

these differentially expressed genes.

In the liver trans-gene set, 19/43 genes were identified that were

present in either the ENCODE, TRANSFAC, or CHEA datasets

(FDR = 15%) (Figure 1D; Supplementary Table S4). This includes

SERPINA6 that is cis-associated with genetic variation for plasma

cortisol, as described previously (8). One gene, CPEB2, was

identified in more than one dataset and was present in both

ENCODE and CHEA. CPEB2 (posterior probability = 0.89) is a

regulator of translation, splice variants of which have been linked to

cancer metastasis (35).

Visceral adipose tissue had the largest number of cortisol-

associated trans-genes. Here, 21/59 of these genes had some

evidence of being targets of GR (Figure 1E; Supplementary Table

S5). There were five genes that had been identified as GR targets

from both high-throughput transcription factor-binding assays and

adipose-specific experiments. These include CD163 and LUC7L3.

CD163 is a hemoglobin scavenger protein that is expressed in

macrophages and involved in the clearance of hemoglobin/

haptoglobin complexes that may play a role in the protection

from oxidative damage. It also plays a role in activating

macrophages as part of the inflammatory response (36). LUC7L3,

also known as CROP, encodes a protein that is involved in

alternative splicing and is associated with human heart failure

(37). It has also been shown to play a role in the inhibition of

hepatitis B replication (38).

Of the cortisol-associated trans-genes identified in subcutaneous

adipose (FDR = 15%), 28/54 genes were either present in a

transcription factor dataset or identified from the adipose-specific

perturbation datasets (Figure 1F; Supplementary Table S6). There

were 13 genes that had been identified as GR targets from both

high-throughput transcription factor-binding assays and adipose-

specific experiments. These include RNF13 that encodes IRE1a-
interacting protein that plays an important role in the endoplasmic

reticulum (ER) stress response through regulation of IRE1a, a critical
sensor of unfolded proteins (39). Also IRF2, encoding the transcription

factor Interferon Regulatory Factor 2 that plays an important role as a

repressor of IRF1 that in turn is involved in the interferon-mediated

immune response (40). Furthermore, IRF1 has previously been

identified as a marker for glucocorticoid sensitivity in peripheral

blood (41).
3.3 Reconstruction of cortisol-associated
gene networks

Having identified cortisol-associated trans-genes that are

regulated by GR, causal estimates were obtained for pairwise

relationships between GR-regulated trans-genes and all other

genes within the given tissue. This was carried out for all GR-
frontiersin.org

https://doi.org/10.3389/fendo.2023.1186252
https://www.frontiersin.org/journals/endocrinology
https://www.frontiersin.org


Bankier et al. 10.3389/fendo.2023.1186252
regulated trans-genes in the liver, subcutaneous fat, and visceral

abdominal fat with a valid cis-eQTL instrument (12, 19, and 7

genes, respectively) (Supplementary Table S7). A 10% global FDR

threshold was then imposed for each gene set (Table 1). Primary

networks were obtained by filtering to include only GR trans-genes

with a minimum of four target genes at the global FDR threshold.

In the liver, we identified a single gene network driven by

CPEB2, which was found to be trans-associated with the cortisol-

associated SNP rs4905194 (Figure 2A). This network contained 48
Frontiers in Endocrinology 05
causal interactions driven by CPEB2 at a 10% FDR threshold

(Figure 2D; Supplementary Table S9). It is notable that CPEB2

appears as the only network regulator in the liver considering it was

also the cortisol-associated trans-gene with the strongest links to

GR regulation from the liver trans-gene set. A detailed description

of the CPEB2 network and all other networks identified can be

found in the Supplementary Information (Section S2.1).

In subcutaneous fat, two major subnetworks were identified

under the regulation of the genes RNF13 and IRF2. This includes a
D

A

B

E F

C

FIGURE 1

Identification of cortisol-associated trans-genes across STARNET tissues (FDR = 15%). (A) Upset plot showing the distribution of trans-genes across
STARNET tissues, including genes shared by multiple tissues. Tissues include the atherosclerotic aortic root (AOR), skeletal muscle (SKLM), internal
mammary artery (MAM), blood (Blood), liver (LIV), subcutaneous fat (SF), and visceral abdominal fat (VAF). (B) Distribution of trans-eQTLs across
tissues and colored by genomic locus (LD block) of associated SNP. (C) LocusZoom plot (30) showing the location of cortisol-associated SNPs
within defined LD blocks. (D) Venn diagrams where groupings represent different sources used to identify GR-linked trans-genes in the liver, (E)
visceral abdominal fat, and (F) subcutaneous fat. These sources include transcription factor databases (db), ChIP-seq from perturbation-based
experiments (23), and differential expression of dexamethasone-treated mice (24).
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total of 343 causal relationships across both subnetworks, including

two genes shared by both subnetworks. RNF13 was found to be

trans-associated with the cortisol-associated SNP rs11622665

(Figure 2B) and represents the largest subcutaneous fat

subnetwork with 215 gene targets at a 10% FDR threshold

(Figure 2E; Supplementary Table S10).

