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Testicular Leydig cells (LCs) are the primary known source of testosterone, which is

necessary for maintaining spermatogenesis and male fertility. However, the

isolation, identification, and functional analysis of testosterone in duck LCs are

still ambiguous. The aim of the present studywas to establish a feasible method for

isolating highly purified primary duck LCs. The highly purified primary duck LCs

were isolated from the fresh testes of 2-month-old ducks via the digestion of

collagenase IV and Percoll density gradient centrifugation; hematoxylin and eosin

(H&E), immunohistochemistry (IHC) staining, ELISA, and radioimmunoassay were

performed. Results revealed that the LCs were prominently noticeable in the

testicular interstitium of 2-month-old ducks as compared to 6-month-old and 1-

year-old ducks. Furthermore, IHC demonstrated that the cultured LCs occupied

90% area of the petri dish and highly expressed 3b-HSD 24 h after culture (hac) as

compared to 48 and 72 hac. Additionally, ELISA and radioimmunoassay indicate

that the testosterone level in cellular supernatant was highly expressed in 24 and

48 hac, whereas the testosterone level gradually decreased in 72 and 96 hac,

indicating the primary duck LCs secrete testosterone at an early stage. Based on

the above results, the present study has effectively developed a technique for

isolating highly purified primary duck LCs and identified its biological function in

synthesizing testosterone.
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Introduction

Leydig cell (LC) is a kind of interstitial cell present in the loose connective tissues

between seminiferous tubules in the testis (1). The main function of the LC is synthesizing

and secreting androgen, and more than 90% of testosterone in the body originates from

LCs (2). The testosterone synthesized by LC is proved to be regulated by the hypothalamic–
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pituitary–gonadal (HPG) axis (3), during which the secretion of

gonadotrophin-releasing hormone (GnRH) acted on the anterior

pituitary and then promoted the synthesis and secretion of

luteinizing hormone (LH) and follicle-stimulating hormone

(FSH). Additionally, age-related decline in the function of the

hypothalamic–pituitary gland is one of the key factors

contributing to the decline in serum testosterone levels (2, 4).

LC produces testosterone, which serves a variety of physiological

functions in the body at various developmental phases (5). It could not

only promote the development of gonads (6) but also sustain

spermatogenesis and sperm maturation within the male reproductive

system (7). Without testosterone, spermatogenesis would suspend at

meiosis II, which leads to the decline of spermatogenic cells after

meiosis and the lack of elongated spermatids (8). Testosterone

supplementation could be used to restore normal testosterone levels,

which stimulate the process of spermatogenesis (9). In previous studies,

testosterone has been proven to possess a variety of physiological

functions. First, testosterone could induce sex differentiation and

development of the male reproductive system during the embryonic

phase. However, due to testosterone, the undifferentiated gonads will

convert into male testes (10). The masculinization of the genital ducts

as well as external genitalia has been induced by testosterone, and it

promotes testicular descent to the scrotum (11). In male infants, the

secretion of testosterone is at a very low level and remains constant up

to the onset of puberty. At the early stage after birth, the levels of

luteinizing and follicle-stimulating hormone are comparatively low,

which causes minimal testosterone production levels (12). Testosterone

could induce secondary sexual characteristics at puberty. LCs secrete

testosterone again upon the start of puberty, and the testes develop and

begin to produce sperm in response to testosterone stimulation (13).

Meanwhile, the accessory sexual glands also develop secretory activity;

furthermore, testosterone could maintain spermatogenesis after sexual

maturity. Serum testosterone levels sharply decline and

spermatogenesis is inhibited after the removal of the testis in

adulthood (14, 15). Testosterone could promote the metabolism and

development of the body; stimulates the growth of bone, skeletal

muscle, hair, and skin; and promotes the production of red blood

cells (16). Consequently, testosterone could not only sustain

spermatogenesis but also be widely involved in the metabolic

activities of the body.

