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Alzheimer’s disease and its
associated risk of bone
fractures: a narrative review

Bing-Na Zhou, Qian Zhang and Mei Li *

Department of Endocrinology, National Health Commission Key Laboratory of Endocrinology, Peking
Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical
College, Beijing, China
Background: Alzheimer’s disease (AD) is a neurodegenerative disorder that is the

major cause of dementia in the aged population. Recent researches indicate that

patients with AD have a significantly increased fracture risk, but the pathological

mechanisms are still unclear.

Objective:We systematically reviewed studies regarding bone fracture risk in AD

to uncover links between the pathologies of osteoporosis and AD.

Methods: We searched the literature using the databases of PubMed, Web of

Science, Embase and Cochrane Library. Studies were included if they evaluated

bone fracture risk in AD patients and if they explored the pathogenesis and

prevention of bone fractures in these patients.

Results: AD patients had a significantly higher risk of bone fractures than age-

matched controls. Multiple factors contributed to the increased risk of bone

fractures in AD patients, including the direct effects of amyloid pathology on

bone cells, abnormal brain-bone interconnection, Wnt/b-catenin signalling

deficits, reduced activity, high risk of falls and frailty, and chronic immune

activity. Exercise, prevention of falls and fortified nutrition were beneficial for

reducing the fracture risk in AD patients. However, the efficacy of anti-

osteoporotic agents in preventing bone fractures should be further evaluated

in AD patients as corresponding clinical studies are very scarce.

Conclusion: Alzheimer’s disease patients have increased bone fracture risk and

decreased bone mineral density owing to multiple factors. Assessment of anti-

osteoporotic agents’ efficacy in preventing bone fractures of AD patients is

urgently needed.
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Highlights
Fron
• Bone fractures risk is significantly increased in patients with

Alzheimer’s disease (AD)

• The mechanisms include the effects of amyloid pathology

on bone cells

• Brain-bone interconnections and Wnt/b-catenin signalling

deficits play important roles

• Reduced activity, high risk of falls and frailty increase

fracture risk

• Reducing fracture risk is important for patients with AD
1 Introduction

Alzheimer’s disease (AD) is a neurodegenerative disease that

causes cognitive impairment, of which short-time period memory

deficits are a common manifestation (1). Deficits in speech,

visuospatial processing and executive function can be presented

in AD patients (1). In recent years, the quantity of patients with AD

has been growing substantially, accounting for greater than 50% of

dementia cases (2). The prevalence of dementia is predicted to

increase from 57.4 million individuals worldwide in 2019 to 152.8

million individuals by 2050 (3). The global economic burden of AD

and related dementias (ADRDs) is expected to grow rapidly from an

estimated $2.8 trillion in 2019 to $16.9 trillion in 2050 (4).

Recently, studies indicate that AD patients have a higher risk of

bone fracture, particularly hip fracture, than the older populations

without AD (5–7). A meta-analysis including five studies indicated

that AD was correlated with a 2.5-fold increased risk of hip fractures

(8), which would lead to devastating consequences in AD patients,

including loss of function and mobility, reduced quality of life

(QOL), prolonged stay for hospitalization, and increased morbidity

and mortality (6, 9). The increased falls owing to gait disturbances
tiers in Endocrinology 02
and postural instability may partially explain the increased risk of

bone fractures in AD patients (10, 11). However, other reasons

should also be considered for the increased bone fracture risk in AD

patients, which deserves further in-depth investigation.

Therefore, we systematically review the studies regarding bone

fractures in AD patients and focus on progress in pathological

mechanisms and prevention of bone fractures in AD patients.
2 Literature search

We systematically reviewed studies about the risk of bone

fractures in AD patients, and we conducted a literature search

using the databases of PubMed, Web of Science, Embase and

Cochrane Library from January 1990 to December 2022, using

the keywords ‘fractures’, ‘bone fractures’, ‘broken bones’,

‘osteoporotic fractures’, ‘hip fracture’, ‘Alzheimer’s disease’,

‘Alzheimer-type dementia’, ‘Alzheimer sclerosis’ and ‘Alzheimer

syndrome’. In addition, the reference lists of included studies were

checked and the names of authors were searched for additional

studies. All articles were screened based on their title and abstract.

