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Aims/hypothesis: It is widely thought that the intestinal microbiota plays a

significant role in the pathogenesis of metabolic disorders. However, the gut

microbiota composition and characteristics of schizophrenia patients with

metabolic syndrome (MetS) have been largely understudied. Herein, we

investigated the association between the metabolic status of mainland Chinese

schizophrenia patients with MetS and the intestinal microbiome.

Methods: Fecal microbiota communities from 115 male schizophrenia patients

(57 with MetS and 58 without MetS) were assessed by 16S ribosomal RNA gene

sequencing. We assessed the variations of gut microbiome between both groups

and explored potential associations between intestinal microbiota and

parameters of MetS. In addition, the Phylogenetic Investigation of

Communities by Reconstruction of Unobserved States (PICRUSt) based on the

KEGG database was used to predict the function of intestinal microbiota. We also

conducted Decision Tree Analysis to develop a diagnostic model for the MetS in

patients with schizophrenia based on the composition of intestinal microbiota.

Results: The fecal microbial diversity significantly differed between groups with

or without MetS (a-diversity (Shannon index and Simpson index): p=0.0155,

p=0.0089; b-diversity: p=0.001). Moreover, the microbial composition was

significantly different between the two groups, involving five phyla and 38

genera (p<0.05). In addition, a significant correlation was observed between

the metabolic-related parameters and abundance of altered microbiota

including HDL-c (r2 = 0.203, p=0.0005), GLU (r2 = 0.286, p=0.0005) and WC

(r2 = 0.061, p=0.037). Furthermore, KEGG pathway analysis showed that 16

signaling pathways were significantly enriched between the two groups (p<0.05).

Importantly, our diagnostic model based on five microorganisms established by

decision tree analysis could effectively distinguish between patients with and

without MetS (AUC = 0.94).
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Conclusions/interpretation: Our study established the compositional and

functional characteristics of intestinal microbiota in schizophrenia patients with

MetS. These new findings provide novel insights into a better understanding of

this disease and provide the theoretical basis for implementing new

interventional therapies in clinical practice.
KEYWORDS

metabolic syndrome, intestinal microbiota, 16S rRNA, schizophrenia, type 2
diabetes, dyslipidemia
1 Introduction

Schizophrenia patients have been reported to have a lifespan of

10-15 years shorter than the general population (1). Cardiovascular

disease (CVD) is the leading cause of premature mortality in

patients with schizophrenia (2). Over the years, metabolic

syndrome (MetS) has become a public health concern and

contributes to adverse effects and poor CVD outcomes among

schizophrenia patients (3). It is widely acknowledged that MetS

represents the clustering of several conditions, including abdominal

obesity, hypertension, hyperglycemia, and hyperlipidemia. Varying

incidence of MetS has been reported in the literature ranging from

10.1% to 69.3% in patients with schizophrenia (4, 5). Current

evidence suggests MetS can contribute to cognitive impairment

and dementia (6). Accordingly, it poses a severe public health

challenge worldwide (4). An increasing body of evidence suggests

that lifestyle habits (7), physical activity, genetic predispositions (8),

immune abnormalities (9), and antipsychotic medicine (10) are

associated with the pathogenesis of MetS in schizophrenia patients.

Over the last few years, several studies have reported that the

microbiota of the human intestine have played a vital role in the

pathogenesis of MetS (11). The ratio between human cells and

bacteria is estimated at 1:1, whereas the genome of the bacterial

strain is 100 times greater than in humans (12). It has been

proposed that the microbiota have been an “essential organ” of

the human body and play a vital role in human health and disease

(13). Dysbiosis of the intestinal flora causes metabolic problems by

affecting the energy balance of the host, eating behavior, and

chronic inflammation (14). A previous study reported that gut

microbiota promoted the absorption of monosaccharides in the

host’s intestinal lumen and induced new hepatic lipogenesis, leading

to increased body fat content and insulin resistance (15). Kalliomäki

et al. found a decrease in Bifidobacteria and an increase in

Staphylococcus aureus in the intestine of overweight/obese

children during the first year of life compared to normal-weight

children after a 7-year prospective study and concluded that
tabolic syndrome; BMI,

ic blood pressure; DBP,
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abnormalities in the intestinal flora might occur before the

development of obesity (16). Other studies showed that obesity

was associated with a proportional change of Firmicutes/

Bacteroidetes (F/B) and level of alternate Proteobacteria in the

gastrointestinal tract14. Although overwhelming evidence

substantiates that the intestinal microbiota are fundamentally

related to human health and disease, several inconsistencies have

been reported (17). Few studies have focused on the role and

characteristics of the intestinal microbiota in schizophrenia

patients suffering from MetS. In contrast, there are significant

differences in the distribution of intestinal flora in different

metabolic states. Accordingly, it is essential to investigate the

characteristics of gut flora in schizophrenia patients with MetS.