As indicated previously, multitudinous inherent and exterior

factors have been correlated in reproductive diseases, which are

induced by the disorder in testosterone synthesis and secretion. LC is

not only the cell that synthesizes and secretes testosterone but also the

target cell of testosterone (17). Testosterone regulates the development

of LCs via the differentiation into adult Leydig cells (ALCs) during the

development of male livestock and poultry (18). Innately, such

malformation of reproductive organs or salpingemphraxis and

acquired breeding disorder (for example, cryptorchidism and

testicular dysgenesis syndrome) could be owing to the defect in

testosterone synthesis and secretion (19). Alternatively, heat shock

affects the endocrine system (especially male adult domestic animals)

and significantly declines reproductive capacity through testosterone

reduction (20). In addition, testosterone synthesis in chicken could also

be regulated by different photoperiods (21). With regard to the virus–

male reproductive system interaction, the infection of Zika virus
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(ZIKV), an emerging mosquito-borne flavivirus, could lead to

testicular atrophy and orchitis, which are probably caused by LC

infection and a concomitant decline in testosterone synthesis (22). In

addition to ZIKV, Mumps virus (MuV) (23) and Japanese encephalitis

virus (JEV) (24) are also closely correlated with suppressed testosterone

synthesis in LCs and impaired male fertility. Additionally, the influence

of environmental stimulus on human health, especially the

reproductive system, has attracted more and more extensive

attention. Among them, PM2.5 has been proven to induce orchitis

via NF-kB signal pathway activation and is further discovered to have

the reliving effect of aspirin in orchitis (25). Endocrine-disrupting

compounds (EDCs) are another environmental stimulus that could

impair the development of the male reproductive system by androgen

disruption and inhibit steroidogenesis in LCs as well (26). Moreover,

the effects of bisphenol A (BPA) in attenuating testosterone synthesis

and secretion are thoroughly studied. Consequently, the guarantee for

the ability of testosterone synthesis and secretion in LCs is of significant

value (27). Furthermore, the illustration of mechanisms underlying

testosterone synthesis and therapies in vitro call for the isolation and

primary culture of LCs but has caught limited attention.

Currently, the studies related to the isolation and culture of LCs

were mainly focused on mice (28), rats (29), pigs (30), sheep (31), cows

(32), and other mammals (33). In poultry, collagenase II digestion

combined with differential centrifugation was applied in the isolation of

rooster LCs, and passage was used in its purification (34). In contrast,

the isolation and identification of highly purified primary LCs in ducks

have received very little attention. Accordingly, in the present study, we

aimed to establish a feasible method for isolating highly purified

primary duck LCs and analyze their ability for testosterone synthesis

and secretion.
Materials and methods

Animals

Eighteen male ducks (Anas platyrhynchos) aged 2 months, 6

months, and 1 year (six in each group) were purchased from

Nanjing Qizai Biological Co., Ltd. Moreover, ten 2-month-old

ducks were used in the culture of LCs. After adaptive feeding for

48 h, the testes of both sides were immediately separated and

sterilized with 75% ethanol. The procedures involving the care

and use of animals in the experiment had been approved by the

Animal Research Institute Committee guidelines of the Nanjing

Agriculture University, China. The Science and Technology Agency

of Jiangsu Province and Nanjing Agricultural University Veterinary

College approved the sampling procedures with approval ID SYXK

(SU) 2010-0005.
Hematoxylin and eosin staining

Fresh testes of ducks were first fixed in a modified Davidson’s

solution for 24 to 72 h and then transferred to 4% paraformaldehyde

for 48 h. After that, six testes in every group were embedded in paraffin

after trimming, dehydration, and substitution in xylene. Moreover, the
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cultured LCs were fixed with 4% paraformaldehyde for 30min after the

supernatant was discarded. The paraffin blocks were sectioned with a

thickness of 5 mm and stained with hematoxylin and eosin. Finally, the

slides were examined microscopically by a light microscope (DP73,

Olympus, Tokyo, Japan).
Immunohistochemistry staining

The paraffin sections and cultured LCs were incubated with rabbit

polyclonal anti-HSD3B1 antibodies (ab55268, Abcam, Massachusetts,

USA). After washing, the slides were incubated with biotinylated goat

anti-rabbit IgG (ab64256, Abcam, Massachusetts, USA) for 1 h. After

rinsing in phosphate-buffered saline (PBS), DAB (ab64261, Abcam,

Massachusetts, USA) was used for the visualization of peroxidase

activity. The slides were examined microscopically by a light

microscope (DP73, Olympus, Tokyo, Japan).
Isolation and primary culture of duck
Leydig cells