The transcription factor IRF2, which was associated with the

cortisol-linked SNP rs8022616 (Figure 2C), was found to putatively

regulate a network of 128 genes (FDR = 10%) (Figure 2F). Some

notable targets of IRF2 include LDB2 (posterior probability = 0.94)

and LIPA (posterior probability = 0.91). GWAS suggests functions

for LIPA related to CAD and ischemic cardiomyopathy (42), while

LDB2 has been demonstrated to be involved in the development of

atherosclerosis (43). Additionally, cortisol has been shown to

induce a 5-fold reduction in LDB2 expression in adipocytes (44).

Predicted IRF2 transcription factor targets have been previously

described as part of the TRANSFAC dataset.We examined the overlap

between predicted IRF2 targets in TRANSFAC, and gene targets

within the IRF2 causal networks were identified in subcutaneous fat.

A true network of IRF2 targets would be expected to show an

enrichment of predicted IRF2. Using Fisher’s exact test on data

from subcutaneous fat, at a 10% FDR threshold, the IRF2 network

had 128 target genes, 35 of which were also predicted IRF2 targets (p =

0.08); at a 15% FDR threshold, 104/247 causal targets were also

predicted targets of IRF2 in TRANSFAC (p = 0.005). Decreasing the

global FDR beyond this threshold increased the number of

TRANSFAC targets within the pool of causal targets, however at a

lower enrichment (p = 0.046) (Supplementary Table S12).

In addition to examining the prevalence of IRF2 targets within

the IRF2 causal network, we investigated the overlap between

network genes that are also regulated by GR. We observed an

enrichment of ENCODE GR targets at 15% and 20% FDR

thresholds (p< 0.05) including 68 and 138 GR targets,
Frontiers in Endocrinology 06
respectively. No GR enrichment was observed in either CHEA or

TRANSFAC datasets for IRF2 networks.
3.4 Co-expression of cortisol network
targets in independent datasets

Causal gene networks represent coordinated changes in gene

expression in response to changes in the expression of network

regulators. Therefore, it is possible to examine if these changes in

gene expression are present in independent datasets using gene

expression data alone. We used RNA-seq and microarray data from

the METSIM and STAGE datasets, respectively, to compare

patterns in gene expression within causal networks predicted

from STARNET. As METSIM only contains gene expression data

for subcutaneous fat, analysis was restricted to the causal networks

identified in STARNET subcutaneous fat.

Absolute correlation coefficients between the targets of the

previously described network regulators were calculated, and their

distributions were compared to distributions of random sets of

genes selected from the replication gene expression data, the same

size as the corresponding target gene set. The difference between

targeted and random distributions was formalized using the

Kruskal–Wallis test for each subnetwork (Table 2).

In the liver, correlations between network targets of the single

subnetwork under the regulation of CPEB2 were observed in

STARNET and STAGE. Hierarchical clustering within the

STARNET liver also revealed clustering of correlated genes that

were retained when the clustered gene order was then applied to the

STAGE liver (Figure 3A). Correlations between the 44 CPEB2 target

genes in the STAGE liver were stronger than their random

counterparts (p = 8.2 × 10-32), with this shift also being observed

in the STARNET liver (p = 2.32 × 10-197) (Figure 3D).
TABLE 1 Number of network targets following FDR filtering.

Tissue FDR threshold Total targets Network regulator Regulator targets

Liver 15% 197 CPEB2 190

10% 48 CPEB2 44

Subcutaneous fat 15% 1,701 RNF13 416

IRF2 247

PBX2 883

10% 486 RNF13 215

IRF2 128

PBX2 138

Visceral abdominal fat 15% 396 CD163 378

LUC7L3 15

10% 17 CD163 4

LUC7L3 11
Total targets include all pairwise interactions at the given threshold, and network regulators correspond to trans-genes with at least four network targets at the given FDR threshold. Inclusive of
network regulators present at both 10% and 15% thresholds.
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In subcutaneous fat, correlations were observed between the

network targets of RNF13 and IRF2, and hierarchical clustering

patterns from STARNET were applied to the replication datasets of

STAGE and METSIM (Figures 3B, C). For RNF13, similar patterns

of co-expression were observed in the STAGE subcutaneous fat

following clustering; however, this was not the case in the METSIM

dataset (Figure 3B). Despite this, RNF13 targets appeared more
Frontiers in Endocrinology 07
highly correlated than their randomly selected counterparts in

STARNET (p< 1.0 × 10-300), STAGE (p< 1.0 × 10-300) and to a

lesser extent in METSIM (p = 2.3 × 10-7) (Figure 3E).

