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machine learning
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Background: Diabetic kidney disease (DKD) is a common complication of

diabetes that is clinically characterized by progressive albuminuria due to

glomerular destruction. The etiology of DKD is multifactorial, and numerous

studies have demonstrated that cellular senescence plays a significant role in its

pathogenesis, but the specific mechanism requires further investigation.

Methods: This study utilized 5 datasets comprising 144 renal samples from the

Gene Expression Omnibus (GEO) database. We obtained cellular senescence-

related pathways from the Molecular Signatures Database and evaluated the

activity of senescence pathways in DKD patients using the Gene Set Enrichment

Analysis (GSEA) algorithm. Furthermore, we identified module genes related to

cellular senescence pathways through Weighted Gene Co-Expression Network

Analysis (WGCNA) algorithm and used machine learning algorithms to screen for

hub genes related to senescence. Subsequently, we constructed a cellular

senescence-related signature (SRS) risk score based on hub genes using the

Least Absolute Shrinkage and Selection Operator (LASSO), and verified mRNA

levels of hub genes by RT-PCR in vivo. Finally, we validated the relationship

between the SRS risk score and kidney function, as well as their association with

mitochondrial function and immune infiltration.

Results: The activity of cellular senescence-related pathways was found to be

elevated among DKD patients. Based on 5 hub genes (LIMA1, ZFP36, FOS, IGFBP6,

CKB), a cellular senescence-related signature (SRS) was constructed and validated as

a risk factor for renal function decline in DKD patients. Notably, patients with high

SRS risk scores exhibited extensive inhibition of mitochondrial pathways and

upregulation of immune cell infiltration.

Conclusion: Collectively, our findings demonstrated that cellular senescence is

involved in the process of DKD, providing a novel strategy for treating DKD.

KEYWORDS

diabetic kidney disease, cellular senescence, mitochondrial function, immune cell

infiltration, bioinformatics analysis, machine learning
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1 Introduction

Diabetic kidney disease (DKD) is one of the most common

complications of diabetes and remains the leading cause of end-

stage renal disease (ESRD) in the world population (1). The current

treatments for DKD are largely confined to optimal glucose and

blood pressure control, as well as renin–angiotensin–aldosterone

system blockades, which have limited therapeutic efficacy (1). It is

therefore imperative to gain a deeper understanding of the

pathogenesis of DKD, identify reliable biomarkers for high-risk

patients, and develop novel therapeutic approaches to prevent or

reverse the progression of DKD.

Cellular senescence is a cellular state that involves a halt in

proliferation, resulting in inflammation, impaired tissue repair,

irreversible tissue damage, and organ dysfunction (2). Recent

research has shown that renal parenchymal cells are induced to

undergo cellular senescence in the context of diabetes, by various

pathogenic stimuli, including hyperglycemia (3) and the

accumulation of advanced glycation end products (AGEs) (4).

This leads to the deterioration of kidney function mainly by

mediating a complex pro-inflammatory response called

senescence-associated secretory phenotype (SASP) (3). The SASP

includes the secretion of various molecules including cytokines,

chemokines, and growth factors, and has been suggested as a

possible source of inflammatory factors in DKD (5). However, the

linkage of cellular senescence and DKD is complex and not yet fully

understood at present. Therefore, it is vital to clarify the role and

mechanism of cellular senescence in the pathogenesis of DKD.

To systematically assess the correlations between cellular

senescence and the pathogenesis of DKD, we developed a cellular

senescence-related signature (SRS) risk score using biomarkers that

are closely associated with cellular senescence, and evaluated its

potential significance in predicting renal function. Subsequently, we

grouped patients according to the SRS risk score and compared

mitochondrial function and immune cell infiltration between the

high and low the SRS score groups. Our study sheds new light on

the regulatory mechanisms of cellular senescence in the process

of DKD.
2 Materials and methods

2.1 Data acquisition

The microarray data of the mRNA expression profile related to

DKD are retrieved from the Gene Expression Omnibus (GEO)

