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Vascular endothelial injury in diabetes mellitus (DM) is themajor cause of vascular

disease, which is closely related to the occurrence and development of a series

of vascular complications and has a serious negative impact on a patient’s health

and quality of life. The primary function of normal vascular endothelium is to

function as a barrier function. However, in the presence of DM, glucose and lipid

metabolism disorders, insulin resistance, inflammatory reactions, oxidative

stress, and other factors cause vascular endothelial injury, leading to vascular

endothelial lesions from morphology to function. Recently, numerous studies

have found that autophagy plays a vital role in regulating the progression of

vascular endothelial injury. Therefore, this article compares the morphology and

function of normal and diabetic vascular endothelium and focuses on the current

regulatory mechanisms and the important role of autophagy in diabetic vascular

endothelial injury caused by different signal pathways. We aim to provide some

references for future research on the mechanism of vascular endothelial injury in

DM, investigate autophagy’s protective or injurious effect, and study potential

drugs using autophagy as a target.

KEYWORDS

vascular endothelial injury, endothelial cells, pathological characteristics,
autophagy, diabetes
1 Introduction

Diabetes mellitus (DM) is a chronic metabolic condition characterized by elevated

blood glucose levels due to insufficient insulin secretion and/or insulin resistance (IR).

According to the International Diabetes Federation research and predictions, the global

prevalence of DM was approximately 9.3% (463 million people) in 2019 and is expected to
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rise to 10.2% (578 million people) and 10.9% (700 million people)

by 2030 and 2045, respectively (1). DM has become a killer,

endangering people’s lives and health worldwide. The dangers of

DM are mainly reflected in its ability to cause extensive vascular

complications (2, 3). For example, the risk of cardiovascular disease

in patients with type 2 DM (T2DM) is twice that of the general

population, and the prognosis is poor (4). About one-third of

diabetic patients develop diabetic retinopathy that has a serious

negative impact on the patient’s health and life (5). These

complications are the most common cause of patient mortality

and disability. Therefore, actively exploring the pathological

mechanisms of DM and its complications will help develop

beneficial preventive measures that can delay and reverse the

cacoethic consequences of DM.

As the innermost barrier for tissue to isolate blood, the vascular

endothelium can protect tissue from various physical and chemical

stimuli tomaintain blood vessel function. However, in the presence of

DM, the structure and function of the vascular endothelium change,

resulting in abnormal vascular barrier function, activation of

proinflammatory and procoagulant linkages, increased production

of reactive oxygen species (ROS), and decreased bioavailability of

nitric oxide (NO), thereby becoming the basis of macrovascular and

microvascular damage, which is the initial link in the occurrence and

development of diabetic vascular disease (6–8). DM is a complex

disease that is accompanied by glucose and lipid metabolism

disorders, IR, inflammatory reaction initiation, and oxidative stress

activation. Activating autophagy in aortic endothelial cells (ECs) can

reduce vascular inflammation and atherosclerosis onset (9) and

accelerate endothelial regeneration after injury in DM rats (10),

indicating that autophagy regulates vascular endothelium to

participate in the progression of vascular lesions in DM.

Contrastingly, another mechanism to improve hyperglycemia-

induced endothelial injury is achieved by downregulating

autophagy (11). In addition, Martino E et al. found that IR and

activation of the inflammatory response can induce EC autophagy

(12, 13), and autophagy appears to be triggered with the progression

of DM. Therefore, it is unclear whether the activation or inactivation

of the autophagy switch can inhibit or promote the process of

vascular endothelial injury in DM. Therefore, this study aims to

evaluate the mechanism by which autophagy regulates vascular

endothelial injury in DM and to provide suggestions for the

prevention and treatment of diabetic vascular lesions.
2 Summary of the physiological
structure and function of the
vascular endothelium