This study aimed to characterize the gut microbiota of

schizophrenia patients suffering from MetS. In addition, we

examined the possible association between the gut microbiota and

the clinical parameters of MetS. Moreover, we developed a model of

intestinal microbiota to predict MetS, proposing a novel treatment

strategy for schizophrenia patients with MetS. The flow chart see

Figure 1.
2 Methods

2.1 Sample collection

2.1.1 Study subjects
The research protocol was approved by the Shanghai First

Minzheng Mental Health Center (study number: YJZXLL2022022),

and all participants were recruited between June 2021 and December

2021. Informed written consent was provided by all patients and/or

their guardians. A total of 115 subjects (without MetS group, n=58;

with MetS group, n=57) were recruited for this current study.

All patients were recruited in this study based on the following

criteria: 1) all patients met the diagnosis of schizophrenia according

to the Diagnostic and Statistical Manual of Mental Disorders, fifth

edition (DSM-5); 2) patients were continuously hospitalized for at

least ten years; 3) patients who received antipsychotic monotherapy

treatment. 4) Patients were older than 55 years old. Patients were

excluded for the following reasons: 1) Severe physical illness or

infection; 2) Diarrhea within twomonths before recruitment; 3) Use

of probiotics or antibiotics in the three months before recruitment;
frontiersin.org
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4) Co-morbidities or other psychiatric disorders that meet the

DSM-V diagnostic criteria.

2.1.2 Clinical data collection
We collected socio-demographic and clinical information

through structured interviews and medical records. The primary

medical records include height, weight, body mass index (BMI),

waist circumference (WC), and resting blood pressure. Biochemical

indicators such as fasting blood glucose (FBS) and lipid profile were

performed from venous blood following 8 hours of fasting. The

Positive and Negative Syndrome Scale (PANSW) was used to

evaluate the patient’s psychiatric symptoms. All researchers

involved in this study received training in structuring clinical

information collection.

2.1.3 Definition of MetS
The definition of MetS was consistent with our previous study

(18). A diagnosis of metabolic syndrome was established when 3 or

more of the following criteria were met: 1) WC≥90cm; 2) TG level

≥150mg/dL; 3) HDL-c level ≤40mg/dL; 4) DBP ≥85mmHg and/or

SBP ≥130mmHg; 5) FBS levels ≥100mg/dL32.

2.1.4 DNA extraction, PCR amplification,
and sequencing

Fresh fecal samples were collected from each study subject with

sterile collection containers and stored at -80°C. The CTAB

(hexadecyltrimethylammonium bromide) method was used to

extract the total genome DNA of fecal samples. We monitored
Frontiers in Endocrinology 03
the DNA concentration and purity on 1% agarose gel, and then

DNA was diluted to 1ng/µL using sterile water.

The V3-V4 region of 16S ribosomal RNA genes was amplified

using a specific primer 341F (5’-CCTAYGGGRBGCASCAG-3’)

and 806R (5’-GGACTACNNGGGTATCTAAT-3’) with the

barcode. All PCR reactions were carried out with 15 µL of

Phusion® High-Fidelity PCR Master Mix (New England Biolabs),

two µM of forward and reverse primers, and about ten ng templates

DNA. Thermal cycling consisted of an initial denaturation at 98°C

for 1 min, followed by 30 cycles of denaturation at 98°C for 10 s,

annealing at 50°C for 30 s, and elongation at 72°C for 30 s, with a

final extension at 72°C for 5 min.

The same volume of 1XTAE buffer was mixed with PCR

products and underwent electrophoresis on 2% agarose gel for

detection. PCR products were mixed in equidensity ratios. Then,

the mixture of PCR products was purified with Qiagen Gel

Extraction Kit (Qiagen, Germany).

Sequencing libraries were generated usingTruSeq® DNA PCR-

Free Sample Preparation Kit (Illumina, USA) following the

manufacturer’s recommendations, and index codes were added.

The library quality was assessed on the Qubit@ 2.0 Fluorometer

(Thermo Scientific). At last, the library was sequenced on an

Illumina NovaSeq platform, and 250 bp paired-end reads

were generated.
2.1.5 Bioinformatics analysis
The analysis was performed according to the “Atacama soil

microbiome tutorial” of Qiime2docs and customized program
FIGURE 1

Flow chart and enrolled subjects in the current study.
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scripts (https://docs.qiime2.org/2019.1/). Briefly, raw data FASTQ

files were imported into the QIIME2 systems, and a series of

operations were performed to obtain the feature table of amplified

sequence variant (ASV) (19). The QIIME2 feature-classifier plugin

was then used to align ASV sequences to a pre-trained GREEN

GENES 13_8 99% database (trimmed to the V3V4 region bound by

the 338F/806R primer pair) to generate the taxonomy table (20).