The LCs were first sterilized at the surface of the testes with 75%

ethanol. Then, the connective tissue and albuginea were stripped from

the testes and chopped into pieces with sterilized scissors. The

collagenase II (1148090, Sigma-Aldrich, Saint Louis, MO, USA) with

a concentration of 1 mg/ml was added and underwent shock digestion

at 37°C for 1–1.5 h. Digestion was terminated by DMEM/F12 medium

when the seminiferous tubule was loosened. The mixture was filtered

through a 100 mesh stainless steel filter, the liquid was collected and

centrifuged at 409 g for 10 min, and then the liquid was removed. The

step was repeated with a 200 mesh stainless steel filter, and the cell

suspension into Percoll (60%, 34%, 26%) was centrifuged at 728 g for

30 min. The third layer of the cell zone, which was counted from the

top to the bottom, was taken out by the syringe. The DMEM/F12

medium was added, mixed with the cells, and centrifuged at 409 g for

10min. DMEM/F12medium containing 10% fetal bovine serum (FBS)

and 1% penicillin–streptomycin was added to the purified cells for cell

suspension. Finally, cell suspension of approximately 5 × 105 cells/ml

was incubated in 5% CO2 at 37°C.
Total RNA extraction

RNA of testis tissue (small species) and LCs (three samples in each

group) were extracted using TRIzol Reagent (T9424, Sigma-Aldrich,

Saint Louis, MO, USA). RNA concentration was measured using

NanoDrop 1000 spectrophotometer (ND-1000, Thermo Fisher

Scientific, Massachusetts, USA). The ratio of A260/A280 was applied

to detect the RNA integrity, and the threshold value was set between 1.8

and 2.0. The extracted RNA was immediately applied for cDNA

synthesis or stored at −80°C.
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ELISA analysis

The testosterone levels of LC supernatant were detected using

Duck Testosterone ELISA Kit (Jiangsu Meimian Industrial Co., Ltd.,

China). The cellular supernatant testosterone levels were detected

following the manufacturers’ instructions. The cellular supernatant

was centrifuged at 1,000 g for 20min andmixed with the reagent in 96-

well plates. After incubation at 37°C for 30min, it was washed with PBS

two to three times. Then, the enzyme-labeled reagent was added and

incubated at 37°C for 30 min. Optical density (OD) at 450 nm was

applied using Microplate Reader (51119700DPC, Thermo Fisher

Scientific, Massachusetts, USA).
Radioimmunoassay

The testosterone levels of the LC supernatant were detected

using an Iodine [125I] Testosterone Radioimmunoassay Kit (B10B,

Beijing North Institute of Biotechnology Co., Ltd., China). The

cellular supernatant testosterone levels were detected following the

manufacturers’ instructions.
Real-time quantitative polymerase
chain reaction

The first-strand cDNA was synthesized using HiScript III RT

SuperMix for qPCR (R323-01, Vazyme, Nanjing, China). SYBR Green

PCR Master Mix (Q111-02, Vazyme, Nanjing, China) was applied to

real-time fluorescence quantitative PCR assays via LightCycler 480

(Roche, Switzerland). The PCRs were first conducted under 94°C for

5 min and then followed 40 cycles’ amplification of denaturation at 95°

C for 30 s, 60°C for 30 s for the annealing, and 60°C to 95°C for the

melting curves. The primers for the following genes were synthesized

using Primer3 Input (version 0.4.0) software, and details are attached in

Supplementary Table 1. b-Actin was used as an internal control. The

relative changes in gene expression between different groups were

calculated using the 2−DDCT method.
Statistical analysis

All data were presented as mean ± standard error of the mean

(SEM). The statistical data were obtained by importing data into SPSS

for Windows version 22.0 statistical package (SPSS Inc., Chicago, IL,

USA). The normality and the equality of variances of data were

assessed by ANOVA. The data were considered statistically

significant when p < 0.05.
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Results