database (http://www.ncbi.nlm.nih.gov/geo/). More details of the

collected datasets are presented in Supplementary Table 1. Cellular

senescence-related pathways were derived from the Molecular

Signatures Database (6). A total of 279 cellular senescence-

associated genes were downloaded from the CellAge database

https://genomics.senescence.info/cells/) (7). Clinical data for DKD

patients were downloaded from the Nephroseq v5 online database
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(http://v5.nephroseq.org) (8). The mitochondrial genes and

pathways were obtained from the MitoCarta3.0 database (http://

www.broadinstitute.org/mitocarta) (9) and the Reactome database

(https://reactome.org) (10). Our workflow is illustrated in

Supplementary Figure 1.
2.2 Data preprocessing

To combine the data from the above 5 datasets, we first removed

batch effects using the surrogate variable analysis (SVA) algorithm

(11). The distribution patterns of samples were visualized by box

plots and principal component analysis (PCA).
2.3 Pathway and functional
enrichment analysis

Kyoto Encyclopedia of Genes and Genomes (KEGG) (12)

and Gene Ontology (GO) (13) enrichment analyses were applied

using the R package clusterProfiler (14). Gene set enrichment

analysis (GSEA) (15) was also performed to identify the

underlying pathways; the threshold for significant terms was

adjusted p-value < 0.05.
2.4 Gene set variation analysis

Gene set variation analysis (GSVA) is a nonparametric

unsupervised analysis method mainly used to evaluate the gene

set enrichment results of sequencing; GSVA allows the assessment

of potential changes in pathway activity in each sample. The GSVA

package in R software was used for the analysis, and the enrichment

scores of pathways in all samples were calculated (16).
2.5 Construction of the co-expression
network and key module identification
by weighted gene co-expression
network analysis

We used the Weighted Gene Co-Expression Network Analysis

(WGCNA) algorithm (17) to screen for cellular senescence-

associated module genes based on the enrichment scores of

pathways obtained from GSVA. The “goodSamplesGenes”

function was utilized to identify and remove outliers. To

ensure that the co-expression network followed a scale-free

distribution, we calculated a soft-thresholding power with the

“pickSoftThreshold” function. We used the dynamic tree-cutting

method to identify different modules, setting a minimum number of

100 genes per module. The module with the highest correlation with

cellular senescence-associated pathways was identified as the

senescence-associated module genes.
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2.6 Identification of intersection genes

The differentially expressed genes (DEGs) between the normal and

DKD groups were implemented via the “limma” R package (18) and

visualized with heatmaps and volcano plots by the “ggplot2” package in

R software (19). The intersection genes were obtained by the

overlapping DEGs between control and DKD, cellular senescence-

associated genes from the CellAge database, and module genes using a

Venn diagram.
2.7 Screening hub genes of DKD by
machine learning

Two machine learning algorithms, Support Vector Machine-

Recursive Feature Elimination (SVM-RFE) (20) and Random Forest

(RF) algorithms (21), were employed to further screen the cellular

senescence-associated signature genes in intersection genes. SVM-RFE

is a sequence backward selection algorithm, which has superior

classification performance for high-dimensional datasets (22). The

SVM-RFE algorithm was implemented using the “e1071”, “kernlab”,

and “caret” packages in R software for feature dimensionality

reduction. The RF algorithm is an ensemble method that combines

many decision trees and makes a single decision on behalf of the

ensemble by combining the results of multiple classifiers together. The

RF algorithmwas implemented using the “randomForest” package in R

software. Ultimately, genes overlapping among the machine learning

algorithms were regarded as hub genes. We also developed a receiver

operating characteristic (ROC) curve to assess the predictive capacity of

the hub genes. The area under the ROC curve (AUC) value was

calculated using the pROC package (23) to estimate the predictive

utility of the hub genes.
2.8 Development and validation of the SRS
based on the LASSO

The Least Absolute Shrinkage and Selection Operator (LASSO)

(24) was used to construct optimal SRS in DKD. The risk score

formula was as follows: o
n

i=1
bi ∗ exp(i), where exp represented the

gene expression value, and b represented the LASSO coefficient.
2.9 Analysis of immune cell proportion