Any contaminating mitochondrial and chloroplast sequences were

filtered using the QIIME2 feature-table plugin. Methods such as

ANCOM, ANOVA, Kruskal Wallis, LEfSe, and DEseq2 were

employed to identify the bacteria with different abundance among

samples and groups (21, 22). Bacterial diversity was determined by

alpha diversity (observed OTUs, Chao1 richness estimator,

Shannon diversity index, and Faith’s phylogenetic diversity index)

and Beta diversity (principal coordinate analysis (PCoA) (23).

Analysis of variance (ANOVA) was used to evaluate the a-
diversity among the different groups, and PERMANOVA testing

was performed for microbial community clustering (PCoA) by Bray

Curtis, unweighted UniFrac, and weighted UniFrac. Redundancy

analysis (RDA) was performed to reveal the association of microbial

communities concerning metabolic parameters based on the

relative abundance of microbial species from different taxa levels

using the R package “vegan.” In addition, the potential KEGG

Ortholog (KO) functional profiles of microbial communities were

predicted with PICRUSt (24). Unless specified above, parameters

used in the analysis were set as default.

2.1.6 Statistical analyses
IBM SPSS (version 22.0) was used to manage and analyze the

demographic and clinical data. We tested the homogeneity of

variances using Levene’s test. Comparisons between groups were

performed with variance (ANOVA) or Mann-Whitney U tests for

quantitative variables. We tested the differences between the two

groups and the operational taxonomic units (OTUs), phylum, and

genus levels. The relative abundance of each taxon in the MetS

group versus the without MetS group, the Observed_otus, Shannon

index, and Simpson index were calculated using the Analysis of

Composition of Microbiomes (ANCOM) and Kruskal-Wallis rank

sum test in R software. STAMP software was used to assess the gut

microbiota composition of phylum and genus level using default

parameters, and the significance was set at p<0.05. Correlations

between metabolic parameters and genera were calculated using

Spearman’s rank-correlation analysis based on the assumption that

there was a non-linear relationship between the examined variables.

We performed a linear discriminant effect size (LEfSe) analysis to

identify the differentially abundant taxa between the two groups. At

first, features with significant differential abundance were identified

using linear discriminant analysis (LDA), and then the effect size of

each feature was calculated. The functional differences associated

with predicted KEGG functional pathways between the MetS group

and non-MetS group were assessed by an one-way ANOVA

followed by Tukey-Kramer multiple comparisons. A diagnostic

prediction model for MetS was constructed using receiver

operating characteristic curves (ROC) and Kolmogorov-Smirnov

curve (KS). The area under ROC (AUC), as well as the value of true

positive rate (TPR) and false positive rate (FPR), were calculated to
Frontiers in Endocrinology 04
assess the diagnostic performance of the model with python. A p-

value <0.05 was statistically significant.
3 Results

3.1 Clinical characteristics of schizophrenia
patients with and without MetS

We recruited a total of 115 male schizophrenia patients that

were divided into MetS (n=57) and non-MetS (n=58) groups, and

their clinical characteristics were compared, including age,

metabolic-related parameters such as WC, BMI, BP, GLU and

lipid profile, and PANSS scores (Table 1). The two groups did

not significantly differ in age, WC, DBP, TC, and PANSS scores. In

contrast, the MetS group displayed significantly higher BMI, GLU,

SBP, TG, and LDL-c; and a lower level of HDL-c than the non-MetS

group (ps<0.05).
3.2 Altered gut microbial diversity between
the MetS group and non-MetS group

We conducted high-throughput sequencing of the V3-V4

regions of 16S rRNA genes and obtained the number of operable

taxonomic units (OTUs). Then, we characterized the bacterial gut

microbiota of all samples. The number of overlapping OTUs

(n=2795) between the two groups was visualized in a Venn plot.

22619 OTUs were uniquely found in the MetS group, and 13272

OTUs in the non-MetS group (Figure 2A). During rarefaction

analysis, the estimated OTU richness of all samples was mainly

close to saturation, indicating that the OTU richness of all models

was sufficient for the subsequent analysis (Figure 2B).

