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Cognitive dysfunction in
diabetes: abnormal glucose
metabolic regulation in the brain

Shan Zhang, Yueying Zhang, Zhige Wen, YaNan Yang,
Tianjie Bu, Xiangwei Bu and Qing Ni*

Department of Endocrinology, Guang’ anmen Hospital, China Academy of Chinese Medical Sciences,
Beijing, China
Cognitive dysfunction is increasingly recognized as a complication and comorbidity of

diabetes, supported by evidence of abnormal brain structure and function. Although

fewmechanisticmetabolic studies have shownclear pathophysiological links between

diabetes and cognitive dysfunction, there are several plausible ways in which this

connection may occur. Since, brain functions require a constant supply of glucose as

an energy source, the brain may be more susceptible to abnormalities in glucose

metabolism. Glucose metabolic abnormalities under diabetic conditions may play an

important role in cognitive dysfunction by affecting glucose transport and reducing

glucose metabolism. These changes, along with oxidative stress, inflammation,

mitochondrial dysfunction, and other factors, can affect synaptic transmission,

neural plasticity, and ultimately lead to impaired neuronal and cognitive function.

Insulin signal triggers intracellular signal transduction that regulates glucose transport

andmetabolism. Insulin resistance, one hallmark of diabetes, has also been linkedwith

impaired cerebral glucose metabolism in the brain. In this review, we conclude that

glucose metabolic abnormalities play a critical role in the pathophysiological

alterations underlying diabetic cognitive dysfunction (DCD), which is associated with

multiple pathogenic factors such as oxidative stress, mitochondrial dysfunction,

inflammation, and others. Brain insulin resistance is highly emphasized and

characterized as an important pathogenic mechanism in the DCD.

KEYWORDS

cerebral glucose metabolism, diabetes, cognitive dysfunction, insulin signal,
molecular mechanism
1 Introduction

Type 2 diabetes (T2DM) is a complex endocrine disease characterized by high blood

glucose levels. Recently, cognitive dysfunction, encompassing cognitive decline, mild

cognitive impairment (MCI) and dementia, has gained recognition as a significant

comorbidity and complication of diabetes, which can impact an individual’s well-being

and diabetes management (1). A study has revealed that individuals with diabetes

experience cognitive dysfunction, which includes impairments in memory, reduced
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processing speed, and difficulties with executive function. These

deficits are severe enough to interfere with daily activities and are

observed across all age groups (2). Epidemiological studies have

established that individuals with diabetes have an increased risk of

dementia (1.6-fold) (3). Before the onset of dementia, patients with

T2DM often suffer from mild to moderate cognitive impairment.

Data has shown that the prevalence of MCI in T2DM patients is

high worldwide (45%), especially in Asia, particularly China

(46.4%). As of 2017, approximately 451 million people had

diabetes, and this number is expected to increase to 693 million

by 2045, with T2DM accounting for almost all (90-95%) cases (4).

Considering the high incidence of the disease, there are currently no

diabetes-specific medical therapies that have been proven to reduce

the risk of cognitive dysfunction in diabetes. Thus, developing a

better understanding of the mechanisms underlying diabetes is

particularly essential for preventing or treating cognitive

dysfunction associated with the disease.

Proper brain function and physiology are critically dependent on

glucose as the brain’s primary energy source, highlighting the

importance of regulating glucose metabolism. Recent studies have

provided evidence that perturbations in cerebral glucose metabolism

may be a significant contributor to the pathogenesis of diabetic

cognitive dysfunction (DCD). Remarkably, these perturbations can

occur even decades before the onset of cognitive dysfunction and

pathological changes (5). Hyperglycemia and glucose metabolism

disorders, commonly associated with diabetes, not only occur in

peripheral tissues but also affect the brain (6, 7). When glucose

metabolism is disturbed, the brain’s supply of glucosemay be affected,

which can have significant impacts on brain structure and function.

Moreover, insulin signal is essential for the regulation of glucose

transporter, glucose metabolism- associated genes/proteins and

enzymes (8). Cerebral insulin resistance or deficiency induced by

diabetes represents as an important pathomechanism that affects the

regulation of energy source and brain function.

The aim of this review is to discuss the role of abnormal glucose

transportation and intracellular glucose catabolism dysfunctions in

the pathophysiology of DCD. We propose a hypothesis that

impaired cerebral glucose metabolism induces and aggravates

multiple pathogenic cascades, including activated oxidative stress,

inflammation decreased neurotransmitter synthesis, and aberrant

synaptic plasticity. These processes can lead to neuronal

degeneration and ultimately cognitive deficits in DCD. Brain

insulin resistance is highly emphasized as a major pathogenic

mechanism in the disease.
2 The brain features of patients
with DCD

2.1 Diabetic patients usually suffer from
cognitive decrements and an increased risk
of developing MCI or even dementia

In adults with T2DM, deficits in cognitive function can be

divided into three stages according to severity: diabetes-associated

cognitive decrements, MCI, and dementia (9). Diabetes-associated
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cognitive decrements refer to subtle changes in cognitive function.

The subtle cognitive changes may be observed in one or several

domains (10, 11). Palta et al. summarized studies that identified

small to moderate cognitive decrements in T2DM patients relative

to nondiabetic controls in six cognitive domains examined. Motor

function demonstrated the largest effect size, following by executive

function, processing speed, verbal memory, visual memory, while

attention exhibited the smallest effect size (11). The cognitive

decrements are likely to have an onset in the early stage of

diabetes and last for years, at a rate that is up to twice as fast as

that of people with normal cognitive (2, 12, 13). Moreover, this

change occurs across all age stages in people with T2DM (13).

MCI has been identified as a prodromal stage of dementia,

typically 1-1.5 SDs below normative data, affecting one or more

cognitive domains with largely preserved activities of daily life.

Several population-based prospective studies have reported on the

risk of MCI in patients with T2DM. One study observed that T2DM

patients had a hazard ratio (HR) of 1.58 (1.17-2.15) for amnesic

MCI and 1.37 (0.84-2.24) for non-amnesic MCI during four years of

follow up (14). Recent meta-analyses including nine studies also

identified diabetes and its association with the risk of MCI,

providing moderate quality evidence. Compared with non-

diabetes, diabetes was associated with a 49% increased risk of

MCI (RR:1.49, 1.26-1.77) (15). This stage of cognitive dysfunction

might progress to dementia (9).