GSVA based on the single-sample gene set enrichment analysis

(ssGSEA) algorithm was used to quantify the infiltration of 28

immune cell types (15).
2.10 Animal experimental design

All mouse studies were conducted according to protocols approved

by the Ethics Committee of The Sixth Affiliated Hospital, Sun Yat-sen
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University Male C57BL/6 mice aged 4 weeks old were used for

experiments. High-fat diet and streptozotocin (HFD/STZ) were used

to produce the DKDmodel following the previous study (25). Themice

were randomly divided into two groups: the control group and the

HFD/STZ group. The control group was fed a normal chow diet, and

the HFD/STZ group was given HFD. After 4 weeks, the mice in the

HFD/STZ group were intraperitoneally injected with a dose of STZ

(100 mg/kg) to induce diabetes. One week later, the mice were

considered diabetic if their random blood glucose levels exceeded

16.7 mmol/L. The control group received citrate buffer and was

processed in parallel with the diabetic mice. Mice were sacrificed 16

weeks later.
2.11 Histology

Paraffin-embedded kidney sections were stained using

commercial kits (Servicebio, Wuhan, China) for hematoxylin and

eosin (H&E) staining, periodic acid–Schiff (PAS) staining, and

Masson’s trichrome staining.
2.12 RT-PCR

At the termination of the animal experiment, we extracted total

RNA from the kidney tissues of the mice using RNAiso Plus

(Takara, Otsu, Japan). Then, reverse transcription was performed

to synthesize cDNA (Novoprotein, Shanghai, China). The

polymerase chain reaction was conducted using NovoStart SYBR

qPCR SuperMix Plus (Novoprotein, Shanghai, China). The primer

sequences are shown in Supplementary Table 2.
2.13 Correlation analysis between
two matrices

Correlations between the 5 hub genes, the SRS risk score, and

mitochondrial-related gene set were calculated using the Mantel

test. The “cowplot” R package was used to create a graphical display

of any correlations and their combinations.
2.14 Statistical analysis

All statistical tests were implemented utilizing R version 4.2.1

(https://www.r-project.org/) and GraphPad Prism 8.0. Wilcoxon or

Student’s t-test was utilized for analyzing the difference between the

two groups. The correlation between the variables was determined

using Pearson’s or Spearman’s correlation test. All statistical p values

were two-sided, and p < 0.05 was regarded as statistical significance.
3 Results

3.1 Removal of batch effects

After eliminating the batch effects by the SVA algorithm (11), we

merged and normalized 5 DKD datasets. Box plots (Supplementary
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Figures 2A, C) and principal component analysis (PCA)

(Supplementary Figures 2B, D) were used to visualize the

distribution patterns between normal and DKD samples. The results

confirmed that the batch effects had been successfully removed.
3.2 Identification of DEGs and enrichment
analysis between control and DKD

We observed a significant distinction between normal and DKD

samples, with 687 DEGs identified, including 334 upregulated genes

and 352 downregulated genes, as shown in the volcano plot and

heatmap (Figures 1A, B). GSEA results revealed that the

“KYNG_DNA_DAMAGE_UP”, “AGING_KIDNEY_UP”, and

“FRIDMAN_SENESCENCE_UP” pathways were activated

(Figures 1C–E), all of which are associated with cellular senescence.

Furthermore, since the senescence process is typically accompanied by

an inflammatory response (5), we also observed activation of the

“HALLMARK_INFLAMMATORY_RESPONSE” pathway within the
Frontiers in Endocrinology 04
hallmark gene sets of the DKD group (Figure 1F). These findings

indicate that the senescence process plays a role in the development

of DKD.
3.3 Analysis of module closely related to
cellular senescence in DKD

Furthermore, we utilized GSVA to calculate the enrichment score

of the aforementioned senescence-associated pathways to evaluate

potential changes in pathway activity across each sample, revealing

that senescence-associated pathway activity was elevated in the DKD

group (Figures 2A, B). We then performed correlation analysis to

validate the association between senescence-associated pathway activity

and renal fibrotic markers, demonstrating a strong positive correlation

between pathway activity and the expression of fibrotic genes, such as

FN1, COL1A2, COL1A1, and ACTA2 (Figure 2C). Subsequently, we

constructed a coexpression network using the enrichment score of

senescence-associated pathways obtained via GSVA. We first
A B

D

E F

C

FIGURE 1

Identification of DEGs and enrichment analysis. (A, B) Heatmap and the volcano plot of the DEGs between normal and DKD groups. (C–F) GSEA of
senescence-associated pathways.
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calculated a soft threshold and established a scale-free topology model,

setting the soft threshold to 5 (Figure 2D). The genes in the expression

profile were then clustered (Figure 2E), with the yellow and turquoise

modules displaying the strongest correlation with senescence-

associated pathways (Figure 2F). Ultimately, we identified 2,938

module genes through WGCNA, which were identified as

senescence-associated module genes in DKD.
3.4 Hub genes identified by machine
learning models