We used well-established indexes such as Shannon and

Simpson indexes to estimate the gut microbial a-diversity
between the two groups, which showed that the MetS group

exhibited significantly increased bacterial gut microbial diversity

than the non-MetS group (p=0.0089 for the Shannon index, and

p=0.0155 for the Simpson index; by Wilcoxon rank-sum Test,

Figure 2C). The weighted Unifrac distances and Bray-Curtis

dissimilarity were used to calculate the b-diversity in the gut

microbiota of schizophrenia patients between the two groups.

Principal coordinates analysis (PCoA) found that the gut

microbiota were significantly different between the two groups

(both P=0.001, by permutational MANOVA (PERMANOVA))

(Figure 2D). These findings indicated that the gut microbiota

diversity was significantly different between the two groups.
3.3 Differences in the gut microbiome
composition between the MetS group and
non-MetS group

Phylotype abundance in both groups at the phylum level and

genus level were compared. We analyzed the fecal bacterial

microbiome abundance using the Wilcoxon rank-sum test with
frontiersin.org
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the Benjamini-Hochberg method (Figure 3). At the phylum level

(Figure 3A), there were five significant microbiota differences

between the two groups, including Firmicutes, Bacteroidetes,

TM7, Planctomycetes, and Actinobacteria. In addition, the
Frontiers in Endocrinology 05
abundance of Firmicutes was substantially higher in the non-

MetS group (p=8.80e-4). In comparison, the abundance of the

other four phyla was significantly higher in the MetS group (ps
<0.05). At the genus level, there were 37 genera with significant
B

C

D

A

FIGURE 2

The a-diversity and b-diversity indices of the fecal microbiome in schizophrenia patients with MetS and without Mets. (A) Venn plot of OUT, (B)
Dilution curve of the a-diversity index. (C) The Shannon and Simpson indexes are based on OUT counts between the two groups (p=0.0155,
p=0.0089). OUT, operational taxonomic units. (D) PCoA plots of bacterial b-diversity based on the weighted UniFrac distance (left panel) and Bray-
Curtis dissimilarity (right panel) were analyzed between the two groups (both p=0.001) *: p <0.05, **: p<0.001.
TABLE 1 Demographic and clinical parameters of schizophrenia patients with and without MetS.

With MetS
(n=57)

Without MetS
(n=58)

p

Age (ages) 66.09 ± 7.74 67.81 ± 8.23 0.25

WC (cm) 96.56 ± 8.98 83.03 ± 9.34 0.538

BMI (kg/m2) 25.47 ± 3.11 20.96 ± 3.17 <0.001**

GLU (mmol/L) 5.36 ± 0.89 4.77 ± 0.52 <0.001**

SBP (mmHg) 132.19 ± 12.47 124.28 ± 14.07 0.002**

DBP (mmHg) 75.96 ± 8.35 72.95 ± 8.43 0.056

HDL-c (mmol/L) 0.89 ± 0.19 1.13 ± 0.22 <0.001**

TG (mmo/L) 1.60 ± 0.84 0.96 ± 0.50 <0.001**

TC (mmol/L) 4.61 ± 0.75 4.53 ± 0.86 0.295

LDL-c (mmol/L) 2.83 ± 0.54 2.48 ± 0.65 0.02*

PANSS

T scores 71.19 ± 14.64 73.96 ± 15.90 0.333

P scores 10.44 ± 4.78 10.93 ± 4.76 0.581

N scores 25.58 ± 6.53 27.76 ± 6.05 0.066

G scores 35.167.89 36.03 ± 6.74 0.523
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differences between the two groups (Figure 3B). The abundance of

five genera such as Clostridium, Eggerthella, Pseudoalteromonas,

Uruburuella, and Bulleidia was significantly higher in the non-Mets

groups (ps <0.05), and the abundance of the other 32 genera was

significantly higher in the MetS group (ps <0.05), suggesting that the

composition of gut microbiota was altered significantly between the

two groups.
3.4 Taxonomic alterations in gut
microbiota between the MetS group and
non-MetS group

To explore the presence and effect size of region-specific

OTUs between the MetS group and without the MetS group, we
Frontiers in Endocrinology 06
used the linear discriminant analysis (LDA) effect size (LEfSe)

analysis to supervise the difference comparison of gut microbiota

between the two groups. We applied LDA LEfSe analysis to

identify critical taxonomic differences and gut microbiota

between the two groups, with a log LDA score threshold set as

3.0. A total of 45 taxa (from phylum to species) significantly

differed between the two groups.