Studies were included if they assessed the risk of bone fractures in

AD patients, and studies were also included if they explored the

pathogenesis and prevention of bone fractures in AD patients.

Articles written in languages other than English, expert opinions,

case reports and articles without full texts were excluded.
3 Results

3.1 The risk of bone fractures in patients
with AD

Our search yielded a total of 316 related studies, and 12 papers

met the eligibility criteria (5–7, 12–20) (Figure 1). One study was a

prospective matched-cohort study, and the others were
FIGURE 1

Flow diagram of study selection process.
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retrospective matched-cohort studies, with follow-up durations

ranging from 1 to 11 years. The characteristics of these studies

were summarized in Table 1.

Data from prospective and retrospective matched-cohort

studies indicated an independent relationship between AD and an

increased incidence of bone fractures. Three studies evaluated the

incident fracture rate in AD patients (5, 14, 17). They observed that

patients with AD had a higher risk of fracture than those without

AD. The most frequent fractures were hip fractures and vertebral

fractures in AD patients (14). Seven studies used the incidence of

hip fracture as the outcome (6, 7, 13, 15, 16, 18, 19), which indicated

that AD patients had an increased risk of hip fractures than patients

without AD, regardless of age, gender or AD duration. An

independent correlation between AD and hip fractures was

found, and AD was an independent risk factor for hip fractures.

Another study focused on the reasons for hospitalizations in AD

patients and discovered that patients with hip fracture were more

likely to be hospitalized (12). A matched-cohort study exploring

comorbidities and the risk of mortality in AD patients showed that

hip fracture was more prevalent in the AD cohort than in the non-

AD cohort and that hip fracture was correlated to the mortality risk

of AD patients (20).
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3.2 The pathogenesis of bone fractures in
AD patients

Studies have found that AD patients often had lower bone

mineral density (BMD) than healthy individuals. Low BMD,

impaired bone strength and microarchitecture could increase

bone fracture risk, which was mainly led by disturbances in bone

resorption and bone formation. Multiple factors could contribute to

bone loss in AD patients. The pathogenesis of bone fractures in

patients with AD was shown in Figure 2.

3.2.1 Direct effects of amyloid pathology on bone
Two main pathological hallmarks of AD are the presence of

extracellular aggregates of amyloid-beta peptide (Ab) derived from

the transmembrane amyloid precursor protein (APP) and the

presence of neurofibrillary protein tangles, which might be

composed of hyperphosphorylated tau, withinside the temporal

lobe and different cortical areas in the brain which might be related

to the death of neuronal cells and synaptic depletion (21). There is

developing proof of the involvement of advanced glycation end

products (AGEs) in the pathogenesis of AD and their feature as

seeds for the aggregation of Ab (22). The receptor for AGEs
TABLE 1 Literature about fracture risk in patients with Alzheimer’s disease.

Design Country Fracture AD Fracture Follow-
up
period

HR/
OR

95%
CI

Study
(reference)