To comprehensively characterize the expression pattern of

cellular senescence-related genes, we utilized the CellAge database

to obtain 279 human genes related to cellular senescence. We then

intersected these genes with senescence-associated module genes
Frontiers in Endocrinology 05
and DEGs between control and DKD using a Venn diagram, which

revealed 11 overlapping genes (Figure 3A). To further narrow down

the range of key senescence-related genes, we subjected these 11

genes to machine learning analysis. SVM-RFE and RF models were

independently established based on the control and DKD groups.

The SVM-RFE algorithm identified 8 feature genes (Figures 3B, C),

while the RF algorithm generated a sequence of the 11 genes

(Figures 3D, E). Finally, we identified the 5 most important

explanatory variables (LIMA1, ZFP36, FOS, IGFBP6, and CKB)

from the machine learning models as hub genes (Figure 3F).

3.5 Construction of SRS risk score based
on the 5 hub genes

We further verified the expression of the 5 hub genes in the

kidney of the normal control and DKD groups (Figure 4A).
frontiersin.or
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FIGURE 2

Identification of senescence-associated module genes in DKD. (A, B) GSVA of senescence-associated pathways demonstrated by heatmap and box
plots in the control and DKD groups. (C) The correlation analysis between the score of senescence-associated pathways based on GSVA and fibrotic
markers (FN1, COL1A2, COL1A1, and ACTA2). (D) Scale-free exponent and average connectivity for each soft threshold. (E) Dendrogram of gene
clusters, with different colors representing different modules. (F) Heatmap of the correlations between module eigengenes and senescence-
associated pathways. *** p < 0.001.
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Additionally, we performed the ROC curve to evaluate the

diagnostic efficacy of the 5 hub genes in DKD; the ROC curve

indicated that all of the hub genes were highly accurate diagnostic

markers for DKD (AUC between 0.8726 and 0.935) (Figure 4B).

Subsequently, we utilized HFD/STZ to construct a DKD mouse

model to verify the expression of the hub genes. Firstly, we validated

the successful construction of the DKD model through histological

analysis, which revealed that compared to the control group,

the HFD/STZ group exhibited greater mesangial expansion

and irregular thickening of the glomerular membrane.

Additionally, Masson staining showed the formations of blue-

stained extracellular collagen in the glomerulus (Figure 4C). Next,

we performed RT-PCR to validate the expression of the hub genes

in mouse kidney tissues. Our results indicated that the mRNA
Frontiers in Endocrinology 06
abundance of LIMA1 and IGFBP6 was higher in the HFD/STZ

group, while that of ZFP36, FOS, and CKB was lower in the HFD/

STZ group (Figure 4D), consistent with our bioinformatics analysis.

Using the 5 hub genes, we employed LASSO to determine the

number of factors by introducing shrinkage penalties and limiting

the coefficients. Through continuous selection and simulation of the

number of features, we established an SRS risk score for DKD

patients (Figures 4E, F). The explicit formula of the SRS risk score

was as follows: LIMA1 expression * (3.792075646) + ZFP36

expression * (−1.673662939) + FOS expression * (−0.150739822)

+ IGFBP6 expression * (2.350866436) + CKB expression *

(−2.398663582). We have further validated the diagnostic

efficiency of the SRS risk score in DKD patients and found that it

is highly effective for diagnosis (AUC = 0.995) (Figures 4G, H).
B

C D

E F

A

FIGURE 3

Hub genes identification. (A) Venn diagram showing the intersection of genes shared by WGCNA, DEGs, and genes from the CellAge database.
(B, C) SVM-REF algorithm for feature selection. (D) RF algorithm demonstrating the relationship between the number of trees and error rate.
(E) Ranking of genes based on their relative importance using the RF algorithm. (F) Venn diagram showing the hub genes shared by SVM-RFE
and RF algorithms.
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3.6 Validation of the role of the SRS risk
score in DKD

We divided DKD patients into low-risk and high-risk groups

based on the median of the SRS risk score. Subsequently, we

examined the association between the risk score and renal

function using clinical data from the Nephroseq v5 online tool.

