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Thyroid hormone membrane
receptor binding and
transcriptional regulation
in the sea urchin
Strongylocentrotus purpuratus

Elias Taylor, Hannah Wynen and Andreas Heyland*

Department of Integrative Biology, University of Guelph, Guelph, ON, Canada
Thyroid hormones (THs) are small amino acid derived signaling molecules with

broad physiological and developmental functions in animals. Specifically, their

function in metamorphic development, ion regulation, angiogenesis and many

others have been studied in detail in mammals and some other vertebrates.

Despite extensive reports showing pharmacological responses of invertebrate

species to THs, little is known about TH signaling mechanisms outside of

vertebrates. Previous work in sea urchins suggests that non-genomic

mechanisms are activated by TH ligands. Here we show that several THs bind

to sea urchin (Strongylocentrotus purpuratus) cell membrane extracts and are

displaced by ligands of RGD-binding integrins. A transcriptional analysis across

sea urchin developmental stages shows activation of genomic and non-genomic

pathways in response to TH exposure, suggesting that both pathways are

activated by THs in sea urchin embryos and larvae. We also provide evidence

associating TH regulation of gene expression with TH response elements in the

genome. In ontogeny, we found more differentially expressed genes in older

larvae compared to gastrula stages. In contrast to gastrula stages, the

acceleration of skeletogenesis by thyroxine in older larvae is not fully inhibited

by competitive ligands or inhibitors of the integrin membrane receptor pathway,

suggesting that THs likely activate multiple pathways. Our data confirms a

signaling function of THs in sea urchin development and suggests that both

genomic and non-genomic mechanisms play a role, with genomic signaling

being more prominent during later stages of larval development.

KEYWORDS

thyroid, nongenomic, genomic, transcriptome, sea urchin, echinoderm, thyroid
hormone response element, skeletogenesis
1 Introduction

Thyroid hormones are critical for development and metamorphosis of chordate

deuterostomes, regulating a diversity of physiological systems (e.g. corticogenesis,

angiogenesis, skeletogenesis, apoptosis, and cell cycle). Evidence suggests that THs may

also play an essential role in non-chordate metazoans, however, the mechanism and
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function of THs in these groups remains unclear (reviewed in 1 and

2). THs have been shown to accelerate development to

metamorphosis in echinoderms, including sea urchins, sand

dollars, and sea stars (3–9) as well inducing metamorphosis in

mollusks (10, 11) and potentially regulating skeletogenesis in

cnidarians and echinoderms (12, 13).

In vertebrates, two major TH signaling mechanisms have been

shown to act, genomic and non-genomic. While the mechanisms

and functions of non-genomic signaling remains relatively poorly

understood, the canonical genomic pathway has been studied

extensively in vertebrates (14, 15). When acting genomically, THs

regulate genes in diverse tissues performing a wide array of

physiological functions. TH regulation of gene expression is

crucial for development of neural structures, regulation of

metabolism, metamorphosis, apoptosis, immune function, and

more (16–22). THs, primarily T4, are synthesized in the thyroid

gland; a chordate innovation (23). T4 and T3 are transported

through the cell membrane where T4 is deiodinated into T3. T3

is translocated into the nucleus, binding to the TH nuclear receptor

(TR) in a complex with the retinoid X receptor (RXR) and other

associated proteins. This complex binds to TH response elements in

the genome and promotes or inhibits gene expression. Thyroid

response elements comprise a pair of repeated motifs, one of which

is bound by RXR and one by TR. The spacing and sequence of the

repeated motifs specifies the nuclear hormone receptor bound (24).

As an example, the canonical TH response element sequence is 5’-

AGGTCA-3’, with 4-nucleotide spacing between repeated elements,

referred to as Direct Repeat 4 (DR4). In contrast, the vitamin D

receptor (VDR) and retinoic acid receptor (RAR) are hypothesized

to prefer a 3- or 5-nucleotide spacing, respectively. However,

thyroid hormone receptors can diverge from the spacing or

sequence requirements, and the nucleotide spacers may be non-

random—potentially resulting in greater specificity for THR over

VDR or RAR (25, 26).