The vascular endothelium is the primary barrier that protects

tissues from circulatory invasion. In terms of morphology, the basic

structure of the vascular endothelium is ECs lining the basement

membrane. ECs are sparsely distributed along the inner wall of the

vessel, and the lumen surface is covered with an endothelial

glycocalyx (EG) (14–16). The primary function of the vascular
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endothelium is to act as a barrier, which not only prevents blood

infiltration and maintains blood flow patency but also alters

vascular permeability by regulating intercellular connections to

allow material transport (17, 18). It also participates in the

immune response of inflammatory tissue by regulating blood

flow, recruiting leukocytes, and regulating inflammatory factors

(14). Finally, ECs can secrete bioactive molecules that regulate

vascular homeostasis, such as NO, which promotes vasodilation

and cell growth (19, 20); prostacyclin, which promotes vasodilation

and anti-thrombosis (21); and endothelin-1 (ET-1) and

thromboxane A2, which contract vessels (22, 23). However, the

differences in tissue site and vascular type determine the complexity

of the structure and function of the vascular endothelium. This

article does not focus on endothelial physiology, so it is

briefly summarized.
3 Pathological characteristics of
vascular endothelial injury in DM

The definition of vascular endothelial injury is currently

unclear. In the presence of DM, various factors, such as glucose

and lipid metabolism disorders, IR, inflammatory reactions,

oxidative stress, mitochondrial damage, and activation of

advanced glycation end products (AGEs) and their receptors

(RAGEs), are responsible for vascular endothelial injury. The

major characteristics of vascular endothelial injury include

histomorphological changes and dysfunction (24–28), and a

systematic description of these characteristics will aid in the

development of follow-up studies.
3.1 Morphological characteristics of the
vascular endothelium in DM

Study done by (29) has shown that the intima-media thickness

of the carotid artery increased in adolescents with T2DM and was

accompanied by arterial stiffness. In addition, in a DM animal

model, the surface of the vascular endothelium was uneven, the ECs

were arranged irregularly, most of the ECs were missing and falling

off, the remaining ECs contained a large number of cytoplasmic

segments and vacuoles, the intima was slightly proliferating or

missing, the elastic layer was thin, the boundary was obscure and

disordered, and the number of nucleated cells was increased (30–

32). This indicates that DM significantly changes the structure and

composition of the vascular endothelium. Furthermore, high

glucose levels promote ROS production by altering mitochondrial

ultrastructure (such as mitochondrial fission and fusion), which is

an important feature of endothelial damage (33–35). Moreover, the

EG acts as a natural dynamic barrier attaching to the EC surface,

and high circulating glucose levels reduce EG’s thickness or

eliminate EG (36–38). The loss of EG promotes the adhesion of

lipids, monocytes, and platelets to the vascular endothelium, which

damages the endothelial barrier and increases endothelial

permeability and blood component leakage (39). Importantly,
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Yan Qiu proved that restoring the thickness and coverage of EG can

reduce microvascular permeability and alleviate diastolic

dysfunction (40). Thus, reversing EG damage may be the first

step in treating diabetic vascular endothelial injury.

Finally, many studies have proven that patients with T2DM

have higher levels of circulating ECs than healthy people. This is

because ECs exposed to high glucose levels undergo apoptosis (41,

42). High glucose levels inhibit the phosphorylation of AMP-

activated protein kinase (AMPK), resulting in the gradual

fragmentation of mitochondria. When mitochondrial fusion/

division homeostasis is disrupted, ECs can quickly induce

apoptosis and vascular injury (43). On the contrary, activating

AMPK can inhibit apoptosis induced by high glucose levels and

improve endothelial dysfunction (44). Therefore, apoptosis has

emerged as an important manifestation of structural and

morphological changes in vascular endothelial injury in DM, and

it is the main cause of endothelial dysfunction.
3.2 Functional characteristics of the
vascular endothelium in DM

In the presence of high circulating glucose levels, endothelial

dysfunction is characterized by an imbalance of vasodilation and

contraction function, an increase in the endothelial permeability

and oxidative stress, the release of proinflammatory and

prothrombus factors, and leukocyte adhesion (23, 45–47).

Importantly, NO produced by L-arginine and nicotinamide

adenine dinucleotide phosphate under the action of endothelial

NO synthase (eNOS) is not only essential for regulating

endothelium-dependent vasodilation but also for mediating

various EC functions (48, 49). Therefore, a reduction in NO

production or insufficient bioavailability is considered a landmark

event in vascular endothelial dysfunction (50, 51).