We found the relative abundances of the Bacteroides genus,

Lactobacillus genus, Lactobacillus Streptococcus genus, Dialister

genus, Clostridium genus, Parabacteroides genus, Burkholderia

genus, Megamonas genus, and Sutterella genus were higher in the

MetS group. In contrast, the relative abundances of Clostridium genus,

Sarcina genus, Catenibacterium genus, Akkermansi genus, Turicibacter

genus, Eubacterium genus, Clostridium genus, and Prochlorococcus

genus were higher in the non-MetS group (Figure 4).
B

A

FIGURE 3

Gut microbiota composition alterations at the phylum and genus levels between the Mets and non-MetS groups. (A) The relative abundance
of 5 phyla was significantly different between the two groups. (B) The relative abundance of 38 genera was significantly different between
the two groups.
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3.5 Fecal microbiota alteration is
associated with metabolic parameters

It has been established that environmental changes generally

influence the functionality and pathophysiology of fecal microbiota.

Thus, we applied RDA analysis to evaluate the relationship between

gut microbiota and metabolic-related parameters in this current study.

The amount of explanatory variation by all the metabolic-related

variables was 65.76% which suggested that the metabolic-related

factors could significantly alter the population of the fecal

microbiome at the genus level. According to the Monte Carlo

permutation test, the metabolic-related parameters HDL-c

(r2 = 0.203, p=0.0005), GLU (r2 = 0.286, p=0.0005), and WC

(r2 = 0.061, p=0.037) were significantly associated with the

distribution of bacterial taxa in the constrained ordination model

(Figure 5A). We used Spearman’s correlation analysis to explore the

relationship between the abundances of thirty significantly altered gut

microbial genera and changes in metabolic-related indices among all

the participants. We found close associations between genera and

glucose metabolism, lipid profiles, BMI, BP, and other metabolic-

related parameters. TC and LDL-c showed a strong positive

association with the Lachnospira genus and a negative correlation

with the Parvimonas genus. TG was negatively correlated with the

Epulopiscium and Akkermansia genera. In contrast, HDL-c was

positively correlated with Fusobacterium, Methylobacterium, and

pulopiscium genera and negatively associated with Odoribacter and

Calothrix genera. Moreover, serum glucose was negatively associated

with Rhodococcus and Akkermansia genera. SBP showed a
Frontiers in Endocrinology 07
strong positive correlation with Dialister, Acidaminococcus,

and Enhydrobacter genera and a negative association with

Pyramidobacter and Methanobrevivacter genera. Finally, BMI, WC,

and weight displayed a similar relationship with these thirty genera;

they were positively associated withMegamonas and AF12 genera and

negatively associated with Jusobacterium and Epulopiscium genera

(Figure 5B). Overall, our findings suggest that the genera of Dialister,

Acidaminococcus, Enhydrobacter, Fusobacterium, Epulopiscium,

Epulopiscium, Akkermansia, Rhodococcus, and Methylobacterium

are closely associated with the development of MetS.
3.6 Functional prediction of gut microbiota

First, we applied PICRUSt2 to predict the KEGG signaling

pathway of the amplicon genes, followed by a random forest

approach to enrich the amplicon genes and identify the top 20

functionally significant signaling pathways (Figure 6A).

Furthermore, intergroup variation analysis on these 20 signaling

pathways yielded 16 significant signaling pathways (Figure 6B).
3.7 MetS diagnostic prediction model
based on taxonomic compositions of the
gut microbiota

The decision tree is a differential classification model using Gini

coefficients to classify two groups of cases. As shown in Figure 7A,
B

A

FIGURE 4

Taxonomic differences of fecal microbiota in schizophrenia patients with MetS and without MetS. (A) A Linear discriminant analysis (LDA) effect size
(LEfSe) analysis revealed significant bacterial differences in fecal microbiota between the two groups. LDA scores (log 10) >3 and p<0.05 are listed.
(B) Cladogram using the LEfSe method indicating the phylogenetic distribution of fecal microbiota associated with the MetS and non-MetS groups.
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the decision tree model had a depth of four with a total of eleven

nodes, including six terminal nodes. The model showed that

variables that significantly contributed to the diagnosis were

Epulopiscium, Dialister, Blautia, p_75_a5, and Desulfovibrio

genus. The model Epulopiscium ≤ 1.5 + Dialister ≤ 58.0 yielded a

predicted prevalence probability of 6/17 (overall sample prevalence

is 57/115), which was lower than observed in our samples. Likewise,

the prevalence probability was 12/15 for Epulopiscium ≤1.5 +

Dialister > 58.0 + Lactobacillus ≤107.5. At Epulopiscium ≤ 1.5 +

Dialister>58.0 + Lactobacillus >107.5, the prevalence probability

was 30/30. Both models yielded a much greater prevalence than

observed in our samples. The models Epulopiscium>1.5 +

p_75_a75 ≤ 0.5, Epulopiscium>1.5 + p_75_a75>0.5 + Blautia ≤

123.5, or Epulopiscium>1.5 + p_75_a75>0.5 + Blautia>123.5

yielded a prevalence of 0/20, 1/17, and 8/16 respectively, lower

than observed in our samples. KS curve analysis was used to

evaluate the efficiency of the decision tree model by describing

cumulatively diseased and non-diseased samples. Indeed, the more
Frontiers in Endocrinology 08
obvious the distinction between the two curves, the stronger the