Dementia is defined as acquired objective cognitive impairment that

affects several cognitive domains, severe enough to impact the activities of

daily life. Meta-analyses, including over 144 prospective studies with over

9 million participants, estimated the RR in diabetes for all-cause

dementia at 1.43 (1.33-15.3), for Alzheimer’s disease (AD) at 1.43

(1.25-1.62), and for vascular dementia at 1.91 (1.61-2.25) in individuals

with diabetes (15). Abnormal fasting plasma glucose, 2hPG, HbA1c, and

fasting plasma insulin (FPI) levels contribute to a higher risk of cognitive

disorders. A meta-analysis during a median follow-up of 6.8 years

showed that in participants with diabetes, higher glucose levels were

accompanied by a higher HR for dementia, with a glucose level of 10.5

mmol/L as compared with 8.9 mmol/L, the adjusted HR was 1.4 (1.12-

1.76) (16). Some studies showed that the risk of AD almost doubled in

those with 2hPG of 7.8-11mmol/L and tripled in those with 2hG above

11.0 mmol/L compared to those with 2hPG below 6.7 mmol/L (17, 18).

Diabetic patients with higher HbA1c variability were also associated with

a higher risk of dementia, with HR:1.06 (1.003-1.120) (19). Evidence

showed that higher levels of FPI were directly associated with dementia

(RR:1.64, 1.33-2.02) (15). Moreover, glucose fluctuations also impact

brain functional architecture and cognition in T2DM patients. T2DM

patients with fluctuating glucose levels exhibited significantly worse

performance on the Montreal Cognitive Assessment, Trail Making

Test-B, and verbal fluency test, as well as significant decreases in

degree centrality in some brain regions (20).
2.2 Morphological changes of brain
with T2DM

Brain atrophy is defined as low brain volume that affects a

specific brain region or tissue class, reflecting neuronal loss (21).
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Changes in cognitive function in patients with T2DM are often

accompanied by structural brain abnormalities on magnetic

resonance imaging (MRI). A study indicated that localized

atrophy in the hippocampal area, a brain region critical to

memory formation and consolidation, might be primarily

responsible for the memory deficits seen in this population (22).

Hisayama et al. investigated the association between diabetes and

hippocampal atrophy in 1238 Japanese subjects who underwent

MRI examination. The results showed that diabetic subjects,

especially those with post-glucose-loaded hyperglycemia, had a

significantly lower volume than those without diabetes. This

Study also indicated that the hippocampal volume becomes

smaller with longer duration of diabetes (23). In the Rotterdam

scan study, people with T2DM had more hippocampal and

amygdalar atrophy compared to nondiabetic subjects (24). Some

study suggested that diabetes-related volumetric brain differences

were substantial (total brain:1.88%; grey matter:2.81%; white

matter:2.15%; hippocampus:4.4%), which began occurring in early

adulthood. Further analysis showed these differences observed in

T2DM correspond to about 4 to 5 years of normal ageing, and

possibly more (25).
3 The features of brain glucose
metabolism in diabetes

3.1 Hyperglycemia in the brain is an
important feature of diabetes

Hyperglycemia is an important characteristic change caused by

diabetes in the brain.

Brain glucose levels rise in a linear fashion with rising blood

glucose levels rise. Evidence has shown a linear relationship

between glucose leve ls in the cerebra l and vascular

compartments after stabilizing plasma glucoses in a range of

4–30 mM, with brain glucose levels being 20–30% of plasma

levels (26). The plasma-to-brain glucose ratio appeared to follow

the same trend in Wistar rats under normo- or hyper- glycemia

(27). A study has compared the glucose level in brain

extracellular fluid under a hyperglycemic state between

diabetic and non-diabetic rats. High plasma glucose level (22

mM) led to elevated level of brain glucose (7.5 mM) in chronic

diabetic groups, while the brain glucose in the normoglycemic

rat brain was 2.1 mM at a plasma glucose level of 8 mM (6).

Other studies performed on hyperglycemic patients also showed

similar results. The patients showed brain glucose levels of 1.56

mM at a mean plasma glucose level of 11.5 mM, while the

healthy control displayed a mean brain glucose level of 0.83 mM

in a euglycemic state (28). These findings strongly demonstrate

that hyperglycemia in the peripheral blood can directly result in

brain hyperglycemia, which is an important feature in diabetes.

Additionally, T2DM patients have a blunted rise in brain glucose

levels. A study has shown that compared with lean participants

without diabetes, brain glucose increments in response to a

standardized increase in plasma glucose levels were lower in

participants with poorly controlled T2DM, suggesting that
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chronic hyperglycemia is associated with blunted brain glucose

transport and/or glucose metabolism, thus limiting glucose

uptake as an adaptive mechanism (29). This may mean that

long-term high blood glucose levels in the brain reduce the

brain’s sensitivity to peripheral blood sugar responses.
3.2 Cerebral glucose hypometabolism
is a biomarker of cognitive dysfunction
in diabetes

An improved understanding of pathological regulation in

glucose metabolism is impacting on researchers’ conception on

diabetic cognitive dysfunction. The brain dominantly relies on

glucose as the energy source, making it vulnerable to impaired

energy metabolism. The use of neuroimaging technologies has

allowed us to investigate the association between brain energy

metabolism and DCD onset and progression. Positron emission

computed tomography (PET) is an important tool for assessing

glucose metabolism. When it is transported into brain cells, 2-

Fluorine-18-Fluoro-2-deoxy-D-glucose (18F-FDG) can’t be

catalyzed to glucose-6-phosphate (G6P) by glucose-phosphate-

isomerase and is accumulated in the neurons as 18F-2-FDG-6-

phosphate, which is a suitable radiotracer used to measure the

local cerebral metabolic rate of glucose in the brain (30).