Some studies have shown that vasodilation inhibition caused by

a decrease in NO production or insufficient bioavailability is

common in DM (52). In general, glucose can participate in

glycolysis via the pentose phosphate pathway, but high glucose

levels can reduce endothelial NO bioavailability by inhibiting this

pathway (53). The production of AGEs and their interaction with

RAGEs can enhance EC permeability (54), inhibit eNOS activity

(55), and ultimately prevent NO synthesis. Furthermore, the

development of oxidative stress contributes to the reduction of

NO bioavailability. High intracellular glucose levels can activate

protein kinase C (PKC), which can enhance the oxidative

stress response by rapidly inactivating NO, impairing diastolic

function, and promoting ET-1 synthesis, thereby resulting in

vasoconstriction and platelet aggregation (56). In addition, high

glucose levels promote the expression of mitochondrial fission-

related proteins, such as dynamin-related protein 1 (Drp1) and

fission 1 (Fis1), thereby impairing mitochondrial function,

promoting ROS accumulation, reducing eNOS activity and NO

bioavailability, and aggravating endothelial dysfunction (57, 58).

D’Onofrio N et al. inhibit the oxidative stress response, exert

cardiovascular protective effects, and regulate the redox status of

endothelial mitochondria by regulating mitochondrial sirtuins
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(such as SIRT1, SIRT3, and SIRT6) (13, 34, 59). Insulin stabilizes

cardiovascular function by stimulating ECs to secrete NO, but IR

inhibits the signal pathway of phosphoinositide 3-kinase (PI3K)/v-

Akt murine thymoma viral oncogene homolog (Akt) that produces

NO, resulting in eNOS inactivation and insufficient NO production

(60, 61). The mitogen-activated protein kinase (MAPK) pathway,

which produces intercellular adhesion molecule-1, vascular cellular

adhesion molecule-1, and E-selectin, is unaffected (25), and cyclic

hyperinsulinemia overactivates the MAPK pathway to promote ET-

1 (62), ultimately leading to vascular endothelial dysfunction,

enhancing endothelial adhesion, and promoting the occurrence

and development of vascular endothelial dysfunction.

To summarize, the endothelial structure abnormalities, which

include morphological changes in the vascular endothelium,

mitochondrial damage, ROS accumulation, EG loss, EC apoptosis,

and the imbalance of the endothelial dysfunction of vasodilator and

vasoconstrictor secretion due to the reduction in NO synthesis or

bioavailability, constitute the key pathological characteristics of

vascular endothelial injury in DM. Figure 1 shows vascular

endothelial injury.
4 Molecular mechanisms
of autophagy

For cell homeostasis and body metabolism regulation,

autophagy transports intracellular components to lysosomes for

degradation and recovery. Autophagy disorder causes the body’s

metabolism to shift toward uncontrollable consequences such as IR,

DM, and atherosclerosis (63). Autophagy regulation may become

an important strategy for preventing the development of cacoethic

body metabolism. Mammalian autophagy is classified into three

types, namely, macroautophagy, microautophagy, and chaperone-

mediated autophagy (64), with megaautophagy being prominent

and widely studied. Therefore, this article will focus on introducing

the molecular mechanism of megaautophagy (hereinafter referred

to as “autophagy”) and its role in vascular endothelial injury in DM.

Mammalian autophagy activation includes four key steps:

initiation, nucleation, elongation, and fusion. When the body is

nourished and energized, the MTORC1 and ULK1/2 complexes

(ULK1/2-ATG13-RB1CC1-ATG101) work together to inactivate

ULK1/2 and ATG13, preventing autophagy. Conversely,

insufficient nutrition or energy causes AMPK to activate MTORC1,

dissociating MTORC1 and ULK1/2, partially dephosphorylating

ULK1/2 and ATG13, and then phosphorylating RB1CC1 and

ATG101, which initiates autophagy (65, 66). The activation of the

ATG14 complex (ATG14-BECN1-PIK3C3-PIK3R4) by the

phosphorylated ULK1/2 complex is the key step in nucleation.