model’s prediction accuracy. The KS curve (Figure 7B) showed that

the two groups of samples were clearly separated. ROC curve

analysis was also applied to evaluate the prediction efficiency of

the decision tree model. The area under the ROC curve of the model

in Figure 7C was 0.94, indicating that the model yielded a good

performance and could better distinguish MetS patients from non-

Mets patients.
4 Discussion

Growing evidence suggests that alterations in the gut microbiome

are associated with metabolic disorders, inflammatory,

neurodegenerative diseases, and cancer among human beings (13,

25). There is a rich literature available suggesting that the fecal

microbiome plays a vital role in the pathogenesis of MetS among

the general population (26). To our knowledge, few studies have
BA

FIGURE 6

KEGG pathway analysis of Mets and non-Mets groups. (A) Enrichment analysis of KEGG signaling pathways. (B) Variance analysis of KEGG between
the two groups.
BA

FIGURE 5

The association analysis of fecal microbiota composition and metabolic parameters. (A) A biplot of redundancy analysis (RDA axis one versus axis 2) of
fecal microbiota data, constrained by related metabolic factors including WC, weight, GLU, HDL, HDL-c, TG, BMI, SBP, DBP, TC, and LDL-c.
(B) Heatmaps of correlations between differentially abundant microbiota genera and metabolic-related factors. *: p <0.05, **: p<0.001, ***:p< 0.0001.
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hitherto characterized the relationship between gut microbiota and

schizophrenia patients withmetabolic syndrome. Herein, we depicted

the community structure of intestinal microbiota in schizophrenia

patients with MetS utilizing 16S rRNA gene sequencing. Importantly,

we found intestinal microbiota composition alterations in male

schizophrenia individuals with metabolic syndrome from the

Chinese mainland population. In this respect, at the phylum level,

the relative abundance of five gut microbiota differed significantly

between the MetS and non-MetS groups, and at the genus level, the

relative abundance of 38 intestinal microbiomes differed significantly

between the two groups. Moreover, we found a significant correlation

between the gut microbiota and the components of MetS and used

PICRUSt2 to predict the differences in KEGG signaling pathways

between the two groups and found 16 signaling pathways with

significant differences. Based on the microbial signature, we used

decision tree analysis to establish a diagnostic prediction model for

MetS. Importantly, we found that Epulopiscium, Dialister, Blautia,

P_75_a5, and Desuflvibrio genus were highly enriched in patients

with schizophrenia and associated with the diagnosis of MetS. These

findings provide clues to understanding this disease and identifying

new targets or markers for diagnosis and intervention.
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The fecal microbiome of schizophrenia patients with MetS

exhibited significant alterations in richness and evenness, defined

as the a-diversity index, compared with patients without MetS,

consistent with a previous study that reported that the a-diversity of
the gut microbiome increased in obese patients who underwent

sleeve gastrectomy after three months27. In the present study, the b-
diversity index exhibited significant differences in the microbiome

structures between the MetS and non-MetS groups, consistent with

previous studies suggesting the intestinal microbiota were altered in

schizophrenia patients with MetS (27, 28). Likewise, microbial

diversity alteration has been associated with other conditions,

including Alzheimer’s disease, obesity, inflammatory bowel

disease, and Parkinson’s disease (29, 30). Thus, a better

understanding of intestinal microbiome variability between

schizophrenia patients with and without MetS can potentially

help assess and diagnose MetS early and provide timely treatment.

Current evidence suggests that the phylum Bacteroidetes and

Firmicutes dominate healthy adults’ intestinal tract, representing

more than 90% of the total community (31). This composition is

unaffected by acute perturbations, as its plasticity allows a rapid

return to its initial composition (32). Therefore, it is essential to
B
C

A

FIGURE 7

Diagnostic prediction model for MetS based on taxonomic compositions of the gut microbiota. (A) Predictive modeling of metabolic syndrome
diagnosis using decision trees. (B) Efficiency of decision tree model evaluated by Ks curve. (C) Efficiency of decision tree model evaluated by ROC curve.
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characterize the bacterial communities involved in dysbiosis. Our

study observed that Firmicutes and Bacteroidetes significantly

differed between the two groups, and the abundance of Firmicutes

decreased while Bacteroidetes considerably increased in the MetS

group. Consistently, it has been shown that African children who

lived in rural areas consuming a rich fiber diet showed higher

proportions of Bacteroidetes and lowered Firmicutes (33).