As depicted in Figure 5A, the high-risk group demonstrated a

significantly lower glomerular filtration rate (GFR) than the low-

risk group, and there was a negative correlation between the risk

score and GFR levels (Figure 5B). We also investigated the link

between the risk score and the expression of fibrotic genes. As
Frontiers in Endocrinology 07
illustrated in Figures 5C–F, the risk score exhibited a positive

correlation with the expression of FN1, COL1A2, COL1A1, and

ACTA2. These findings collectively validate the effectiveness of the

SRS risk score as a means of assessing renal function and the degree

of renal fibrosis.
3.7 Identification of DEGs grouped by the
SRS risk score

In the low-risk and high-risk groups, a total of 541 DEGs were

identified, with 215 showing downregulation and 326 showing
B

C D

E F

G H

A

FIGURE 4

Construction of SRS risk score based on hub genes. (A) The expression of 5 hub genes displayed in box plots from control and DKD patients.
(B) ROC curve of the 5 hub genes in DKD. (C) Representative images of H&E, PAS, and MASSON staining from control and HFD/STZ mice. (D) RT-
PCR analysis of kidney LIMA1, ZFP36, FOS, IGFBP6, and CKB expression from control and HFD/STZ mice (n = 3). (E) Distribution of LASSO
coefficients for differential genes. (F) Ten-time cross-verification for tuning parameter selection in the LASSO model. (G) The box plots of the SRS
risk score between control and DKD patients. (H) ROC curve of the SRS risk score in DKD. * p < 0.05, ** p < 0.01, *** p < 0.001.
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upregulation patterns as demonstrated by the volcano plot and

heatmap in Supplementary Figures 3A, B. These DEGs were

primarily associated with biological processes related to senescence-

associated secretory phenotype (SASP), which has been proposed as a

possible source of inflammatory factors in DKD caused by cellular

senescence. Such SASP-associated biological processes include

“POSITIVE REGULATION OF CYTOKINE PRODUCTION”,

“TUMOR NECROSIS FACTOR PRODUCTION”, “CHEMOKINE

PRODUCTION”, and “TRANSFORMING GROWTH FACTOR

BETA PRODUCTION” (Figure 6A). Furthermore, pathway

enrichment analysis revealed that DEGs were enriched in key

pathways implicated in DKD pathogenesis, such as the “AGE-

R AG E S I GNA L I NG PA THWAY I N D I A B E T I C

COMPLICATIONS”, “RENIN-ANGIOTENSIN SYSTEM”,

“MAPK SIGNALING PATHWAY”, “PI3K-AKT SIGNALING

PATHWAY”, and “TGF-beta SIGNALING PATHWAY”, among

others (Figures 6B–D). We also conducted GSEA to identify

underlying pathways or processes in hallmark gene sets obtained

from the Molecular Signatures Database for patients with low or high
Frontiers in Endocrinology 08
scores. The results indicated that “EPITHELIAL MESENCHYMAL

TRANSITION” and “TNF-a SIGNALING VIA NF-kb” were

activated in the high-score group, while the activities of

mitochondrial pathways, such as “FATTY ACID METABOLISM”

a n d “OX IDAT IVE PHOSPHORYLAT ION ” , w e r e

suppressed (Figure 6E).
3.8 Evaluation of mitochondrial pathway

The previous analysis suggests that pathways related to

mitochondrial function such as oxidative phosphorylation

(OXPHOS) and fatty acid metabolism were significantly suppressed

in the high SRS score group. Furthermore, mitochondrial dysfunction

is a key hallmark of cellular senescence (26). Therefore, we further

investigated the relationship between mitochondrial function and

cellular senescence in our subsequent research. We obtained

mitochondrial genes and pathways from the MitoCarta3.0 and

Reactome database and assessed the differential expression of
B

C D

E F

A

FIGURE 5

The relationship between the SRS risk score and GFR, fibrotic markers. (A) The box plots of GFR between the low-risk and high-risk groups. (B) The
correlation analysis between the SRS risk score and GFR. (C–F) The correlation analysis between the SRS risk score and the expression of fibrotic
markers (FN1, COL1A2, COL1A1, and ACTA2). *** p < 0.001.
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mitochondrial genes between the low- and high-score groups. Our