During the nucleation process, AMBRA1 can positively regulate

the ATG14 complex and autophagy by preventing BCL2 from

binding to BECN1 (66). The elongation process mainly involves

two protein-coupling events (67, 68): (1) with the help of ATG7 and

ATG10, ATG12 is coupled with ATG5, and the coupling compound

is combined with ATG16L1 to finally form the ATG12-ATG5-

ATG16L1 complex; (2) LC3 forms LC3-I under the effect of ATG4.

LC3-I is coupled with PE on the surface of emerging autophages via
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ATG3 and ATG7 to form LC3-II; this process is also guided by the

ATG5-ATG12-ATG16L1 complex. Subsequently, LC3-II is placed

on the autophagy membrane and interacts with receptors responsible

for recruiting autophagy substrates (such as SQSTM1/P62 and

NBR1), causing the isolation membrane to expand and seal,

resulting in the formation of autophagosomes (LC3-II/LC3-I

reflects the amount of autophagosome formation) (69–71). Finally,

the autophagosome and lysosome fuse to form the autolysosome,

which degrades autophagy substrates. The specific activation process

of autophagy is shown in Figure 2.
5 Mechanism of autophagy regulating
vascular endothelial injury in DM

Several studies have proved that DM patients have impaired

autophagy in the vascular endothelium compared with non-DM

patients and that impaired autophagy induces and aggravates

vascular endothelium morphological abnormalities and

dysfunction, including EC apoptosis and exfoliation (72, 73), EG

reduction (72), insufficient EC migration and generation (10),

increased oxidative stress (74, 75), and blocked eNOS activation

(76). The recovery of damaged autophagy can prevent vascular

endothelial injury in DM (10, 76). Therefore, autophagy regulation

is expected to become an important strategy for delaying and

improving DM angiopathy. However, autophagy can cause

excessive consumption of intracellular proteins and organelles,

promote degradation of anti-apoptosis proteins and cell survival

factors (77), result in autophagic death and apoptosis (78, 79), and

subsequently induce EC dysfunction. Therefore, in order to provide

insights for future basic research and clinical applications, it is

urgent to sift through and summarize the relevant literature data

and mechanisms to explore the role of autophagy in regulating

vascular endothelial injury in DM.
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5.1 PI3K/AKT/mechanistic target of
rapamycin pathway

In diabetic vascular endothelium, autophagy-mediated EC injury is

commonly inhibited by activating the PI3K/AKT/mTOR signaling

pathway. Long-term AGE stimulation upregulates forkhead box

transcription factor O1 (FOXO1) and enhances AKT activity, which

decreases silent information regulator SIRT1 deacetylase activity via

phosphorylation and inhibits ATG14 expression. The above

mechanism impairs autophagosome–lysosome fusion and mediates

autophagic apoptosis in ECs (80). Regulating the PI3K/AKT/mTOR

signaling pathway to activate autophagy is an effective way to reduce

DM-related EC injury. For example, miR-126, miR-199a-3p, and

exosome miR-21 upregulate the expression of autophagy-promoting

genes, such as ATG5, Beclin1, and LC3, by inhibiting the PI3K/AKT/

mTOR signaling pathway; activate EC autophagy; restore autophagy

flux; and alleviate endothelial injury induced by glycolipid metabolism

disorders (81–84). Furthermore, in diabetic mice, activating

promyelocytic leukemia zinc finger protein (PLZF) can upregulate

PI3K expression, promote EC autophagy, and protect the vascular

endothelium from AGE-induced injury (85).

However, contrary evidence suggests that autophagy induced by

the PI3K/AKT/mTOR pathway aggravates endothelial injury. As the

key mediator of vascular injury in patients with DM,methylglyoxal, the

precursor of AGEs, significantly activates autophagy and inhibits

angiogenesis by inhibiting ROS-mediated AKT/mTOR signaling

pathways or inhibits phosphorylation of sestrin 1 (SESN1) and

SESN2 and mTORC1 activation by activating p53 to promote

autophagy activation and induce EC activity decline and injury (86,

87). Moreover, AGEs can induce excessive autophagy via the PI3K/Akt

pathway, impair angiogenesis, and lead to angiogenesis disorders (88).