Number patients IR/100
PY

Number Control IR/100
PY

Retrospective
cohort

Finland 3,709 70,718 1.85 2,561 70,718 1.49 11.0 years NA NA 20

Retrospective
cohort

Finland 2,221 50,491 1.63 2,711 100,982 0.69 NA NA NA 19

Retrospective
cohort

Finland 6,347 46,373 1.56 9,843 92,746 0.64 4.0 years NA NA 18

Retrospective
cohort

Finland 5,264 67,072 2.23 2,643 67,072 0.98 3.0 years 2.35 2.24-
2.46

7

Retrospective
cohort

Canada 672 21,015 NA 366 18,301 NA 180 days 1.3 1.1-1.5 17

Prospective
cohort

Finland 2,016 27,789 NA 845 25,183 NA 4.0 years 2.57 2.32–
2.84

16

Retrospective
cohort

Taiwan,
China

91 936 NA 190 3,744 NA 3.5 years 2.38 2.02–
2.80

15

Retrospective
cohort

UK 391 10,052 17.4 226 10,052 6.6 2.2 years 3.2 2.4–4.2 6

Retrospective
cohort

USA 955 5396 NA 428 5396 NA 2.1 years 1.856 1.62-
2.13

14

Retrospective
cohort

Canada 31 528 NA 25 985 NA 10.0 years 2.18 1.26–
3.79

13

Retrospective
cohort

USA 37 549 NA 300 17,079 NA 1.0 year 1.96 1.34–
2.87

12

Retrospective
cohort

USA 87 543 NA 49 543 NA 10.0 years 2.0 1.4-2.9 5
AD, Alzheimer’s disease; IR/100 PY, Incident rate per 100 person-years; NA, Not available.
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(RAGEs) acting as an Ab binding partner are also included in the

pathogenesis of AD (23). Thus, APP/Ab plays a significant role in

the pathogenesis of AD.

Moreover, investigations have suggested that APP/Ab can

directly damage skeletal remodelling by impacting bone cells. A

previous study observed that APP and Ab could regulate in-vitro

and in-vivo osteoclast (OC) differentiation (24). Tg2576 mice, an

AD mice model expressing the Swedish mutation of APP (APPswe)

below the manipulation of a prion promoter, exhibited biphasic

outcomes on OC activation, with an increase in OCs in younger

mice but a decrease in older Tg2576 mice (24). In younger Tg2576

mice, the Ab-RAGE–mediated increase in OCs had a function in

selling the discharge of cytokines and elements from the bone

matrix, thus included in the pathogenesis of bone fractures.

However, in older Tg2576 mice, there was an increase in soluble

RAGE (sRAGE) and osteoprotegerin (OPG), causing a decrease in

OC formation, which may delay bone remodelling in an unbalanced

way and thus might be associated with a higher rate of bone

fractures (24). Another study confirmed that a decrease in

osteoblastogenesis and loss of trabecular bone mass was resulted

from the selective expression of APPswe in mature osteoblast-

lineage cells (25). The bone loss was accompanied by elevated

adipogenesis and increased bone marrow fat, showing a skeletal

aging-like osteoporotic deficit (25). APP could play a physiological

role in promoting osteoblast survival and bone formation by

preventing oxidative stress and regulating mitochondrial function

(26). Mice with knocked out APP gene (APP-/-) exhibited

osteoporotic-like deficits, including decreased trabecular and

cortical bone mass (26). Ab42 is a key amyloidogenic peptide that

is highly associated with AD. Ab42 can potently enhance osteoclast

differentiation and activation but does not affect osteoclast cell
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viability or number (27). One study observed that 5XFAD mice had

decreased volumetric BMD, elevated endocortical bone loss and

reduced mineralization with smaller mineral crystals (28). Two

pathways were found to be contributing to skeletal fragility in AD

via alteration of bone quality: accumulation of AGEs and lack of

crystallinity, reduced crystal size, and lack of mineralization (28).

Another animal study showed that endogenous Ab might induce

osteoporosis viamTOR-dependent inhibition of autophagy in bone

marrow mesenchymal stem cells (BMSCs) (29). Therefore, APP/Ab
has direct effects on bone cells and may play a vital function in the

pathogenesis of bone fractures in AD patients.