Increasing evidence has shown that there is an apparent

decrease of glucose metabolism in specific brain regions on

Fludeoxyglucose F18-positron emission tomography (FDG-

PET) scans in people with T2DM with cognitive impairment

or not (31, 32). Different brain regions have varying

susceptibilities to hypometabolism. Generally, hypometabolism

has predilection sites for the frontal, temporal parietal, cingulate

gyrus, and temporal gyrus regions (33, 34). In contrast, brain

regions including the primary motor and visual cortex,

cerebellum, thalamic and basal ganglia nuclei are rarely

affected (35). Studies also indicated that the hippocampal

region might be the first region of the brain affected by T2DM

and that individuals with poor glucose metabolic control might

be more obviously impacted (33). The reduction of local cerebral

glucose metabolic rate (CMRglu) measured by 18F-FDG-PET

also reflects the regional distribution of reduced synaptic density

and activity in DCD diseases. The finding provided evidence that

CMRglu was reduced in adults with prediabetes and early

T2DM, involved the posterior cingulate cortex, the precuneus

region, parietal cortices, the temporal/angular gyri, and the

anterior and inferior prefrontal cortices. Compared to the

normal individuals, these patients showed a different pattern

during the memory encoding task, characterized by more diffuse

and extensive activation, and recalled fewer items on the delayed

memory test (5). A cross-sectional study showed that worse

executive functions and memory were correlated with decreased

gray matter density and low glucose metabolism in the orbital

and prefrontal cortex, temporal cortex (middle gyrus, para

hippocampus, and uncus), and cerebellar regions (36).

Administration of the antidiabetic drug, Glucagon-like peptide

1, decreased intracerebral glucose content and raised cerebral
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metabolic rate in specific regions to markedly improve cognition

and memory in diabetic patients (37).

Glucose hypometabolism also manifests in animals with T2DM.

Streptozotocin (STZ)-induced diabetic mice with cognitive

impairment had a peculiar metabolic phenotype-decrease energy

metabolism in the brain regions (32). Soares et al. observed a

tendency of reduced cerebral metabolic rate of glucose in T2DM

rats, indicating impaired glucose utilization in T2DM (38). Like the

human brain, brain region-specific metabolic disorders also exist in

T2DM mice with cognitive impairment. Notably, metabolic

patterns in hippocampus were largely differentiated in T2DM

mice with cognitive impairment relative to control mice (38).

Decreased glucose metabolism was found in diabetic mice’s brain,

while increasing glucose availability in specific brain areas can

positively modulate the performance in cognitive task in T2DM

mice (39). Measuring other tracer uptake of radioactively labeled D-

glucose, 2DOG, or 3OMG into the total brain or vascular

endothelial cells (VECs), decreased glucose uptakes were observed

in animals with diabetes (40, 41). In all, cerebral glucose

hypometabolism can be considered as a biomarker in DCD.

Glucose hypometabolism in specific brain regions contributes to

DCD onset and progression. It indicates that improving

hypoglycemic metabolism in the brain can inhibit/alleviate

cognitive dysfunction in diabetes.
3.3 Impaired glycogen metabolism
in T2DM

Impaired glycogen metabolism is another significant

characteristic in the brain of individuals with T2DM. Glycogen is

produced and stored exclusively in astrocytes, where they are

concentrated near adjacent axons and dendritic spines favoring

neurons (21). Astrocytic glycogen breakdown is essential for long-

term memory formation and maintenance of long-term

potentiation of synaptic strength (42). Memory consolidation is

impaired when brain glycogen synthase is knocked out or

glycogenolysis is inhibited before a memory-evoking event (43).

Glycogen content were affected in various brain regions to varying

degrees in diabetes. In rats with T2DM, reduced glycogen labeling

was detected by13C magnetic resonance spectroscopy, with the most

significant reduction in the hippocampus (33%) and hypothalamus

(29%), following by striatum (25%), and cortex (24%) (44). Diabetic

patients’ glycogen content in the occipital lobe was significantly

reduced compared to healthy individuals (45). Evidence showed

that downregulation and mislocalization of glucose transporter

(GLUT) 4, and decreased glycogen storage in insulin-like growth

factor (IGF) 1 null mice’ brain led to misutilization of neuronal

glucose, impaired growth, and compromised brain functionality

(42). The turnover rate of brain glycogen also strongly reflects

impaired glycogen metabolism. Newly synthesized glycogen level in

diabetic patients were lower than those in the control group,

indicating reduced glutamine synthetase (GS) activity and

glycogen turnover rate in the brain might be reduced (45). These

data elucidate that hyperglycemia, decreased glucose utilization,

and impaired glycogen metabolism are important cerebral features
Frontiers in Endocrinology 04
in diabetic state, reflecting severely dysregulated glucose

metabolism in the brain. In the next section, we will introduce

the specific mechanisms of impaired glucose metabolism in

diabetic disease.
4 Impaired glucose transport
or uptake

4.1 Abnormal glucose transport or uptake
in the brain

Transporters were needed for the glucose entrance into the

brain. Glucose transporters are 12-transmembrane glucose

transport proteins that have been reported to have 14 isoforms

(GLUT 1-14) (43). Within the brain, GLUT1, is expressed

abundantly as a 55-KD isoform on the endothelium of the blood

brain barrier (BBB), facilitating glucose transport from the

circulation into the extracellular fluid. Meanwhile, a second 45-

KD isoform of GLUT1 ensures delivery of glucose to glia,

ependymal cells, and choroid plexus. Astrocytes express both

GLUT1 and a specific GLUT2 isoform, while neurons

predominantly express GLUT1 and GLUT3, the latter of which

has a higher glucose affinity and transport capacity. While other

GLUT family members are present in lower levels within the brain,

their functions remain relatively understudied. Kinetic modeling

predicted that glucose diffuses mostly via interstitial fluid, with

glucose uptake and release by cells depending on local

concentrations and supply-demand relationships (46, 47).

Simpson et al. reported that GLUT1 transporter had a direct

effect on rates of glucose uptake into the brain, with increased

GLUT1 transporters supporting increased glucose uptake into the

brain (48).

Many studies have shown that the expression, regulation, and

the activity of GLUTs can be disrupted during hyperglycemia.