Conversely, activation of the PI3K/AKT/mTOR pathway may mitigate

endothelial injury caused by disturbances in glucose and lipid

metabolism by inhibiting EC autophagy (89, 90). According to the
FIGURE 1

Display of morphological and structural abnormalities and the dysfunction of vascular endothelial injury in DM.
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above studies, although the PI3K/AKT/mTOR pathway has been

extensively studied in terms of regulating autophagy, high-quality

and rigorous literature is still needed to support its protective or

destructive effects on EC injury.
5.2 AMPK pathway

It is well known that AMPK can counteract the effects of mTOR on

autophagy. High glucose levels directly induce endothelial injury by

inhibiting autophagy in human umbilical vein endothelial cells

(HUVECs) via the AMPK pathway (91). Downregulation of AMPK

and PIK3C3 phosphorylation promotes mTOR phosphorylation, inhibits

autophagy activation, and leads to insufficient autophagy degradation of

caveolin-1 (CAV1) via CAV1-CAVIN1-LC3-II (caveolae associated

protein 1, CAVIN1). CAV1 accumulation in the cytoplasm promotes

the transport of low-density lipoprotein (LDL) in ECs and induces EC

apoptosis, which serves as the basis for endothelial injury and dysfunction

(92–94). These studies confirm that activating the AMPK pathway to

reverse EC autophagy inhibition is the key to improving the endothelial

injury induced by DM. By promoting AMPK phosphorylation and

inhibiting mTOR expression, angiotensin-converting enzyme 2

promotes autophagy, increases plasma NO levels, improves endothelial
Frontiers in Endocrinology 05
relaxation function, and corrects endothelial dysfunction (95, 96). In

addition, lysosomal damage mediates the activation of the

inflammasome-NLR family pyrin domain containing 3 (NLRP3) and

the release of high mobility cassette protein 1, leading to endothelial

hyperpermeability. However, activating autophagy via the AMPK

pathway can inhibit the assembly and activation of NLRP3, restore

endothelial connectivity, and reduce endothelial permeability (97, 98).

Finally,Weikel KA et al. found an increase in glycogen synthase kinase 3b
(GSK3b) activity in DM patients and animals participating in autophagy

inhibition. Inhibiting GSK3b expression can ultimately activate FOXO1

by reducing Akt activity and increasing AMPK activity, thereby

promoting autophagosome formation, maintaining EC health, and

slowing the progression of vascular diseases (99).
5.3 PTEN-induced putative kinase
1/Parkin pathway

Autophagy is classified as selective or non-selective based on the

difference between autophagy receptor and substrate binding. In

selective autophagy, mitophagy is considered the central mechanism

for regulating mitochondrial quality and the key to maintaining cell

balance (100). The PINK1/Parkin pathway is a well-known mechanism
FIGURE 2

The classic autophagy activation pathway. MTORC1, rapamycin complex 1; ULK1/2, unc-51-like kinase 1/2; ATG, autophagy-related genes; RB1CC1,
RB1-inducible coiled-coil 1; AMPK, AMP-activated protein kinase; BECN1, beclin 1; PIK3C3, phosphatidylinositol 3-kinase catalytic subunit type 3;
PIK3R4, phosphoinositide 3-kinase regulatory subunit 4; AMBRA1, activating molecule in Beclin1-regulated autophagy protein 1; BCL2, B-cell
lymphoma 2; ATG16L1, autophagy-related gene 16-like 1; LC3, microtubule-associated protein light chain 3; PE, phosphatidylethanolamine;
SQSTM1, sequestosome 1; NBR1, neighbor of BRCA1 gene 1.
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to regulate mitophagy, which affects the progression of DM and vascular

complications. Glucose and lipid metabolism disorders not only induce

mitochondrial dysfunction by increasing the expression of the

mitochondrial fission-related proteins mitochondrial adaptor Fis1 and

Drp1/p-Drp1 (78) but also promote protein kinase Cd (PKCd)/Drp1
signal transduction, which can trigger hexokinase II (HK-II) dissociated

from mitochondria and downregulate the HK-II/PINK1/Parkin

pathway to inhibit mitophagy and aggravate endothelial injury (101).