Information on nongenomic actions of THs have emerged in

the context of neurogenesis, neural signaling, vasculogenesis,

metabolism, actin structure, and more (14, 27–32). THs can act

non-genomically by binding to an integrin membrane receptor in

chordates and potentially echinoderms (13, 14). In chordates, T4

and T3, but primarily T4, bind to the RGD-binding pocket on

integrin aVb3. This causes a conformational change in the

cytoplasmic tail of the integrin, recruiting protein kinase C (PKC)

and associated proteins (e.g. Phospholipase C) before triggering a

mitogen-activated protein kinase (MAPK) cascade via the MAPK

kinase MEK 1/2 and the MAPK ERK 1/2 (reviewed in 14). This

MAPK cascade phosphorylates transcription factors and enzymes,

having differential effects depending on cell type. A number of

additional non-genomic pathways wherein THs bind to an

extranuclear TR have also been described (14, 33–35; N. P. 36)

and these pathways may also result in regulation of gene

transcription (14, 30). There is evidence that some of these

pathways may be conserved among bilaterians (37).

Previously, we have shown that THs can accelerate

skeletogenesis in sea urchin gastrulae, and in developing
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metamorphic structures of late-stage pluteus larvae (3, 8, 9, 13).

Furthermore, we showed that TH is in part responsible for reduced

larval arm length via programmed cell death in late-stage larvae

which have begun developing metamorphic structures (post-

ingression larvae), but not larvae which had not yet begun

development of metamorphic structures (pre-ingression larvae; 38).

To investigate the mechanisms of TH action in echinoderms, we

have conducted binding assays between THs and membrane

protein extract from sea urchin gastrulae, hypothesizing that THs

would bind to membrane proteins and be displaced by ligands of

RGD-binding integrins. Furthermore, we analyzed the

transcriptional response of sea urchin embryos and larvae in

response to TH treatments (T3 and T4) and conducted a TH

response element enrichment analysis on differentially regulated

genes and genes with nearby detected TRE motifs.
2 Materials and methods

2.1 Animal care

Adult S. purpuratus urchins were obtained from Monterey, CA

and transported to the Hagen Aqualab at the University of Guelph,

ON, where they were kept in tanks of filtered artificial seawater

(FASW). They were fed kelp (Macrocystis pyrifera and Kombu spp.)

every 2-3 days and maintained at a temperature of 12-14°C and a

salinity of 31 g/L. The urchins were spawned using an injection of

0.5-2 mL of 0.5 M KCl. Sperm was collected using a pipette, while

females were inverted over a beaker of FASW to collect eggs, which

were then filtered to remove debris and washed twice with filtered

artificial seawater. The sperm was diluted in 1 mL of FASW and

added slowly to the beaker of eggs until fertilization success,

determined by the presence of a fertilization envelope, reached

over 90%. Fertilized eggs were washed once more to remove excess

sperm and allowed to develop at 12°C in a 1L beaker until hatching.

Hatched embryos were transferred to 2L beakers at a density of 1

larvae/mL and maintained at 12-14°C and a salinity of 31-33 g/L. As

the larvae aged, density was reduced to 0.15 larvae/mL by the eight-

arm stage, splitting cultures as necessary. The larval cultures were

constantly stirred and kept on a 12:12 light cycle, with cleaning and

water replacement performed three times weekly. At each cleaning,

the cultures were fed Rhodomonas sp. and Dunaliella salina. with a

total density of 5000 cells/mL.
2.2 Skeletogenic assays

Skeletogenic assays were conducted as described in Taylor and

Heyland (13), modified for rudiment development instead of

gastrulation. Larvae were collected after rudiment development

had begun, but prior to skeletogenesis in the rudiment (soft tissue

stage iii-iv in 39). Larvae were kept in 24 well plates at a density of

20 embryos/mL for gastrulae, or 1 larvae/mL for pluteus larvae. The

plates were kept in an incubator at 12°C on a shaker table. Water
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was changed and larvae were fed 6,000 c/mL Rhodomonas sp. every

2 days.

Over the course of 5 days, larvae were exposed to a vehicle

control (0.005% DMSO), or to thyroid hormone analogs rT3, T4,

T3, T2, Triac, and Tetrac at 10-7 M, a competitive inhibitor of the

integrin membrane receptor binding site, RGD peptide (10-7 M) or

an inhibitor of ERK1/2 activity, PD98059 (5 x 10-7 M). Larvae were

also exposed to a combination of RGD and T4, or PD98059 and T4,

to determine if there was an inhibitory effect on the action of T4.