In subcutaneous fat, patterns of co-expression between IRF2

targets were conserved most prominently in METSIM; however, co-

expression was less strongly correlated compared with RNF13

targets (Figure 3C). IRF2 subcutaneous fat subnetwork targets
D

A B

E F

C

FIGURE 2

The 10% FDR gene networks in STARNET across different tissues. (A) Gene expression boxplot in the liver showing trans-association with cortisol-linked SNP
rs4905194 and CPEB2, (B) in subcutaneous fat between rs11622665 and RNF13 and (C) rs8022616 and IRF2 (p-value obtained from Kruskal–Wallis test
statistic). Box shows quarterlies of the dataset, with whiskers indicating the upper and lower variability of the distribution. (D) Causal gene network
reconstructed from pairwise interactions from GR-regulated trans-genes against all other genes in the corresponding tissue for CPEB2, (E) RNF13, and (F)
IRF2. Edges represent Bayesian posterior probabilities of pairwise interaction between genes (nodes) exceeding 10% global FDR. Arrow indicates direction of
regulation, and interactions were only retained where parent node had at least four targets.
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were more strongly correlated than their random counterparts in

STARNET (p< 1.0 × 10-300), STAGE (p = 8.35 × 10-86), and

METSIM (p< 1.0 × 10-300) (Figure 3F).
4 Discussion

In this study, we have characterized the impact that genetic

variation for plasma cortisol has upon tissue-specific gene

expression. We showed that cortisol-linked genetic variants at the

SERPINA6/SERPINA1 locus mediate changes in gene expression in

trans across multiple tissues, in addition to the cis-associations in

the liver that have been described previously (8). We have

scrutinized these trans-associations to identify a subset of genes

that are regulated by glucocorticoids and in turn regulate

downstream transcriptional networks, thus providing a deeper

understanding of the transcriptional landscape driven by cortisol-

linked genetic variation that may underpin the progression to CVD.

CBG, as encoded by SERPINA6, is responsible for binding

cortisol in the blood. It has remained uncertain whether variation

in CBG impacts the availability of cortisol within tissues, since any

resulting change in free cortisol concentrations would be expected

to be adjusted by negative feedback of the HPA axis (45). However,

deleterious mutations in CBG are associated with dysfunction in

animals and humans, suggesting an impact of CBG on cortisol

signaling (45). Our major finding that downstream transcriptomic

changes in extrahepatic tissues are associated with genetic variation

at the SERPINA6 locus lends strong support to the hypothesis that

CBG influences tissue delivery of cortisol and modulates

glucocorticoid-induced changes in gene expression.

For the STARNET study, whole-blood samples were taken

preoperatively and all other tissues including the liver were taken

during the CABG surgery. In addition to any rise in cortisol due to

anxiety and disturbed sleep in anticipation of surgery, the human

stress response to surgery has been well characterized and results in

stimulation of the HPA axis leading to high levels of cortisol in the

blood both during and post-surgery (46). Surgery is also associated

with a very rapid fall in CBG production. Therefore, it is uncertain if

cortisol-associated gene expression patterns observed in STARNET

would also be observed in an unstressed healthy population. It may
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be that CBG influences the dynamic range of alterations in free

plasma cortisol during stress rather than affecting the delivery of

cortisol to tissues in unstressed conditions. However, considering

that co-expression of the network targets was reproducible within

independent samples from the METSIM study, obtained under

nonsurgical conditions, this suggests that the cortisol-associated

networks we inferred from STARNET do operate also in

unstressed conditions.

The tissues with the greatest number of trans-genes identified

were the liver and both subcutaneous and visceral abdominal fat, all

tissues known to play a role in glucocorticoid biology. In the liver,

glucocorticoids have extensive effects on glucose and fatty acid

metabolism (31, 32), while in adipose tissue, glucocorticoids

regulate lipogenesis and lipid turnover (33, 34). Skeletal muscle is

also a major target of glucocorticoids, where they modulate protein

and glucose metabolism (47). A lack of available data for identifying

tissue-specific GR targets in other tissues means that potential GR

targets may have been missed in tissues outside of the liver

and adipose.

We identified a subset of GR-responsive genes in the liver,

subcutaneous fat, and visceral adipose fat. However, we did not

observe a statistical enrichment of GR-regulated genes in any of

these trans-gene sets. This does not negate the identification of GR

targets that are associated with plasma cortisol, but it may imply

that there are some effects of cortisol-linked genetic variation that

are mediated by mechanisms other than directly by GR either

through secondary regulation by GR-regulated genes or through the

alternative mineralocorticoid receptor. Indeed, some of the genes

with higher levels of evidence for GR regulation also demonstrated

regulation of transcription networks, e.g., CPEB2, IRF2, and RNF13.