Moreover, some studies showed that adults with obesity and type

2 diabetes presented a higher abundance of Bacteroidetes. In

contrast, Turnbaugh et al.’s study found that obese mice had a

50% decrease in Bacteroidetes and a proportional expander in

Firmicutes and Archaea34. These findings suggest that intestinal

microbiota composition is affected by many factors and that the

outcome of these influences is subject to significant heterogeneity.

It has been established that gut microbiota have been a

contributing factor to obesity (34). Interestingly, we found an

alteration of the Bacteroidetes/Firmicutes ratio between the two

groups, and the ratio declined in the MetS group. Over the years,

much emphasis has been placed on the role of the Bacteroidetes/

Firmicutes ratio (35), which is widely thought to have significant

value for diagnosis and therapy in the future.

Most parameters related to MetS (such as BMI, HDL-c, TG,

GLU, and SBP/DBP) were significantly different between the two

groups. To explore the possible effect of the intestinal microbiome

on schizophrenia patients and metabolic parameters, we performed

correlation analyses between each genus’s abundance and metabolic

parameters. HDL-c, GLU, and WC were significantly associated

with the intestinal microbiome. HDL-c showed a significant

positive correlation with Fusobacterium, Methylobacterium, and

Epulopiscium and a significant negative correlation with

Odoribacter and Calothrix. Akkermansia had a significant

negative correlation with both GLU and WC. Consistently,

previous animal studies illustrated that the gut microbiome

influenced host TG levels and energy metabolism by increased

lipoprotein lipase-mediated TG storage in adipose tissue (36, 37).

However, they did not identify which microbiota influenced lipid

and energy metabolism.

Karlsson et al. found that 66 fecal metagenomics gene clusters

were associated with TG levels in humans. Among these,

Clostridiales and Ruminococcaceae bacteria were positively

related to HDL-c levels but not associated with LDL-c or TC

levels (38). A recent study reported that Clostridiale was

negatively correlated with HDL-c (39). However, our current

study did not find a significant correlation between Clostridiale

and HDL-c, which may be attributed to the influence of different

ethnic groups, study subjects (patients with diabetes, obesity, and

MetS) and dietary habits. Moreover, the spectrum of microbiota

studied may not be completely extensive, and another microbiota

were not specifically measured. Akkermansia is a normal bacterium

colonized in the human intestinal tract and is an oval gram-negative

anaerobic bacterium. It has been shown that there is a negative

correlation between its abundance and overweight, obesity, type II

diabetes, and hypertension (40, 41). Some studies have shown that

Akkermansia reduced plasma cholesterol indents and the TG and

TC levels (42). Akkermansia has also been reported to prevent the

development of atherosclerosis (43), consistent with our findings.
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Thus, the gut microbiota plays a crucial role in the metabolic status

of schizophrenia patients. To better understand the microbiome-

host correlations, more detailed analysis and more studies are

required to determine which bacterial species or strains influence

the host.

Some basic and clinical studies have shown that gut microbiota

is altered by antipsychotics. Bretler et al. found that obese

individuals and those taking olanzapine and risperidone, which

eventually leaded to weight gain, have the similar microbiota (44).

Olanzapine and risperidone treatment in rodents is associated with

reduced gut microbiota diversity and an increased ratio of

Firmicutes to Bacteroidetes. These changes parallel those observed

in the gut microbiota of obese individuals (44). Concomitant

treatment of rats with olanzapine intraperitoneal injections and

oral administration of neomycin, etronidazole, and polymyxin

(known as “antibiotic cocktail” not only resulted in the reversal of

the previously mentioned increased ratio of Firmicutes and

Bacteroidetes, but also abated weight gain (44, 45). Another

research displayed the agonist of histamine-1/3-receptor (H1R/

H3R) could mitigate the weight gain induced by olanzapine in

mice (44). The diversity index is higher in first-episode drug-naïve

schizophrenia patients compared to those who have suffered from

chronic antipsychotic-treated schizophrenia (46).

In this current study, the comprehensive index of a-diversity
Shannon index of gut microbiota in the MetS group is higher than

the non-MetS group. This findings highlighted different outcomes

as compared to the widely accepted notion that a decrease in gut

microbiota diversity is linked to diseases (47).The results were

similar to that of Vandeputte et al.’s research, which employed

16S rRNA gene sequencing on healthy women (48). Potential

reasons for the discrepancy in results could be due to the fact that

the subjects involved in the research were diagnosed with

schizophrenia, whose gut microbiota composition varies when

compared to that of healthy individuals (49). Moreover, gut

microbial structure is further modified after antipsychotic

treatment (50, 51), such as after being prescribed risperidone for

a total of 24 weeks, the genera differed from baseline levels in

patients with first-episode schizophrenia (51). Nevertheless, the

pathogenic mechanism of these modifications in gut microbiota

resulting from antipsychotic drugs uncovers some uncertainties.