These changes negatively affect glucose uptake and metabolism in

the brain, resulting in impairment of synaptic plasticity,

neurogenesis, and even cognitive function. Clinical studies

revealed that the expression of GLUT1 and GLUT3 were

decreased in the different brain areas in individuals with T2DM

and AD, which may be attributed to (at least in part) the brain

glucose hypometabolism (49). Study concluded that patients with

T2DM have an increased risk of developing dementia through

observing human brain samples (11 T2DM, 10 AD, 8 T2DM and

AD, and 7 controls). It showed that T2DM brain had a decreased

level of neuronal GLUT3 protein compared with the AD brain and

that the decreased O-GlcNAcylation (inhibiting tau protein)

observed in the AD brain was also visible in the T2DM (50). In

parallel with the decrease in HbA1C, the improvement of brain

glucose utilization was observed in the brain regions of T2DM,

highlighting the potential reversibility of cerebral glucose transport

capacity and metabolism that can occur in individuals with T2DM

following improvement of glycemic control (51). Some researchers

considered that glucose excess in the extracellular space in the brain,

causing a downregulation of GLUT1 and GLUT3 proteins. These
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low expressed transporters might be the body’s adaptive response to

prevent excessive glucose entering the cell which can lead to cellular

damage (52). Whatever the explanation, cerebral hyperglycemia is a

major factor responsible for the abnormal glucose transport or

uptake in diabetes.

The high fat diet (HFD) mouse is a widely used model for

studying insulin-resistant in diabetes. Brain glucose uptake and

GLUT1 in the VECs were reduced in the HFD feeding animals,

exhibiting impaired learning and memory (53, 54). An in vivo

experiment demonstrated that VECs exposed to high glucose levels

downregulated the rate of glucose transport by decreasing GLUT1

mRNA and protein, as well as the localization of GLUT1 to the

plasma membrane (55). GLUT1, GLUT3, and GLUT4 were

significantly decreased in the brain of diabetic animals by 61%,

69% and 64%, respectively (56). GLUT1 mRNA and protein in

hippocampus were significantly decreased (57). In neurohypophysis

of rats with STZ-induced diabetes, GLUT1 was decreased 16% by 3

days and 25% by 1-2 week of diabetes (58). Cardoso reported that

long-term hyperglycemia down-regulated GLUT3 protein levels in

brain cortical tissue of diabetic rats (59). Impaired GLUTs can set

off a cascade of abnormal reactions including BBB breakdown,

accelerated amyloid b -peptide (Ab) pathology, reduced Ab
clearance, diminished neuronal activity, progressive neuronal loss,

ultimately causing behavioral deficits and cognitive dysfunction

(60). On the contrary, improving GLUT utilization and glucose

uptake may benefit cerebral glucose metabolism, which relieves

cognitive dysfunctions in diabetes. This point has been proved in

some studies. Central injection of liraglutide (an antidiabetic drug)

improved memory functions in diabetic rats, which correlated with

the ameliorated brain glucose uptake (61). Overexpression of a

glucose transporter or stimulation of glucose uptake by metformin

attenuated cognitive dysfunction in T2DM, suggesting that the

recovery of glucose transport and uptake activities are beneficial

to the neuronal function repair (62).
4.2 Disrupted Insulin signal with
GLUT transport

The mechanism by which GLUT transporters decrease in the

brain in diabetes is not well understood. However, studies have

shown that insulin and IGF1 activate signal transduction in cells

to mobilize GLUTs to the cell membrane, which facilitate glucose

entry into neuronal cells (63, 64). In diabetes, insulin resistance

involving the dis-regulated phosphatidylinositol 3 kinase (PI3K)/

protein kinase B (AKT) pathway is a common characteristic.

T2DM with cognitive impairment has been linked to decreased

levels of insulin receptor substrate (IRS)1, PI3K, and AKT

proteins (65–67). An autopsy study has shown that the brain

insulin/PI3K/AKT signaling pathway is impaired in T2DM and

AD patients, with greater impairment in AD-T2DM patients (68).

Griffith et al. reported GLUT3 translocation was observed in the

hippocampus of mice with altered cognition due to decreased

insulin levels (69). Down-regulation and mis-localization of

GLUT4 were found to impair brain function in IGF1 null mice

(42). Ablation of insulin receptor (IR) in astrocytes decreased
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brain glucose uptake (29). Improving insulin resistance is

beneficial for the recovery of GLUT transport function.

Intranasal insulin has been shown to bypass the BBB, target the

brain, and improve synaptogenesis in rodent models, as well as

memory in adult humans with T2DM or AD (70). In contrast,

decrease in tyrosine phosphorylation of IR and an increase in

serine phosphorylation of IRS1 lead to PI3K/AKT dysregulation

and glucose uptake reduction in HFD induced mice (71, 72).

Overall, deficiency in GLUT transporter proteins and activity can

have a significant impact on brain glucose energy metabolism, and

the insulin pathway plays a critical role in GLUTs expression and

function. Regulating the insulin signal and enhancing the

expression of GLUTs could be a novel strategy for reversing

cognitive dysfunction in diabetes.
5 Intracellular glucose
catabolism dysfunctions

5.1 Worse glycolysis in the brain

Glucose taken up by cells can be channeled into glycolysis

pathway leading to the formation of pyruvate, or shunted to the

nicotinamide adenine dinucleotide phosphate (NADPH)-

producing pentose phosphate pathway (PPP) pathway. Research

suggests that impaired glycolytic function may contribute to the

pathophysiology of diabetes-related cognitive impairment. A study

found 19 discriminating metabolites in the brain of individuals with

DCD compared to controls, indicating potential impairment in the

glycolysis process (73). Similarly, a study in DCD mice found

significant differences in glycolysis intermediates, such as hexose

bisphosphate, in the brain (74). Dysregulated glycolysis resulting in

lactate accumulates is a common feature of the DCD brain and may

hinder pyruvate’s entry into the tricarboxylic acid (TCA) cycle. For

example, hyperpolarized [1-13C] pyruvate MR spectroscopy was

used to detect lactate content in a HFD-induced cognitively

impaired mouse model, showing that the conversion of pyruvate

to lactate were significantly increased in different brain regions,

especially in the hippocampus. This findings suggested that

increased lactate levels may be a virtual pathogenic factor in DCD

(75). Another study also found that diabetes induced a significant

increase in lactate level in the hippocampus, striatum,

hypothalamus, and midbrain of mice (76, 77).