On the contrary, activating the PINK1/Parkin pathway to trigger

mitophagy improves mitochondrial dysfunction and protects ECs

from high glucose-induced damage (78, 102, 103). Zhang MY et al.

discovered that Takeda G protein-coupled receptor 5, a new type of bile

acid cell membrane receptor, inhibits mitochondrial fission of retinal

microvascular endothelial cells and enhances mitophagy to alleviate EC

apoptosis and dysfunction due to high glucose levels by regulating the

PKCd/Drp1-HK2-PINK1/Parkin pathway (104). In addition, research

shows that the brain-derived neurotrophic factor/tropomyosin receptor

kinase B/hypoxia-inducible factor-1a/BCL2-adenovirus E1B 19 kDa

protein-interacting protein 3 (BNIP3) pathway can activate

mitophagy, inhibit oxidative stress and apoptosis in BMECs under

high glucose conditions, and reverse EC injury (105).

However, it has been reported that the PINK1/Parkin pathway

is upregulated and activated in the blood vessels of obese and DM

mice (106) and that mitophagy activated by the c-Jun N-terminal

kinase/p38 pathway will aggravate endothelial injury (107), which is

contradictory to the above effects of activating mitophagy to protect

the diabetic endothelial injury. Reducing PINK1 expression and

Parkin accumulation in mitochondria, restoring SIRT1 expression,

and inhibiting mitophagy can prevent eNOS inactivation and

promote NO secretion to protect ECs from apoptosis and

oxidative stress induced by high glucose levels as well as alleviate

EC injury and dysfunction (108, 109). Based on the findings from

the above studies, the true function of mitophagy in vascular

endothelial injury in DM needs further exploration.
5.4 Hedgehog pathway

Niu C et al. proved via in vitro and in vivo experiments that high

glucose levels can promote abnormal EC structure and dysfunction by

inducing EC leakage, reducing angiogenesis, and triggering apoptosis.

Throughout the process of high glucose-induced endothelial injury, the

autophagy marker LC3 of ECs is significantly accumulated and the

activation of the hedgehog pathway is impaired. Importantly, activating

the hedgehog glioma-associated oncogene homolod-1 pathway and

downregulating BNIP3 expression inhibit the binding of BNIP3 and

BCL2, enhance the binding of BECN1 and BCL2, and ultimately inhibit

autophagy and improve EC injury and dysfunction (11), indicating that

autophagy may be an important risk factor for inducing endothelial

injury and that inhibition of autophagy will play a role in inhibiting

hyperglycemia-induced endothelial injury. The role of the hedgehog

pathway and autophagy in regulating the progression of human disease

has been discussed in many articles (110, 111), but they are still in the

early phases of research in regulating the mechanism of vascular

endothelial injury in DM. In the future, we can focus on the cross-

interference and therapeutic potential among the three.
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5.5 Other pathways

MicroRNA is a type of small non-coding RNA that regulates

cell growth, differentiation, development, and apoptosis and

actively participates in the onset of many diseases, including

vascular endothelial injury in DM. Jianbing H et al. reported that

the target gene of miR-34a was ATG4B, which was regulated by

allograft inflammatory factor-1 (AIF-1). High glucose levels

increased AIF-1 expression in human glomerular endothelial cells

(HRGECs), followed by an increased miR-34a expression, which

inhibited ATG4B expression and EC autophagy to induce

inflammation and oxidative stress in HRGECs (112). In addition,

Sha W et al. found that inhibiting miR-142-3p expression can

promote autophagy activation mediated by its target gene sprouty

−related EVH1 domain protein 2, which ultimately plays a

protective role in ECs (113). The Krueppel-like factor (KLF)

family is a class of transcription regulators that controls cell

growth, development, and differentiation. Among them, KLF2 is a

key regulator of autophagosome–lysosome interactions. Wu H et al.

found that increasing KLF2 expression can enhance autophagy

while also inhibiting foam cell formation and apoptosis (114).