Morphological evaluations of LCs in the
testicular interstitial tissues

To investigate the development of LCs in duck testes, hematoxylin

and eosin (H&E) stains were applied for themorphological observation

of the testicular structure among ducks aged 2months, 6 months, and 1

year. In the 2-month-old duck testes, a great quantity of LCs existed in

the testicular interstitium (Figures 1A, D). By contrast, modest and

inconsiderable amounts of LCs were respectively observed in 6-month-

old and 1-year-old duck testes (Figures 1B, C, E, F). Additionally, the

immunohistochemical analysis indicated that 3b-HSD was highly

expressed in the testicular interstitium of 2-month-old ducks

(Figures 2A, D); however, in contrast, a low expression in 6-month-

old and 1-year-old duck testes was observed (Figures 2B, C, E, F).

Therefore, LCs were noticeable in the testicular interstitium of 2-

month-old ducks.
LC isolation and immunohistochemical
analysis from duck testicular interstitium

To acquire highly purified primary duck LCs, collagenase II

digestion and Percoll density gradient centrifugation were

successively applied to the isolation process. Correspondingly, three
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cell layers were explicitly separated in the centrifuge tube from top to

bottom (Figure 3). In the first or top cell layer with a density of 1.035 g/

ml, the round cells and cellular debris accounted for the most cell layer.

Sperm and interstitial debris constituted the second or middle cell layer

with a density of 1.076 g/ml and the third or bottom cell layer with a

density of 1.085 g/ml of Leydig cells.

Upon inoculation, LCs were round in morphology and

suspended in a serum medium (Figure 4A). Most of the isolated

cells were already adherent and occupied approximately 50% of the

cell culture flask after 12 h (Figure 4B). Nearly 24 h after

inoculation, LCs were adherent in the morphology of cobblestone

and cover 80%–90% of the cell culture flask (Figure 4C).

Additionally, H&E staining indicated that adherent cells were

uniform in morphology (Figure 5A). The round or oval nuclei

were in the center of LCs; meanwhile, small vacuoles (probably lipid

droplets) could be observed in the cytoplasm of LCs (Figure 5B). To

further verify the purity of LCs, the immunohistochemical analysis

indicated that 3b-HSD was highly expressed in the cytoplasm of

LCs at different stages (Figure 6). The specific gene expressions for

spermatogenic cells (germ cell nuclear antigen 1 (GCNA-1)), Sertoli

cells (WT1 transcription factor (WT1)), and Leydig cells

(cytochrome P450 family 11 subfamily A member 1 (CYP11A1)

and cytochrome P450 family 17 subfamily A member 1

(CYP17A1)) were observed. In cultured LCs, the expression of

GCNA-1 and WT1 were low expressed or undetected, whereas

CYP11A1 and CYP17A1 were highly expressed (Figure 7).
FIGURE 1

H&E staining of testes in ducks aged 2 months, 6 months, and 1 year. Low magnification of testes from ducks aged 2 months (A), 6 months (B), and
1 year (C). High magnification of testes from ducks aged 2 months (D), 6 months- (E), and 1 year (F).
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Testosterone synthesis and
secretion ability in cultured
LCs from 2-month-old ducks

ELISA results revealed that the level of testosterone secreted by

primary duck LCs was gradually elevated within the first 48 h and

reached the peak 48 h after culture (hac). Subsequently, the

testosterone concentration continuously diminished at 72 and 96

hac (Figure 8A). Additionally, the testosterone level verified by

radioimmunoassay (RIA) is consistent with the ELISA results

(Figure 8B). Meanwhile, the immunohistochemical analysis

indicated that 3b-HSD was highly expressed in 24 hac

(Figures 9A, E) and 48 hac (Figures 9B, F) and decreased

gradually in 72 hac (Figures 9C, G) and 96 hac (Figures 9D, H).