analysis revealed that almost all differentially expressed

mitochondrial genes were downregulated in the high SRS score

group, primarily localized to the mitochondrial matrix and

mitochondrial inner membrane (MIM) (Figure 7A). Based on the

differential gene analysis between low- and high-score groups, we

conducted GSEA enrichment analysis on mitochondrial pathways

obtained from the MitoCarta3.0 database, indicating a significant

suppression of pathways involved in OXPHOS and metabolism in

the high SRS score group (Figure 7B). To further explore differences
Frontiers in Endocrinology 09
in mitochondrial pathways between the high- and low-score groups,

we conducted GSVA analysis on mitochondrial pathways. We

selected a log fold change threshold of 0.2 and a p-value below 0.05

to identify 41 pathways with significant differences, among which 39

pathways were downregulated in the high-score group (Figure 7C).

Most of the downregulated pathways are related to OXPHOS and

metabolism. In addition, the Mantel t-test confirmed an extremely

strong correlation between the SRS score and the 5 hub genes with

the OXPHOS and carbohydrate/lipid/amino acid metabolism gene

sets (Supplementary Figures 4A–D). These findings suggest that
B

C D

E

A

FIGURE 6

Function and pathway enrichment analysis of DEGs in the low-risk and high-risk groups. (A) GO terms enriched in the DEGs between the low-risk
and high-risk groups. (B) KEGG pathway between the low-risk and high-risk groups. (C, D) Visualization of the enriched KEGG pathways. (E) GSEA of
pathways in the hallmark gene set.
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mitochondrial function was widely suppressed in the high-

score group.

To further investigate the mechanism behind the decreased

activity of OXPHOS-related pathways in the high-scoring group,

we analyzed the relationships between the expression of the SRS risk

score, 5 hub genes, and genes related to the mitochondrial

respiratory chain complex. As genes related to mitochondrial

respiratory chain complex V were undetected in the expression

profiles, we focused solely on genes related to complex I–IV. The

correlation values revealed a clear negative correlation between the

most respiratory chain complex I–IV genes and the SRS risk score,

LIMA1, and IGFBP6 expression levels, while ZFP36, FOS, and CKB

showed a positive correlation (Figure 7D).
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Continuing our investigation, we delved deeper into the

correlation between the SRS score, 5 hub genes, and mitochondrial

metabolism genes. Using the MitoCarta3.0 database, we obtained

genes involved in mitochondrial metabolic pathways associated with

various nutrient metabolisms. Our correlation analysis revealed a

consistent regulatory effect of the SRS score and the 5 hub genes on

genes regulating mitochondrial metabolism-related genes including

macronutrients (carbohydrates/lipids/amino acids) and

micronutrients (vitamins and minerals). Our findings indicated

that the SRS risk score, LIMA1, and IGFBP6 expression levels

showed a negative correlation with most mitochondrial

metabolism-related genes, while ZFP36, FOS, and CKB showed a

positive correlation (Figure 7E).
B

C

D

A

E

FIGURE 7

Assessment of mitochondrial pathways in the low-risk and high-risk groups. (A) Heatmap of differentially expressed mitochondrial genes in the low-
risk and high-risk groups. (B) GSEA of mitochondria-related pathways in the low-risk and high-risk groups. (C) GSVA of mitochondrial pathways
demonstrated by box plots in the low-risk and high-risk groups. (D) Correlations between the SRS risk score, the 5 hub genes and mitochondrial
respiratory chain complex-related genes. (E) Correlations between the SRS risk score, the 5 hub genes and mitochondrial metabolism-related genes.
* p < 0.05, ** p < 0.01, *** p < 0.001.
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Previous studies have suggested that both mitophagy and

mitochondrial biogenesis play important roles in the senescence

process (27, 28). Our GSVA indicated that the activity of the

mitophagy pathway was decreased in the high-risk score

group (Figure 7C). We downloaded gene sets related to PINK1/

PRKN-mediated mitophagy, receptor-mediated mitophagy, and

mitochondrial biogenesis from the Reactome database.