3.2.2 The brain-bone interconnection
Recently, the roles of neural control in bone have been found

(30). Both the sympathetic nervous system (SNS) and

parasympathetic nervous system (PNS) can influence bone via

numerous pathways, in which circadian genes, neuropeptide Y,

serotonin, leptin, adiponectin, muscarinic receptors, nicotinic

receptors, beta-adrenergic receptors, and sensory nerve

innervation of bone are involved (31, 32). The nervous system

can produce specific neurotransmitters and process peripheral

hormonal signals, hence affecting bone homeostasis. This

increases the probability that the ability of the brain to regulate

bone in AD patients could be compromised and consequently

reduce bone mass (33). AD patients usually show increased

sympathetic tone and decreased parasympathetic flow, and

reduced cholinergic innervation in the elderly (34). AD patients

treated with AChE inhibitors exhibited a lower risk of hip fracture

and stepped forward bone healing, indicating the damaged

parasympathetic signalling affects bone homeostasis and might be

a target to improve the bone health of AD patients (35).
FIGURE 2

The pathogenesis of increased fracture risk in AD patients. Multiple factors may contribute to bone loss in AD, including direct effects of amyloid
pathology on bone cells, abnormal brain-bone interconnection, Wnt/b-catenin signaling deficits, chronic inflammatory status and reduced activity,
increased falls and frailty in AD patients. AD, Alzheimer’s disease; Ab, amyloid-b peptide; SNS, sympathetic nervous systems; PNS, parasympathetic
nervous systems; TNF-a, tumor necrosis factor a; IL 1b, interleukin 1b; IL 6, interleukin 6; IL 10, interleukin 10; RANKL, receptor activator of nuclear
factorkappa B ligand; RUNX2, runt-related transcription factor 2; OCN, osteocalcin; DKK1, Dickkopf-1.
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An understanding of bone’s effects on the brain has also emerged

as studies have revealed the possible underlying mechanisms regarding

the brain’s influence on bone. Bone act as an endocrine organ that

plays important roles by secreting proteins, including osteocalcin

(OCN), osteopontin (OPN), and sclerostin (SOST). Blood bone

turnover biomarkers, such as C-terminal fragments of collagen,

osteoprotegerin (OPG), and OCN were found to be increased in AD

patients, showing their association with osteoporosis (36). The bone-

derived OCN can impact the production of neurotransmitters, which

affect cognitive function (37). Furthermore, a small number of bone

marrow-derived stem cells may have the capacity to migrate to the

brain, differentiate into microglia-like cells and accelerate Ab clearance
(38). Thus, the brain and bones could be closely interconnected, and

bidirectional signalling between brain and bone tissue may have been

involved in an increased risk of fracture in AD patients.

3.2.3 Wnt/b-catenin signalling deficits
in AD patients

The Wnt/b-catenin signalling pathway is a rich and complicated

network that modulates cell proliferation, migration and

differentiation, and Wnt proteins orchestrate numerous short-range

cell-to-cell communication in mammals (39). In bone, Wnt/b-
catenin signalling contributes to osteoblast differentiation and

promotes bone formation (40). In brain, the Wnt/b-catenin
signalling pathway promotes the formation of synaptic junctions

between neurons and increases neuronal survival (41). The impaired

Wnt/b-catenin pathway plays a critical role in the development of

AD (42). Insufficient Wnt/b-catenin activation impaired bone

remodelling and changed the gene expression associated with Wnt/

b-catenin signalling in a mouse model (htau mice), which exhibited

both low bone mass and AD-like tauopathy (43). Moreover,

increased expression of Dickkopf-1 (DKK1) and SOST were found

in the bone of htau mice (43). SOST can encode proteins that

antagonize the Wnt/b-catenin pathway at preliminary tiers of

signalling, which is associated with a reduction in bone formation

(44). DKK1 additionally performs numerous roles in the

pathogenesis of AD (45). The expression of DKK1 could be

overactivated by the pathological protein Ab, further suppressing

the Wnt pathway and triggering a sequence of downstream

consequences that enhance the tau hyperphosphorylation and

increase extra poisonous Ab fragments cleavage, thus perpetuating

Wnt disorder and promoting the accumulation of toxic protein (45).