We next discussed the dysregulation of glycolytic enzymes and

metabolites in the brain of diabetic mice. Hexokinase (HK) activity

significantly increased by 14% in the hypothalamus and 15.5% in

the tractus solitarius. Substrate kinetic properties of key glycolytic

enzymes including HK, phosphofructokinase (PFK) 1, pyruvate

kinase (PK), were affected by recurrent hypoglycemia exposure in

the hippocampus of diabetic animals (78). Pyruvate dehydrogenase

kinase isoform 2 (PDK2) inhibits the pyruvate dehydrogenase

complex by phosphorylating and inactivating one of its subunits,

pyruvate dehydrogenase (PDH), thereby preventing the conversion

of pyruvate to acetyl coenzyme A (acetyl-CoA), which then enters

the TCA cycle for further energy production. Rahman et al. found

that diabetes in mice enhanced the hypothalamic expression of
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PDK2 and phosphorylated-PDH, causing a glycolytic metabolic

shift along with substantial hypothalamic inflammation. Genetic

ablation or hypothalamic inhibition of PDK2 attenuated diabetes-

induced neuroinflammation, lactate surge in the hypothalamus in

mice (79). Pyruvate dehydrogenase E1 alpha subunit (PDHA1) is

the core component of the pyruvate dehydrogenase complex.

PDHA1 knockout damaged the spatial memory of mice and led

to the ultrastructural disorder of hippocampal neurons (80). Lactate

accumulation and abnormal lactate transport were also found in

PDHA1-/- mice. Lactate dehydrogenase (LDH), which catalyzed the

conversion of pyruvate to lactate, was also markedly upregulated,

indicating increased glycolytic activity (81, 82). Overall, these

findings suggest that dysregulation of enzymes in the glycolytic

process were observed, resulting in lactate accumulation, which is a

common feature of diabetes-related cognitive decline.
5.2 Abnormal insulin pathway
with glycolysis

A role for insulin signaling has been implicated in this regard.

Insulin negatively regulates Forkhead transcription factors (FOX)

families through the PI3K/AKT signal such as FOXO1, FOXK1 (83,

84). These proteins are tightly associated with the related protein

expressions of glycolysis, such as HK2, PFK, PKM, LDH, and PDH

(85). Extensive studies in diabetes over the past decade have shown

that FOX factors are highly expressed in the brain, which are likely to

be mediated by decreased sensitivity to insulin (86–88). FOXO1

enters the cell nucleus and promotes the activities or/expressions of

HK and G-6-pase (86). FOXK1 induces aerobic glycolysis by

upregulating the enzymatic activities (HK-2, PFK, PK, and LDH),

while at the same time suppressing further oxidation of pyruvate in

the mitochondria by increasing the activity of PDH1 and PDH4 (88).

Mitogen-active protein kinase (AMPK) is the cellular energy sensor

that acts to restore and maintain the energy balance within the cell.

AMPK up-regulates insulin sensitivity. In DCD models, AMPK was

inhibited in the hippocampus of the brain (89). Moreover, Activation

of Wnt Signal in cortical neurons enhances glucose utilization

through glycolysis and thus plays a neuroprotective role (90).

However, the effect of Wnt signal is partially abolished

accompanied by dis-regulated glycolysis. Insulin could attenuate

the neuronal damage and cognitive dysfunction in diabetic mice by

enhancing the Wnt pathway (61). Therefore, the neuroprotective

effects of insulin signaling in DCDmouse models can be attributed, at

least in part, to insulin signal-mediated improvement in glucose

metabolism and utilization in the glycolysis process.
5.3 Abnormal regulation in PPP

The PPP branches utilize G6P to produce fructose 6-phosphate

and glyceraldehyde 3-phosphate through both oxidative and non-

oxidative pathways, thereby supplying ribose 5-phosphate and

NADPH. The conversion of oxidized glutathione to reduced

glutathione is a crucial step in the cellular response to oxidative

stress, and this process depends on NADPH through the action of
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glutathione reductase. NADPH is also a substrate for NADPH

oxidases (NOXs), generating reactive oxygen species (ROS). Under

normal physiological conditions, the harmfully species is

counterbalanced by antioxidant systems. However, in some cases,

this balance is disrupted, leading to oxidative stress. Spatially resolved

metabolic profiling of the brain in diabetic models has revealed

increased PPP activity (73), likely due to alterations in brain

NADPH metabolism caused by hyperglycemia. Glucose-6-

phosphate dehydrogenase (G6PD) and 6-phosphogluconate

dehydrogenase (6PGD) are the rate-limiting enzyme in PPP

pathway and produce NADPH in cells. In diabetic rat brains,

G6PD was markedly increased compared to controls (91). Neonatal

hyperglycemic rats presented increased activities of G6PD, 6PGD,

and NOXs, which might be responsible for the enhanced superoxide

radical anion production. Although enhanced antioxidant enzyme

activities (SOD, Catalase, and glutathione peroxidase) were observed

in hyperglycemic rats, they were unable to hinder the lipid

peroxidation and protein damage in the brain (92). Singh reported

G6PD might be considered a biomarker of oxidative stress and poor

glycemic control in diabetic patients (93). The significance of

perturbations in the PPP pathway in the development of diabetes

or as a consequence of the metabolic abnormalities associated with

the disease remains unclear. Nevertheless, it is evident that

abnormalities in the PPP pathway are prevalent in diabetes and

may play a crucial role in the disease’s pathogenesis.
5.4 Dis-regulated insulin signal with PPP

Altered G6PD and G6PD activities in PPP are associated with

insulin resistance in peripheral tissues and there is relatively little

research on their relationships in the brain. Previous studies have

showed that only optimal levels of G6PD and 6PGD are beneficial

to insulin secretion. Patients with G6PD deficiency showed lower

levels of insulin secretion (94). Suppression of G6PD and 6PGD by

high glucose not only blocked the insulin secretion, but also

increased oxidative stress response (95, 96). However, the

overexpression of G6PD also negatively affected insulin secretion

in the pancreas due to the increased accumulation of NOXs and

ROS (97). Excessive ROS production can disrupt cellular

homeostasis and alter intracellular signaling pathways, ultimately

exacerbating insulin resistance. Some studies have reported that

ROS reprogram glucose metabolism by up-regulating the ppp

pathway and inducing insulin resistance in T2DM (98). A recent

study has shown that hyperglycemia changed G6PD activity

through the oxidative stress in the hippocampus, leading to the

neuronal injury, and cognitive impairment in STZ-induced diabetic

mice (99). However, the direct mechanisms between PPP and

insulin signal in the brain require further elucidation.
5.5 Defective TCA cycle and oxidative
phosphorylation process