Alteration in the gut microbiota might increase the susceptibility of

hosts to metabolic disorders. Due to the higher risk of metabolic

disorders in schizophrenic patients compared to the general

population, changes in the gut microbiota exacerbate this

metabolic disorder predisposition.

In addition, PICRUSt2 analysis was performed to reveal

differences in functional profiles of fecal communities between

groups with and without MetS. KEGG analysis showed significant

enrichment in metabolic pathways, especially in arginine and proline

metabolism. Arginine usually exists in many foods and is involved in

various metabolic pathways. It is a substrate for NOS enzymes that

generate nitric oxide, a key molecule involved in normal endothelial

function and insulin sensitivity (52), exhibiting hypolipidemic

activity, particularly in subjects at risk of developing type 2 diabetes

(53), improving endothelial (53) and b-cell function (54), and

oxidative stress (55). A recent study showed that L-arginine could
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delay the development of T2DM for a long time (56). Similarly,

proline is a unique amino acid whose unique structure distinguishes it

from other amino acids in chemical stability and biochemical

reactions (57). Proline plays a key regulator role in multiple

biochemical and physiological processes, such as synthesizing

arginine, polyamines, and collagen and activating mTOR cell

signaling. Recent studies found proline could affect food intake and

fat accumulation, associated with BP and a possible anti-

inflammatory effect (58). These observations are consistent with the

consensus thatMetS is highly correlated withmetabolic disorders and

energy surplus. Taken together, the above studies corroborate the role

of arginine and proline in metabolic disorders from different

perspectives. Herein, we found differences in the metabolism of

arginine and proline between the two groups during KEGG

analysis based on taxonomic gut microbiota, which supports to

some extent the role of gut microbiome in metabolic abnormality.

To the best of our knowledge, no previous study has investigated gut

microbiome characteristics among schizophrenia patients with MetS.

KEGG functional analysis showed that the arginine and proline

metabolism significantly reduced gut microbiota among patients

with Mets. Furthermore, it indicated that changes in gut microbiota

function via the metabolic signaling pathways might contribute to the

pathogenesis of metabolic disorders.

The current study has some unique strengths. To the best of our

knowledge, this is the first study to investigate the association of gut

microbiome with MetS among schizophrenia patients in mainland

China. In addition, we comprehensively explored the heterogeneous

characteristics of the intestinal microbiome among schizophrenia

participants with MetS. Finally, we illustrated the association of the

gut microbiota with MetS among schizophrenia individuals. Our

findings provide the foothold for further studies on early diagnosis

and preventive targets or biomarkers of MetS of schizophrenia

patients. Nonetheless, several limitations of our study should be

noted. First, it must be mentioned that given that all study

participants were Chinese, the results and conclusions should be

interpreted cautiously and cannot be extrapolated to other ethnic

groups. Accordingly, our findings should be validated in different

regions and ethnic groups. Second, this study was a cross-sectional

design, and dynamic changes in the intestinal microbiota could not

be observed. Hence, additional prospective validation is required to

explore further the relationship between gut microbiota and MetS

among individuals with schizophrenia. Third, our analysis was not

based on the taxonomy of bacterial species. Indeed, different species

within a genus may have other effects on metabolism-related

parameters. In addition, it should be noted that the sample size of

this study is relatively small and the power of the study may be

limited. These results should be considered preliminary and need to

be replicated in subsequent independent samples. Finally, the

microbiota studied in this research mainly came from the lower

colon, while the small intestinal microbiota, which plays a

significant role in gut microorganism metabolism, was not

collected. Therefore, the results are subject to some degree of

uncertainty. Given the difficulties in sampling different parts of

the intestinal tract in humans, it may be worthwhile to conduct

segmented sampling studies in animal models in the future.
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In conclusion, we characterized the variations of intestinal

microbiome among schizophrenia patients with and without

MetS in mainland China. We identified the intestinal microbiome

associated with the components of MetS, such as HDL, GLU, and

WC and the KEGG pathway associated with the microbiota

characteristics of MetS. We also identified specific changes in gut

microbiota genera in schizophrenia patients with metabolic

syndrome. The identified intestinal microbiome may be harnessed

for early diagnosis and preventive targets or biomarkers for

schizophrenia patients with MetS.
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