These provocative data supported that a systemic motive force which

includesWnt signalling deficits would possibly relate to bone loss and

brain pathology in patients with AD.

3.2.4 Chronic inflammation may contribute to
AD-related bone loss

Neuroinflammation also plays essential roles in the

pathogenesis and progression of AD (46). AD pathogenesis can

be promoted by chronic neuroinflammation, which is driven by the

overactivation of resident microglial cells, the infiltration of

macrophages and the involvement of circulating immune cells

(47). Numerous inflammatory markers were verified to be

significantly altered in a comparison between AD patients and

controls (48), and tumour necrosis factor-alpha (TNF-a) ranges
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were extensively increased in the cerebrospinal fluid (CSF) and the

serum of AD patients than healthy controls and associated with

disorder development (49), directly potentiating bone reformation

in part through synergistic interactions with RANKL and

upregulating osteoclast differentiation, thus promoting bone

resorption (50). In addition, TNF-a could inhibit bone formation

by indirectly suppressing osteoblast manufacturing and

proliferation, which is via suppressing the expression of insulin-

like growth factor-1, osterix (OSX), Wnt, and runt-related

transcription factor 2 (RUNX2) signalling (51–53). The levels of

interleukin 1b (IL1b), interleukin 6 (IL6), interleukin 10 (IL10) and

TNFa were elevated in the cerebral tissue of AD mice, which

indicated proinflammatory cytokines promoted the occurrence of

AD (54). Inflammatory cytokines might also accelerate bone loss

and increase fracture risks in AD patients (55).

3.2.5 Reduced activity, increased falls and frailty
in AD patients

AD patients usually have reduced activity in midlife (56). Bones

are constantly motivated by weight-bearing movements and muscle

contraction, and they are also sensitive to mechanical strain.

Osteocytes and their dendritic connections can sense the fluid float

driven by stresses placed upon bone. Osteocytes produce signalling

molecules that activate bone remodelling in reaction to these stresses

(57). Reduced mechanical strain because of immobilization

accelerated bone loss in a time-, intense-dependent manner (58).

There is an increased risk of falls and injuries in older patients with

cognitive impairment compared with healthy controls. There was an

up to eight times greater incidence of falls in patients with dementia

than in those without cognitive impairment (59). Falls and fall-

associated accidents could cause a two- to three-fold risk of hip

fracture, slower recovery rates, increased likelihood of multiplied

probability of being positioned into residential care and higher

mortality than cognitively healthy peers (60). A study confirmed

that cognitive impairment became a critical risk factor for falls in

older people in Chinese communities (61).

The previous study showed that frailty is highly prevalent in AD

patients with the pooled prevalence of 31.9% (62). Frailty is a

clinically detectable syndrome associated with the ageing of

multiple physiological systems, which could activate vulnerability,

Additionally, frailty is associated with malnutrition, cognitive

deterioration, atherosclerosis and sarcopenia, and their diverse

metabolic alterations (63). A meta-analysis indicated that frailty

was highly correlated with falls, bone fractures, hospitalization,

disability, dementia, and death (64). Both frailty and decreased

mobility lead to reduced muscle strength, and sarcopenia is

common in elderly individuals with cognitive deterioration, which

could be a vital risk factor for bone fractures in AD patients (65).
3.3 Reduce the risk of bone fractures
in AD patients

3.3.1 Physical activity, falls prevention and
fortified nutrition

Exercise is beneficial to improve gait, balance, strength and

mobility, and executive functions and further reduce falls in the
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older population (66), and it may postpone the progression of AD in a

sustainable and cost-effective manner (67). Physical activity or exercise

is also important for keeping bone health, since increasingmuscle mass

and mechanical stress can prevent bone loss (68, 69). Compared to

wild-type mice, the AD mice (3xTg mice) had an increased risk for

limb fracture. Treatment with resveratrol, exercise, or both in

combination can improve fracture resistance and bone strength (70).