The dysfunction of intracellular oxidative catabolism, including

OXPHOS and TCA cycle in mitochondria, can affect cerebral
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glucose metabolism, which is likely to contribute to DCD. Pyruvate

is converted to acetyl-CoA by the PDH, then the later enters the

TCA cycle for mitochondrial oxidation. Previous study found that

the deficiency of PDH led to different degrees of cognitive

impairment, suggesting a serious alteration of cerebral glucose

metabolism in DCD diseases (68). Furthermore, a decreased TCA

cycle generating ATP was observed in hippocampus, the cortex and

striatum of diabetic mice with cognitive impairment (75, 76). One

of reasons can be attributed to the decreased protein levels of

oxidative phosphorylation components, such as complex III

(electron transport chain component) and ATP synthase,

resulting in the production of less ATP (77). Similarly, decreased

activities of complexes I and II of the mitochondrial respiratory

chain have been observed in the hippocampus and prefrontal cortex

of diabetic animals, and these changes could lead to mitochondrial

impairment and neuroinflammation (100). Several TCA cycle

intermediates, including succinate and citrate, were dis-regulated

in the hippocampus of diabetic mice with cognition decline (101).

Other studies also account for the decrement of ATP generation in

DCD disease. Under hyperglycemia, more pyruvate is available to

be oxidized in the TCA, thus increasing the flux of NADH and

flavin adenine dinucleotide into the electron transport chain. This

effect increases the voltage gradient across the mitochondrial

membrane, reaching a critical threshold that blocks electron

transfer inside complex III, causing the electrons to back up to

coenzyme Q, which donates the electrons one at a time to molecular

oxygen, thereby generating more superoxide when compared to cell

under normal glycemia. These super oxides may cause neurons

impaired (102). Notably, due to the abnormal glycolytic capacity

and high energetic needs, neuronal cells are extremely dependent

on mitochondria and, therefore, critically sensitive to mitochondrial

alterations in structure, localization, and function. Studies have

shown that increased OXPHOs function, improving glucose

utilization, could prevent neuronal loss, and preserve cognition in

diabetic rats (91). Any impairment in brain mitochondria electron

chain may induce subsequent mitochondrial dysfunction and

oxidative stress. In turn, the drastic oxidative stress may trigger

apoptosis in neuronal cells, which represents a primary cause of the

oxidative imbalance observed in DCD (103).
5.6 Impaired insulin signal with OXPHOS
and TCA cycle

Insulin plays a crucial role in regulating mitochondrial function

in the brain, affecting OXPHOS and TCA processes. Studies have

demonstrated that administering insulin to healthy mice increased

mitochondrial ATP production, highlighting its direct regulatory

role in brain mitochondrial function (104). Kleinridders et al.

showed that brain specific knock out of insulin receptor mice

exhibited reduced mitochondrial oxidative activities (complex I-

V) and damaged dopaminergic neurons (105). Blocking IR by S961

(an IR antagonist) also decreased ATP production in primary

cortical neurons and astrocytes and led to increased accumulation

of harmful ROS (106). Excess ROS further caused oxidative stress,

exacerbated neuroinflammation, and induced cognitive damage in
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the brain of diabetic animals (102). Insulin also associates with

brain mitochondrial structures and functions. Peroxisome

proliferator-activated receptor gamma coactivator 1a (PGC-1a) is
mainly involved in mitochondrial biogenesis, which strongly relates

to neurodegenerative disorders. IRS1/2 knock out mice induced

insulin resistance, decreasing FOXO1 suppression and leading to

hyper-active FOXO1. This, in turn, damages the mitochondrial

respiratory chain, reduces the NAD+ level, weakens NAD+-

dependent PGC-1a deacetylation, and ultimately leads to

decreased ATP production. Abi-Saab reported that insulin

deprivation suppressed the mitochondrial fusion proteins (MFN1,

MFN2, and OPA1) and increased fission protein (dynamin-related

protein-1, DRP1), suggesting that insulin deficiency adversely

affects mitochondrial dynamics (28). Evidence showed that DRP1,

via a glycogen synthase kinase 3/DRP1 dependent pathway,

damaged the mitochondrial morphology, impaired the activity of

complex I, and prevented the ATP reduction in hippocampal

neurons from insulin-resistant mice (107). As is well known, only

ample energy produced by mitochondria could ensure synaptic

plasticity and the efficiency of signal transmission. However, in

diabetes, the decreased ATP production in the brain is insufficient

to meet the energy demand of neurons, and the following

consequence is neuronal dysfunction and death (102, 108).

Disruption of insulin action in the brain leads to impairment of

mitochondrial energy metabolism and neuronal function. This may

partly explain why diabetic patients or models are susceptible to

dementia. These data links altered insulin sensitivity in the brain

and dysfunctional mitochondria to neurodegeneration.
5.7 Abnormal glucose metabolism “cross
talk” between astrocyte and neuron

The neuronal cells have “cross talk” in the brain, especially

between astrocyte and neuron. Astrocytes release lactate through

the low-affinity peri synaptic monocarboxylate transporter

(MCT) 1 and MCT4, which is then taken up by the high-

affinity neuronal MCT2 and transformed into ATP in neurons.

Glycogen is produced and stored exclusively in astrocytes and

converted into lactate to supply neurons. It is important to note

that lactate derived from glycogen in astrocytes plays a role in

stimulating neuronal plasticity and learning (11, 18). Studies

demonstrated the increased lactate accumulated in the different

brain origins, implying dysregulated lactate shuttle between

astrocyte and neuron (109). High extracellular lactate may

cause neurotoxicity if neurons cannot efficiently utilize the

lactate being produced by astrocytes, i.e. uncoupling of

neuronal and astrocyte metabolism. Additionally, decreased

expression of lactate transporters, including MCT1 and MCT4

in astrocytes, and MCT2 in neurons have been reported in

T2DM animals with cognitive decline in some studies (110–

112). Brain glycogen levels in different brain origins are also

affected in animal models of T2DM in different directions,

impacting energy and neurotransmitter metabolism in the

brain (113). Apart from lactate, other metabolites shuttle

between neurons and astrocytes. Glutamine can be synthesized
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by GS in astrocytes and transferred to neurons. In neurons, it can

be catalyzed by glutaminase (GLS) to form glutamate, which is

an excitatory neurotransmitter. Glutamate can be further

metabolized by glutamate decarboxylase (GAD) to form

gamma- am inobu t y r i c a c i d (GABA) , an i nh i b i t o r y

neurotransmitter in the central nervous system (16). This cycle

is named glutamate/gabba aminobutyric acid-glutamine (Glu/

GABA-Gln) cycle. Accumulation of the glutamine in the brain of

diabetic rats indicates dysregulation of the Glu/GABA-Gln cycle,

which leads to cognitive decline in diabetes mellitus (73).