This supports our strategy of setting a relatively lenient FDR

threshold and then filtering to identify cortisol-associated trans-

genes with prior evidence of GR regulation.

It should be noted that different FDR thresholds were used for

the trans-gene discovery and for the network reconstruction.

Initially, we selected a more lenient threshold of 15% for the

identification of trans-genes, considering that trans-eQTLs tend

to exhibit weaker associations compared to their cis counterparts

(47). We then decided to restrict our list of trans-associations by

implementing a biological rather than a statistical threshold,
frontiersin.or
TABLE 2 Correlations between network targets within replication datasets.

Replication dataset Tissue Network regulator p-value No. target genes

METSIM Subcutaneous fat IRF2 < 1.0×10-300 128

RNF13 2.3×10-7 215

STAGE Liver CPEB2 8.2×10-32 44

Subcutaneous fat IRF2 8.3×10-86 128

RNF13 < 1.0×10-300 215

Visceral abdominal fat CD163 2.6×10-3 4

LUC7L3 4.4×10-1 11
The Kruskal–Wallis test calculated for the distribution of correlations between network targets compared to correlations within random gene sets of the same size.
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FIGURE 3

Replication of cortisol-associated gene networks in independent datasets. (A) Correlation heatmap showing pairwise Pearson correlations between
CPEB2, (B) IRF2, and (C) RNF13 network targets. Hierarchical clustering of genes in STARNET (discovery) was applied to the same genes within
replication datasets. (D) Correlations between network targets in discovery vs. replication datasets for CPEB2, (E) IRF2, and (F) RNF13 networks. The
Kruskal–Wallis test calculated for the distribution of correlations between network targets compared to correlations within random gene sets of the
same size.
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limiting the number of trans-genes to those with evidence of GR

regulation. However, given that there was no biological threshold

implemented with network reconstruction, a more stringent FDR

threshold was appropriate. The 10% FDR in this context implies

that 1 in 10 edges of a given network is a potential false positive.

However, given the strength of the replication within independent

datasets, this suggests that these networks are considerably robust.

We identified causal gene networks in the liver, subcutaneous

fat, and visceral abdominal fat where cortisol-associated trans-genes

act as regulators of subnetworks within overarching tissue-specific

networks. Pairwise causal relationships were established between

network regulators and downstream targets using cis-eQTLs as

genetic instruments. This approach has the benefit of generating

directed relationships between a regulator and target while

accounting for any unobserved confounding. However, a

drawback of this approach is that we are limited by only being

able to examine GR-regulated trans-genes with valid cis-eQTLs.

This means that there could be valid cortisol-responsive networks

regulated by GR trans-genes that we were unable to predict due to

lack of a corresponding instrument.

IRF2 stands out as a network regulator of particular interest.

There is strong evidence of GR regulation, where IRF2 has been

identified as a GR target from published dexamethasone-treated

adipocyte ChIP-seq experiments (23) and as a putative GR target

within ENCODE. It is robustly associated with its corresponding

cis-eQTL instrument, and there is an enrichment of IRF2 targets

within our predicted IRF2-regulated causal network. Additionally,

we show evidence of regulation by glucocorticoids within the targets

of IRF2, potentially suggesting evidence of a feed-forward loop

motif (48). Interestingly, the genotype for rs8022616, the cortisol-

associated SNP linked to IRF2 expression in subcutaneous fat, is

associated with a decrease in IRF2 expression. Previous evidence

suggests that interferon signaling is inhibited by glucocorticoids

(49, 50).

Although we have determined the direction of causality

between the regulator and target genes, we do not know if the

expression of the target gene is upregulated or downregulated in

response to modulation of the regulator. This could be investigated

through functional experiments within a relevant cell line,

whereby the differential gene expression of target genes is

measured in response to perturbation of the network regulator.

To take this one step further, the results of a cell line experiment

could be used to determine the dynamics of the putative cortisol

networks using systems biology approaches for modelling gene

expression (51).

In conclusion, we have linked genetic variation for plasma

cortisol to changes in gene expression across the genome, beyond

that which has been previously described at the SERPINA6/

SERPINA1 locus (8) and extending to adipose tissue as well as the

liver. Furthermore, we have shown that a subset of these trans-

genes is driven by the GR and in turn drives transcriptional

networks across different tissues. These networks have been

found to be robust and their network targets appear co-expressed

within independent gene expression datasets of the same tissue.

Further study of these networks and their downstream targets could

be used to enhance our mechanistic understanding of the pathways
Frontiers in Endocrinology 10
linking cortisol with complex diseases as described in

observational studies.
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