The mRNA levels of testosterone synthesis-related genes

(CYP11A1, CYP17A1, HSD17B3, and STAR) congruously

reached a peak at 48 hac and then reduced at 72 and 96 hac

when compared to the mRNA load at 24 hac (Figure 10). In

consequence, the primary LCs from the ducks (A. platyrhynchos)

have the typical function—testosterone synthesis and secretion.
Discussion

In the testis, the seminiferous tubule includes spermatogenic

cells and Sertoli cells, which function in spermatogenesis and

nourishing spermatogenic cells, respectively. With regard to the

LCs in the testicular interstitium, they could synthesize and secrete

a male hormone (testosterone) and hence regulate male
Frontiers in Endocrinology 05
reproductive function. In animal genetics and breeding,

testosterone is of great significance in promoting sexual organ

development, spermatogenesis, early stage of follicular

development, maintaining secondary sex characteristics, and so

on (35). Owing to African swine fever (36), the surging demand

for ducks, which were used as a substitute for pork, accelerated the

production of ducks. Consequently, the genetics and breeding of

ducks, especially the important role of LCs in synthesizing and

secreting testosterone, matter for the healthy development of the

breeding industry (37). Nevertheless, the isolation, identification,

and testosterone synthesis in duck LCs have received little attention.

In the present study, highly purified primary LCs were successfully

isolated from duck (A. platyrhynchos) testes and could stably grow

and passage for future research.

In the previous studies, trypsin or collagenase digestion and

subsequent Percoll gradient centrifugation were mainly applied to

the isolation of animal LCs (28). The testicular tissue was first

scattered and digested using trypsin or collagenase. Interestingly,

the digestive enzyme applied in different animals was distinct.

Collagenase II was used in mice and rats, whereas trypsin and

collagenase II mixture was applied to cows (38) and pigs (39). With

regard to poultry (such as chicken) (40), successive digestion of

trypsin and collagenase II was carried out in the acquisition of cell

suspension. In poultry, collagenase II digestion combined with

differential centrifugation was applied in the isolation of rooster

LCs, and passage was used in its purification (34). The

contradistinction in digestive enzyme selection is probably owing

to the distinct concentration of connective tissues in viviparous and

oviparous animals (41), in which potent trypsin could first digest
FIGURE 2

Immunohistochemical analysis of 3b-HSD in testes. Low magnification of testes from ducks aged 2 months (A), 6 months (B), and 1 year (C). High
magnification of testes from ducks aged 2 months (D), 6 months (E), and 1 year (F).
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the connective tissues in chicken testes and then released conglobate

seminiferous tubule. In the present study, we undoubtedly followed

the previous digestive enzyme selection procedure, accounting for

the species similarity between chickens and ducks. Surprisingly, the

isolated LCs from duck (A. platyrhynchos) testes could not stably

grow and passage, in spite of plentiful LC numbers.

To resolve this obstacle, simple trypsin was applied in digestion

considering its potent degradative ability on the intercellular

junction. Despite the increased cell viability of isolated LCs, the
Frontiers in Endocrinology 06
relatively few cell numbers limit its rapid growth and passage. It is

quite possible that the robust digestive ability results in weak LC

viability, owing to the different reaction responses of distinct

tissues/cells on trypsin (42). Finally, gentle collagenase II for

longstanding digestion was carried out in the acquisition of cell

suspension. Accompanied by mechanical blowing, energetic LCs

were isolated and could stably grow. Alternatively, the limited

quantity of LCs restricted the passage and future functional

analysis of LCs. This extraordinary result raised our doubt that
FIGURE 3

Isolation of Leydig cells applying Percoll density gradient centrifugation. Three cell layers were explicitly separated in the centrifuge tube, and Leydig
cells were deposited on the third layer from top to bottom (indicated by the black arrow). In the first or top cell layer, with density of 1.035 g/ml,
round cells and cellular debris accounted for the most cell layer. Sperm and interstitial debris constituted the second or middle cell layer, with
density of 1.076 g/ml. The third or bottom cell layer, with density of 1.085 g/ml, is composed of Leydig cells.
FIGURE 4

The growth process of primary cultured LCs in different periods. (A) Upon inoculation, LCs suspended in serum medium. (B) Twelve hours later, LCs
in the cell culture flask. (C) Nearly 24 h after inoculation, LCs in the cell culture flask. LCs, Leydig cells.
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FIGURE 5