Unfortunately, we did not find any clear patterns or correlations

between the SRS risk score and the 5 hub genes with the genes

related to the mitophagy gene sets (Supplementary Figures 4E, F).

Regarding the gene sets related to mitochondrial biogenesis, we

found that only SIRT3 was negatively correlated with both the SRS

risk score and the expression levels of LIMA1, ZFP36, FOS, and

IGFBP6. Meanwhile, CKB showed a positive correlation with SIRT3

expression. However, there was no significant correlation between

the SRS risk score, the 5 hub genes, and other genes related to

mitochondrial biogenesis as shown in Supplementary Figure 4G.
3.9 Evaluation of immune cell infiltration

One of the hallmarks of DKD is immune remodeling (29). To

determine whether the SRS risk score accurately reflected the
Frontiers in Endocrinology 11
immune status of DKD, we evaluated immune cell infiltration in

DKD using ssGSEA. We observed distinct immune infiltrate

patterns among patient risk groups stratified by the SRS risk

score. Compared to the low-risk group, most innate and adaptive

immune cells showed higher levels of infiltration in the high-risk

group (Figure 8A). Furthermore, there were notable interactions

between immune cell populations across kidney tissues affected by

DKD (Figure 8B). Correlation analysis revealed that infiltration

levels of multiple types of immune cells, including T-cell subsets,

different developmental or functional stages of B cells, and mast

cells, were positively correlated with the SRS risk score, while

CD56dim natural killer cells, monocytes, and CD56bright natural

killer cells were negatively correlated with the risk score (Figure 8C).

These findings suggest that immune system disorders in the process

of DKD may be closely related to cellular senescence.
4 Discussion

Our study constructed an SRS risk score using 5 biomarkers

related to cellular senescence based on the GEO datasets. We found

that patients in the high-scoring group had lower GFR and higher

expression of fibrotic genes compared to those in the low-scoring
B C

A

FIGURE 8

Evaluation of immune cell infiltration. (A) The score of immune cells was detected by ssGSEA grouped by the SRS risk score. (B) Correlation analysis
between immune cells. (C) Correlation analysis between the SRS risk score and different immune cells. * p < 0.05, ** p < 0.01, *** p < 0.001. ns, no
statistically significant difference.
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group. Additionally, we observed significant suppression of

mitochondrial function in the high-scoring group. Notably, the

SRS risk score was positively correlated with the degree of immune

cell infiltration in DKD. These results provide new insight into the

role of cellular senescence and associated genes in the pathogenesis

of DKD.

Cellular senescence was first reported in the 1960s (30) and is

defined as a persistent cell cycle arrest that limits their proliferative

life span. Emerging evidence for accelerated senescence and SASP

has been reported in DKD (3, 31). Recent studies have shown that

drugs targeting senescent cells can alleviate proteinuria in obese

insulin-resistant mice (32), suggesting that anti-cellular senescence

strategies hold promise for future interventions aimed at delaying,

preventing, or treating renal dysfunction. In our research, the 5 hub

genes (LIMA1, IGFBP6, ZFP36, FOS, and CKB) related to cellular

senescence were identified. Importantly, these hub genes have

significant implications in multiple senescence-related fields. For

example, ZFP36 contributes to inflammation-associated lung

damage by interacting with the p53/p21 pathway, which is a core

pathway in senescence (33). In addition, FOS plays a crucial role in

the senescence process of granulosa cells in the ovary (34), and is

responsible for UV-related skin aging (35). CKB is involved in

cigarette smoke-induced bronchial epithelial cell senescence (36).

However, the roles of these hub genes in the regulation of cellular

senescence in DKD are less well understood. It should be noted that

further research is necessary to validate the effects of these identified

genes in DKD.