Elevated glutamine level and decreased levels of glutamate and

GABA were observed in diabetic mice with cognitive

impairment. Further analysis revealed that GS was increased,

GLS and GAD were decreased in the brain of diabetic mice (101).

Using 3C labeling incorporation, the study showed that diabetic

rats displayed lower rates of brain GS, Glu/Gln cycle, and TCA

cycle rate in neurons. In contrast, the TCA cycle rate of

astrocytes was larger in diabetic rats than controls, also

suggesting impaired brain energy metabolism between neurons

and astrocytes (76). Based on these results, the balanced “cross

talk” between astrocyte and neuron eventually leads to the

reduced energy for neurons or even damages neuron functions,

which plays an key role in many physiological processes in the

brain, especially in DCD. Therefore, in the next paragraph, we

would discuss the major adverse effects of changed glucose

metabolism on nerve cells.
6 The adverse consequences caused
by changed glucose metabolism

6.1 Reduced synthesis of neurotransmitters
and neurotransmitter modulators

The synthesis of neurotransmitters and their modulators in the

brain is closely linked to glucose metabolism. Glucose serves as a

carbon and hydrogen carrier that participates in the synthesis of

neurotransmitters and neuromodulators, such as acetylcholine,

GABA, glutamate, glycine, serine, tryptophan, and others. It has

been verified by tracking the carbon or hydrogen atoms transferred

from glucose to other materials (114). Recent studies have highlighted

the critical role of glucose metabolism in the production of

neurotransmitters and neuromodulators. When glucose metabolism

is impaired, the synthesis of these molecules can be disrupted, which

in turn can contribute to neuronal dysfunction. For example, there

were downward shifts in the levels of neurotransmitters (glutamate,

glutamine, aspartate), amino acids (valine, leucine, isoleucine,

taurine, succinate, glutathione, choline, glycine), and energy

metabolites (ATP, ADP, AMP) in the 9th week of disease

progression in diabetic mice, at which point significant pathological

damage in the hippocampal region had already occurred. Notably,

the levels of lactate and glucose increased throughout the

hyperglycemic period (115). L-Alanine, L-Glutamine, L-Lysine, L-

Serine, and L-Threonine were also identified as potential biomarkers

for DCD. These biomarkers are mainly involved in glycine, serine,

and threonine metabolism, alanine, aspartate, and glutamate
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metabolism, as well as glyoxylate and dicarboxylate metabolism,

which are associated with TCA cycle (116). Acetylcholine is

essential for integrating learning and memory functions. It is

produced from choline and acetyl-CoA. A non-targeted

metabolomics approach used in diabetic rats with cognitive

impairment showed that choline metabolism was down-regulated

compared with control (117). Valine, leucine, and isoleucine

degradation, tryptophan metabolism, phenylalanine metabolism,

glycine, serine and threonine metabolism, and phenylalanine,

tyrosine, and tryptophan biosynthesis, etc. showed marked

perturbations over diabetic mild cognitive impairment and may

contribute to the development of disease (38, 118). Diabetes also

disrupts the Glu/GABA-Gln cycle in the brain. As we mentioned in

the previous paragraphs, impaired glucose oxidation inhibits the

production of glutamate and GABA, and causes altered neuronal

network activity (115, 119). L-serine is synthesized from the glycolytic

intermediate 3-phosphoglycerate and converted to D-serine by serine

racemase in neuronal cells (13). The latter is an NMDA-receptor

agonist, plays a key role to influence synaptic plasticity (14). Deficits

of L-serine caused by abnormal glycolysis progression in astrocytes

have been shown to induce severe cognitive deficits (15, 16). These

studies demonstrated the neurotransmitters and neurotransmitter

modulators were impaired in glucose metabolism.
6.2 Aberrant synaptic plasticity

Importantly, the reduced ATP production brings serious

consequences, inducing aberrant synaptic plasticity and

promoting cognitive damage in diabetes. Primarily, decreased

ATP in neurons results in a diminished ability to maintain ionic

gradients, hindering production and propagation of action

potentials and therefore neurotransmission. The imbalanced ionic

gradient allows extracellular Ca2+ enter and raises Ca2+

concentration in the intracellular space, stimulating Ca2+

dependent endonuclease, phospholipase, and proteinase activities,

leading to synaptic dysfunction and eventual neuronal death (120).

Accumulated Ca2+ exceeds the regulatory capacity of the

endoplasmic reticulum and mitochondria, consequently leading

to the release of cytochrome c and apoptosis factor and

provoking neuronal apoptosis (121). Excess free Ca2+ in neuron

also causes a loss of fidelity of microtubule assembly, damaging

neuronal structures and functions. What’s more, ATP has

properties of a biological hydrotrope, which can prevent the

formation of, or dissolve misfolded protein aggregates (122). For

impaired neurons, ATP’s hydrotropic effect may enhance the

solubility and clearance of toxic aggregates. Unfortunately, this

ability of ATP has been inhibited in cognitive impairment of

diabetes (123). Furthermore, some intermediates such as elevated

ROS or lactate, may exacerbate synaptic plasticity, either directly or

indirectly (81, 124). So far, impaired neuronal structure and

synaptic plasticity have identified as a significant pathological

mechanism of cognitive impairment (125). In views of this,

decreased ATP availability in neurons may lead to structural and

functional abnormalities in the neuronal cells, causing a “storm” of

detrimental cognitive effects in the brain of DCD.
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6.3 Contribution to oxidative damage and
inflammation