H&E staining of primary cultured LCs at 12 and 24 h. Low magnification (A) and high magnification (B) of adherent cells. Bar, 50 mm (A) and 10 mm
(B). LCs, Leydig cells.
FIGURE 6

Immunohistochemical identification of 3b-HSD in primary cultured LCs at 12 and 24 h. Low magnification (A) and high magnification (B) of adherent
LCs. Bar, 10 mm (A, B). LCs, Leydig cells.
FIGURE 7

Agarose gel electrophoresis detection of specific gene for spermatogenic cells. (A) GCNA-1 for germ cells, (B) WT1 for Sertoli cells, (C) CYP11A1 for
Leydig cells, and (D) CYP17A1 for Leydig cells. GCNA-1, germ cell nuclear antigen 1.
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the mature duck testes contained a relatively small number of LCs

(43). Given that, the testicular development of various day-age

ducks was successively considered. Previously, many studies have

focused on Leydig cell development in fetal and adult testes, and the

hyperdynamic fetal Leydig cell (FLC) occurs throughout the in

utero life, peaks during birth, gradually declines, and subsequently

disappears during neonatal/pre-pubertal life (18). In the present

study, first, we compared the testicular structure among ducks aged

2 months, 6 months, and 1 year via H&E staining, finding that LCs

were noticeable in the testicular interstitium of 2-month-old ducks.

The 1-year-old duck test used in the previous LC culture identified

relatively few and constant numbers of LCs. These above results

indicated that LCs in 2-month-old ducks are hyperdynamic and of

content. Alternatively, the distinctive LC viability in the testes of 2-

month-old ducks could be down to precursor cell differentiation

and LC mitosis occurring concurrently (44). Consequently, the
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testes of 2-month-old ducks underwent LC culture accompanied by

prolonged digestion for 1–1.5 h.

In the present study, the function of LCs (especially testosterone

synthesis) in ducks (A. platyrhynchos) was further investigated.

Testosterone synthesis in LCs was regulated by the hypothalamic–

pituitary–gonadal axis (HPGA) and materialized by cholesterol (1).

After cholesterol translocation from the mitochondrial outer

membrane to the mitochondrial inner membrane (45), cholesterol

was transformed into pregnenolone via CYP11A1 and subsequently

transferred to the endoplasmic reticulum (46), following the

pregnenolone–progesterone–androstenedione–testosterone

transformation via enzymolysis and catalysis step by step (47).

Therefore, testosterone synthesis is a precisely regulated process

(48), and insufficient or excessive levels of testosterone could affect

body health. Testosterone deficiency would cause male infertility

(49), whereas high levels of testosterone could lead to male
FIGURE 9

Immunohistochemical analysis of 3b-HSD in primary duck LCs at different periods. Low magnification (A–D) of primary duck LCs at 24, 48, 72, and
96 h post culture. High magnification (E–H) of primary duck LCs at 24, 48, 72, and 96 h post culture. LCs, Leydig cells.
BA

FIGURE 8

Testosterone detection in primary duck LC supernatant at different periods. ELISA (A) and radioimmunoassay (RIA) (B) analysis of testosterone level.
LC, Leydig cell.
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precocious puberty, adrenal disease, testicular disease, and so on

(50). In the present study, the mRNA expression of testosterone

synthesis-related genes (CYP11A1, CYP17A1, HSD17B3, and

STAR) congruously reached a peak at 48 hac and gradually

reduced at 72 and 96 hac, which indicated a periodic regulation

of testosterone synthesis. Thus, the studies related to LC function

would be more appropriate in LCs cultured after 48 h.

To summarize, highly purified primary LCs were isolated and

identified from 2-month-old duck (A. platyrhynchos) testes.

Meanwhile, the testosterone synthesis ability and related genes

were investigated in primary cultured duck LCs. These findings

brought us closer to understanding duck LC culture and its

application in animal reproduction.
Conclusion

This study established a feasible method for isolating highly

purified primary duck LCs and identified its biological function in

synthesizing testosterone. These findings brought us closer to

understanding duck LC culture and its application in animal

reproduction. Meanwhile, the study laid the foundation for the

genetics, breeding, and development of the breeding industry of ducks.
Frontiers in Endocrinology 09
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