Clear evidence indicates that AGEs formation generation plays

a central role in DKD pathology mechanisms. The binding of AGEs

with receptor for AGEs (RAGE) provokes oxidative stress and

chronic inflammation in renal tissues, resulting in progressive

renal diseases (37). These processes involve activations of

signaling pathways nuclear factor-kappa B (NF-kB), PI3K/Akt,
and MAPK/ERK (38). Our study found that the AGE/RAGE,

PI3K/Akt, and ERK pathways were enriched in the DEGs

grouped by the SRS risk score; these results suggest that cellular

senescence is involved in the regulation of the core pathways

in DKD.

Along with cellular senescence, mitochondrial dysfunction is an

essential “hallmark” and drives and maintains cellular senescence (26,

39). However, there is still no consensus on which type of

mitochondrial dysfunction is the primary driving factor of cellular

senescence. Previous studies have emphasized that mitochondrial

OXPHOS dysfunction is a common feature of senescent cells (40),

and our study confirms this finding again in the DKD model.

Furthermore, we have demonstrated that genes related to

mitochondrial respiratory chain complexes are widely downregulated

in patients with higher SRS score. Mitochondria integrate nutrients as

fuels to generate energy for the cell (41), and the metabolic disorders of

these nutrients are involved in the occurrence and development of

DKD (42–44); however, few studies have suggested that nutrient

metabolism disorder is closely related to cellular senescence in the

process of DKD, and it is worth investigating whether targeting

mitochondrial metabolism could potentially restore mitochondrial
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function during cellular senescence. Additionally, numerous studies

have suggested that mitophagy plays a role in regulating cellular

senescence and is involved in the development of DKD (31). Our

GSVA indicated that the activity of the mitophagy pathway was

decreased in the high SRS score group. Unfortunately, we did not

find any clear patterns or correlations between our SRS risk score and

the 5 hub genes with the genes related to the mitophagy gene sets. This

may be due to the fact that the regulation of mitophagy often occurs at

the post-transcriptional protein modification level (45, 46).

Although immune dysregulation has been recognized as a

crucial driving factor in the pathogenesis of DKD, the potential

regulation of the immune system remains largely unknown. Our

study identified numerous immune-related biological processes and

pathways that were significantly enriched in the differentially

expressed DEGs grouped by the SRS risk score. Notably, most

immune cells were increased in the high-risk score group,

suggesting that cellular senescence may trigger an immunological

response in DKD. Multiple studies have reported that immune cell

infiltration contributes to the development of DKD. For instance,

group 2 innate lymphoid cells have been implicated in the

pathogenesis of renal fibrosis in DKD (47). The deposition of

macrophages in the kidney is closely associated with decreased

renal function in DKD patients (48), while mast cells are reported to

participate in renal interstitial fibrosis during DKD progression

(49). Memory CD8+ T cells were also found to be significantly

elevated in kidney tissues in various types of chronic kidney disease

(CKD), including DKD, leading to podocyte injury and

glomerulosclerosis (50). Based on our findings, targeting

senescent cells could potentially represent a novel therapeutic

approach for improving immune dysfunction in DKD patients.

This study has several limitations. First, we built and evaluated

our SRS from public databases. To confirm its clinical value, more

prospective real-world evidence is needed. Second, the SRS

construction based solely on a single signature is inescapable

because many significant genes in DKD may have been ignored.

Third, the association between SRS and mitochondrial pathway,

immune response, needs to be studied experimentally.

In conclusion, an innovative SRS can distinguish normal

control and DKD patients and can be utilized to predict kidney

function. Moreover, the SRS was found to be linked to

mitochondrial function and immune cell infiltration.
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Flow chart of this study.

SUPPLEMENTARY FIGURE 2

Data preprocessing. (A, C) Box plots of datasets before (A) and after (C) data
processing. (B, D) PCA of datasets before (B) and after (D) data processing.

SUPPLEMENTARY FIGURE 3

Identification of DEGs grouped by SRS. (A, B) Heatmap and the volcano plot

of the DEGs from low-risk group and high-risk group.

SUPPLEMENTARY FIGURE 4

Assessment of mitochondrial pathways in the low-risk and high-risk groups.

(A) Correlations between the SRS score, the 5 hub genes and OXPHOS, (B–D)
carbohydrate/lipid/amino acid metabolism, (E, F) mitophagy, (G)
mitochondrial biogenesis gene set.
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