Recent studies have shown that the impaired glucose

metabolic pathway may enhance the oxidative stress and

inflammation. A study showed that dysregulation of G6PD

activity can lead to a reduction in NADPH, promoting

oxidative stress, as we mentioned in the previous paragraph

(126). ROS is produced within the cell by mitochondria. Lower

levels of ROS in cells are fundamental signal molecules for

physiological processes, such as redox homeostasis and signal

transduction. However, several defects in mitochondrial

function may result in ROS excessive production. Under the

state of hyperglycemia, mitochondrial dysfunction with

subsequent elevated ROS levels becomes detrimental for

normal cellular signaling and causes an amplifying cascade of

oxidative stress (127). During OXPHOS, H2O2 and O2– are

produced as byproducts in mitochondria, primarily by

complexes I (NADH dehydrogenase) and III, and are

sequestered by the antioxidant enzymes. However, under

disease conditions, this balance may be altered, leading to

excessive ROS production and cellular damage (128). This

oxidative stress becomes an initiator of various pathological

effects, especially inflammation and apoptosis, through

different pathways and interweave into complex networks,

finally damage various proteins related to glucose metabolism,

and inducing the development and progression of diabetes in the

brain (129, 130).

Microglia account for 10-15% of cells in the brain and play an

important role in immune response and neuroplasticity (9). Under

physiological conditions, microglia maintain a resting state

characterized by their ramified morphology. When stimulated,
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microglia activate and undergo changes in morphology,

proliferation, and release of cytokines as a response to immune

actions. Highly activated hypertrophied microglial cells have been

clearly observed in hippocampus during the occurrence of diabetes

(131). Reportedly, oxidative stress activates the cell death process

and recruits microglia to the damaging site, which then over-

produces proinflammatory cytokines and neurotoxic mediators,

aggerating the inflammation. Microglial energy metabolism is

tightly associated with its activity. Evidence suggested that

microglia increased glycolysis and decreased oxidative

phosphorylation when activated by various stimuli (132). During

inflammation in the brain, the high level of glycolysis in active

microglia not only supports the production of inflammatory

mediators but also consumes a vast amount of glucose that is

desperately needed by neurons. Some studies have also

demonstrated that the cerebral glucose uptake in brain regions of

individuals is strongly influenced by microglial activity. Microglial

activation states drive glucose uptake in AD disease patients and

mice models (133). Therefore, further understanding the metabolic

pathways of active microglia will be important to better control

neuroinflammation and improve the management of

neurodegeneration. The inefficient glucose metabolism pathway

and oxidative stress/inflammation are intimately related. A major

contributor of the former may well enhance oxidative stress, which

almost always leads to impaired enzymic activities involved in

glucose metabolism, thus creating a vicious circle.

In summary, cognitive dysfunction that is associated with

diabetes is seemingly a consequence of neuronal damage.

Diabetes-induced brain hyperglycemia and glucose metabolic

disorders are closely intertwined with oxidative stress,

inflammation, and other factors, which mutually promote and

affect each other, leading to disruptions in the synthesis of
FIGURE 1

The adverse consequences induced by dis-regulated glucose metabolism in DCD. Under diabetic conditions, aberrant glucose metabolism in
different cell types is accompanied with abnormal neuronal function, mainly including decreased synthesis of neurotransmitters and
neurotransmitter modulator, aberrant synaptic plasticity, aggerated oxidative stress and inflammation.
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essential amino acids and neurotransmitters in the brain, damage to

neural structures and plasticity, and neurological function.
7 Conclusions

The impact of hyperglycemia on the central nervous system has

been the subject of increasing interest. Based on the discussions

above, this review highlights the role of impaired cerebral glucose

metabolism in the pathophysiological cascades of diabetes. Glucose

transport, glycolysis, PPP, and TCA cycle in glucose metabolism are

aberrant in the brains of diabetic patients and animals, leading to

reduced ATP synthesis, aggerated oxidative stress/inflammation, all

of which drive decreased synthesis of neurotransmitters and

neurotransmitter modulator, aberrant synaptic plasticity, and

ultimately neuronal damage and cognitive impairment (Figure 1).

Among these pathogenic processes, impaired cerebral insulin signal

is highly emphasized and characterized as an important pathogenic

mechanism in the regulation of glucose metabolism. In future work,

targeting abnormal cerebral glucose metabolism, such as improving

brain insulin resistance, may be a promising strategy for improving

diabetic cognitive dysfunction.
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Glossary

6PGD 6-phosphogluconate dehydrogenase

Ab amyloid b -peptide

acetyl-CoA acetyl coenzyme A

AD Alzheimer’s disease

AMPK mitogen-active protein kinase

BBB blood brain barrier

DCD diabetic cognitive dysfunction

DRP1 dynamin-related protein-1

FDG-PET Fludeoxyglucose F18-positron emission tomography

FOX Forkhead transcription factors

FOXO1 Forkhead box O1

FPI Fasting plasma insulin

G6P glucose-6-phosphate

G6PD Glucose 6-phosphate dehydrogenase

GABA gamma-aminobutyric acid

GAD glutamate decarboxylase

Gln glutamine

Glu glutamate

Glu/GABA-Gln
cycle

glutamate/gabba aminobutyric acid-glutamine

GLUTs glucose transporters

GLS glutaminase

GS glutamine synthetase

HFD high fat diet

HK hexokinase

IGF insulin-like growth factor

IR insulin receptor

IRS insulin receptor substrate

LDH lactate dehydrogenase

MCI mild cognitive impairment

MCT monocarboxylate transporter

MRI magnetic resonance imaging

NADPH Nicotinamide adenine dinucleotide phosphate

NOXs NADPH oxidases

OXPHOs oxidative phosphorylation

PDH pyruvate dehydrogenase

PDHA1 Pyruvate dehydrogenase E1 alpha subunit

PET Positron emission computed tomography

PFK phosphofructokinase
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PGC-1a
Peroxisome proliferator-activated receptor gamma
coactivator 1a

PI3K phosphatidylinositol 3 kinase

AKT protein kinase B

PK pyruvate kinase

PPP pentose phosphate pathway

ROS reactive oxygen species

STZ Streptozotocin

T2DM type 2 diabetes

TCA tricarboxylic acid

VECs vascular endothelial cells
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