A recent study showed that a multimodal exercise program reduced

the incidence of falls and improved balance, gait, and BMD in

institutionalized patients with AD (71). Falls are common in AD

patients, and approximately two-thirds of AD patients fall annually,

which is double the risk of falls in cognitively unimpaired elderly

individuals (72).

Preventing falls is essential for AD patients, and these patients

require multidisciplinary management. According to the World

Guidelines for Fall Prevention and Management for Older Adults

(73), there are wider benefits to reduce the risk factors for falls (e.g., gait

and balance problems), including elevated intrinsic capacities (physical

and mental health), functioning and the quality of life. Evaluation of

the risk of future falls should be performed by experienced clinicians

using existing resources. Multidomain interventions, which were a

mixture of interventions tailored to the individual, including

implementing strength and balance exercises, reviewing medications,

optimizing vision and hearing, addressing foot problems and

appropriate footwear, using interventions to cope with concerns

about falling, making individual education and environmental

modifications and so on, whilst delivered, were valid for downscaling

the fall rates of high-risk community-dwelling elderly individuals (73).

AD patients are often malnourished because of physiological

and psychological factors (74). Nutrition (e.g., via vegetables, fruit,

and fish) is critical for optimizing cognition and decreasing fracture

risk in AD patients (75). The importance of a balanced diet

including protein, vegetables, fruit and minerals has been

emphasized for bone health and the prevention of fractures (76).

Healthy dietary patterns, such as the Mediterranean diet, could be

helpful for AD patients and reduce fracture risk. It is beneficial for

the prevention of osteoporosis through the supplementation of key

micronutrients for bone, such as calcium and vitamin D (77).

Additionally, some clinical studies showed that a higher vitamin

D status was related to a decreased risk of AD and all-cause

dementia, which has supported the significance of vitamin D in

cognitive health (78, 79). Some randomized controlled trials found

that biomeasures and cognitive function were improved in AD

patients after supplementation of vitamin D (80). Thus, it is

essential to maintain sufficient vitamin D concentrations to

reduce bone loss and neurocognitive decline.

3.3.2 Anti-osteoporotic treatment
In recent years, great progress has been made in drug treatment

for osteoporosis, and the effective agents include antiresorptive,

anabolic and dual-action agents. However, there are few studies

evaluating the effect of anti-osteoporotic agents on the risk of

fracture in AD patients. The worry of side effects would possibly

result in hesitation to prescribe these agents to the frailest elderly

patients. For instance, patients with dementia were probably more

sensitive to the serious side effects of bisphosphonates (BPs) (81).
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BPs have been proven to be a key intervention for osteoporosis,

and they are considered to be one of the first-line medicinal drugs

for preventing osteoporotic fractures (82). Some clinical and

preclinical studies have revealed that nitrogen-containing BPs

(NBPs) may be potential to alleviate the symptoms of

neurological disorders such as brain calcification, AD and

Huntington’s disease by targeting the mevalonate pathway (83).

In the MEDALZ-2005 cohort, the incidence of BP use was 11.2%,

and the median period of BP use was 777 days among AD patients

(84). But they didn’t evaluate the effects of BPs in that cohort (84).

In a cohort comprised of nursing home residents aged 65 years or

older, of which 51% patients had moderate-to-severe cognitive

impairment, BPs treatment was correlated with a significant

reduction in hip fracture among frail, elderly patients (85).

As a fully human monoclonal antibody targeting the bone

resorption mediator RANKL, denosumab is effective in

postmenopausal osteoporosis , male osteoporosis and

glucocorticoid-induced osteoporosis (86–88). Teriparatide, a

recombinant fragment of the human parathyroid hormone, is an

anabolic drug that can substantially increase BMD and decrease the

incidence of vertebral fractures (89, 90). The effects of denosumab

or teriparatide on osteoporosis are still unclear in AD patients. The

effects of zoledronic acid, denosumab, and teriparatide for

preventing hip fractures were evaluated in frail older patients, and

some patients with cognitive impairment were included in that

study (91). The study showed that denosumab and zoledronic acid

might be as effective as teriparatide for the prevention of hip

fractures in frail older patients, but further investigation is

required to evaluate their efficacy and safety in AD patients (91).