However, low KLF4 expression impairs SIRT6’s enhancement of

autophagy, leading to incomplete endothelium (115).
6 Conclusion and outlook

In general, this review summarized the characteristics of

endothelial injury in DM and explored the mechanism of

autophagy regulating diabetic EC injury. In the presence of DM,

the endothelial injury was found to be characterized by ECs with

abnormal morphology, mitochondrial damage, ROS accumulation,

EG defects, EC apoptosis, and endothelial dysfunction due to a

decrease in NO utilization. Autophagy regulates the progression of

diabetic endothelial injury via pathways such as PI3K/AKT/mTOR,

AMPK, PINK1/Parkin, and Hedgehog, and its regulatory potential

is undeniable. However, autophagy is a double-edged sword with

positive and negative two-way regulatory effects on diabetic

endothelial injury. The ability to control the “degree” of

autophagy’s two-way regulation is critical for studying its role in

the progression of diabetic endothelial injury (Figure 3).

Based on the above mechanism overview, different pathways

regulate a variety of downstream targets or are regulated by various

upstream targets, resulting in distinct disease progression, which may

cause autophagy to play opposing roles in regulating diabetic

endothelial injury. First, different signaling pathways have different

effects. For example, activating the AMPK pathway can reverse EC

autophagy inhibition, which can improve endothelial injury, but the

Hedgehog pathway has the opposite effect. Second, in the same signal

pathway, the difference in upstream signal molecules leads to the

activation or inhibition of the pathway, which plays distinct roles in

the end events. For example, miR-126, miR-199a-3p, and miR-21

inhibit the PI3K/AKT/mTOR pathway to activate EC autophagy and

alleviate endothelial injury in DM. However, LDL activates PI3K/

AKT/mTOR signal transduction to inhibit EC autophagy and alleviate

endothelial injury in DM. Even the same upstream molecules might
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play different roles. For example, the activation of FOXO1 has the

opposite effect on mediating autophagy formation and function.

Finally, because this paper involves various ECs, such as HUVECs

and HRGECs, the effect of autophagy on diabetic endothelial injury is

affected by differences in research programs. Importantly, because DM

is a complex disease with multiple coexisting and interacting factors,

autophagy can play different roles in endothelial dysfunction triggered

by different stimuli. Most studies suggest that autophagy activation

can protect against vascular endothelial injury induced by high glucose

levels (116, 117), but Liu Y et al. found that glucose and lipid toxicities

can initiate autophagy and inhibit autophagic blood flow, thereby

causing autophagy volume aggregation, inducing apoptosis, and

inhibiting EC function (78). As mentioned above, LDL transport

through ECs is the foundation of endothelial injury and dysfunction,

and LDL stimulation will promote PI3K/AKT activation and

subsequent autophagy inhibition (89). Shi G et al. found that the

SIRT1/Beclin-1/autophagy axis can protect against LDL-induced

vascular aging (118). Inflammatory activation induces endothelial

dysfunction by increasing oxidative stress (119), and enhanced

autophagy can alleviate inflammation and apoptosis in

atherosclerotic ECs and play a cardiovascular protective role (120).

However, in high glucose environments, ROS accumulation in

HRGECs inhibits eNOS activity and NO bioavailability, which is

related to an increase in autophagy flux (121). The role of autophagy

in diabetic vascular endothelial injury is uncertain.

In conclusion, the present research suggests that the regulation of

autophagy can improve and reverse diabetic endothelial injury.

However, due to the complexity of autophagy’s regulatory

mechanism and differences in research programs, the specific role of

autophagy in regulating diabetic endothelial injury remains unknown.

Therefore, a more rigorous and in-depth research is needed to

determine the relationship between autophagy and the progression

of diabetic endothelial injury as well as to clarify if there is a degree of
Frontiers in Endocrinology 07
autophagy in order to determine whether autophagy is beneficial or

harmful. In addition, to determine which pathway plays a positive or

negative regulatory role, after determining the specific role,

differentially expressed genes need to be investigated and verified.

This may help control the “degree” of the two-way regulatory effect

of autophagy.
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