Romosozumab, a monoclonal antibody to sclerostin, is a new

osteoanabolic drug that increases bone formation and decreases

bone resorption, which is recommended as preliminary treatment

in patients with a very high fracture risk without a history of stroke

or myocardial infarction (92). Since circulating DKK1 level was

significantly correlated with the annual rate of change in cognition

(93), DKK1 could be a novel biomarker and promising therapeutic

target for osteoporosis in AD patients. No reports have been made

targeting sclerostin or DKK1 in osteoporosis in AD patients.

Above all, few studies have evaluated the effects and safety of

anti-osteoporotic drugs on osteoporosis in AD patients. There is an

urgent need to conduct research on treatment for osteoporosis in

AD patients.
4 Conclusion

AD patients usually have a high fracture risk, which will further

increase the morbidity and mortality of AD patients. Mechanisms

of increased fracture risk are multifactorial in AD patients,

including direct effects of amyloid pathology on bone cells,

abnormal brain-bone interconnection, Wnt/b-catenin signalling

deficits, reduced activity, increased falls and frailty, and chronic

inflammatory status. Exercise, prevention of falls, and full nutrition

are recommended in AD patients. Further studies are necessary to

clarify the efficacy and safety of anti-osteoporotic agents in reducing

fracture risk in AD patients.
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63. Gómez-Gómez ME, Zapico SC. Frailty, cognitive decline, neurodegenerative
diseases and nutrition interventions. Int J Mol Sci (2019) 20(11):2842. doi: 10.3390/
ijms20112842

64. Chu W, Chang SF, Ho HY. Adverse health effects of frailty: systematic review
and meta-analysis of middle-aged and older adults with implications for evidence-
based practice. Worldviews Evidence-Based Nurs (2021) 18(4):282–9. doi: 10.1111/
wvn.12508

65. Abay RJY, Gold LS, Cawthon PM, Andrews JS. Lean mass, grip strength, and
hospital-associated disability among older adults in Health ABC. Alzheimer's dementia
(2022) 18(10):1898–906. doi: 10.1002/alz.12527

66. Burton E, Cavalheri V, Adams R, Browne CO, Bovery-Spencer P, Fenton AM,
et al. Effectiveness of exercise programs to reduce falls in older people with dementia
living in the community: a systematic review and meta-analysis. Clin Interventions
Aging (2015) 10:421–34. doi: 10.2147/CIA.S71691

67. Jia RX, Liang JH, Xu Y, Wang YQ. Effects of physical activity and exercise on the
cognitive function of patients with Alzheimer disease: a meta-analysis. BMC geriatrics
(2019) 19(1):181. doi: 10.1186/s12877-019-1175-2

68. Palombaro KM, Black JD, Buchbinder R, Jette DU. Effectiveness of exercise for
managing osteoporosis in women postmenopause. Phys Ther (2013) 93(8):1021–5.
doi: 10.2522/ptj.20110476

69. Gonzalo-Encabo P, McNeil J, Boyne DJ, Courneya KS, Friedenreich CM. Dose-
response effects of exercise on bone mineral density and content in post-menopausal
women. Scandinavian J Med Sci sports (2019) 29(8):1121–9. doi: 10.1111/sms.13443

70. Alkhouli MF, Hung J, Squire M, Anderson M, Castro M, Babu JR, et al. Exercise
and resveratrol increase fracture resistance in the 3xTg-AD mouse model of
Alzheimer's disease. BMC complementary Altern Med (2019) 19(1):39. doi: 10.1186/
s12906-019-2451-6
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