We scored the presence of skeletal spicules in the rudiment and

determined the proportion of individuals which had developed

skeleton in the rudiment. Skeletal structures were detected by

polarized light microscopy on a Nikon Ti2 compound inverted

microscope. Rate of skeletogenesis was calculated by the average

daily proportion of larvae with new spicules and compared to the

control with a two-tailed t-test.
2.3 Binding assays

Membrane protein extracts were obtained from S. purpuratus

gastrulae. A membrane protein extract from the breast cancer cell line

MDA-MB-231, an epithelial cell line known to express integrin aVb3,
was used as a positive control (provided by Dr. M. Coppolino at the

University of Guelph). To collect gastrula membrane proteins, 36-hr

old larvae were gently concentrated by centrifugation (3000 rpm)

before being collected by pipette. 30 µL of gastrulae per sample were

processed with a Mem-PER™ Plus kit (Thermo Scientific 89842).

Final membrane-enriched protein yield was 2.01 mg – 2.96 mg as

measured by NanoDrop A280 and standard BCA protein assay

respectively. Protein extracts were stored at -80°CC.

Fluorescently labeled thyroxine (RHT4) was synthesized as

described in 13. For the saturation assay, 18 tubes were prepared

and 940 µL of membrane extraction buffer was added to each tube.

RHT4 was premixed with 2% BSA and then added to the membrane

extraction buffer in concentrations starting at 2.7 x 10-4 M and

serially diluted 3-fold, 17 times, to a minimum concentration of 2.1

x 10-12 M. Then, 60 µL of the membrane protein extract was added

to the membrane extraction buffer and allowed to equilibrate for

one hour. Subsequently, the mixture was centrifuged for 1 minute.

The supernatant was removed, and 1 mL of membrane extraction

buffer was added to the remaining pellet, which was then vortexed

and centrifuged for 1 minute. The supernatant was once again

removed, and 180 µL of membrane extraction buffer was added to

the pellet. Fluorescent intensity was measured on a POLARstar

Omega plate reader at excitation/emission 544/590 nm. This assay

was repeated three times (n=3).

For the fluorescence anisotropy competitive binding assays, 50

µL of membrane protein extract, RHT4 at 10-7 M, and enough PBS

buffer to total 200 µL was added to 18 wells in a 96-well plate. The

competitive ligand was then added (T4, T3, rT3, RGD, T2, Tetrac,

or Triac). A serial dilution of this ligand of concentrations starting

at 2.7 x 10-4 M and serially diluted 3-fold, 17 times, to a minimum

concentration of 2.1 x 10-12 M was added. The plate was allowed to

equilibrate for one hour. Fluorescent polarization was measured on

a POLARstar Omega plate reader at excitation/emission 520/590
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nm. This assay was repeated three times for each competitive

ligand (n=3).

Ligand binding curves and Ki/Kd (inhibition and dissociation

constants) were calculated with GraphPad Prism 9.5.1 for Windows

using a nonlinear fit. Saturation binding and competitive binding

were analyzed with the “One Site – Total Binding” and “One Site –

Fit Ki” modules respectively.
2.4 Transcriptome collection and
DEG analysis

We conducted an RNAseq experiment for a total of 18 samples

with two treatment groups, T3-exposed and T4-exposed, and at three

stages of larval development: 48h (gastrulation), 23 days post-

fertilization (pre-rudiment formation), and 27 days post-fertilization

(developing juvenile rudiment). RNA extractions were conducted

using the Direct-zol ® RNA MiniPrep Kit (Zymo Research). The

RNA samples were examined using a Nanodrop 8000

Spectrophotometer. Library preparation and sequencing of samples

was performed by The Hospital for Sick Children’s Center for Applied

Genomics (Toronto, ON) on an Illumina HiSeq2500 System.

Transcripts were trimmed using Trim Galore! (v0.6.4; 40) and

CutAdapt (v2.6; 41) to remove adaptors and poor-quality reads.

Reads with a Phred quality score lower than 5 or a length shorter

than 36 bases were discarded. Otherwise, default settings were used.

Quality metrics and read counts can be found in Supplemental S4.

Trimmed reads were aligned to the S. purpuratus genome (v. 5.0;

42) and quantified using the align_and_estimate_abundace.pl script

from Trinity (v.2.8.6; 43) with RSEM (v.1.3.1; 44) as the chosen

method of quantification. The gene to transcript mapping file was

generated from the S. purpuratus genome files, with each mRNA

locus considered to be a gene object.

DESeq2 (v.1.30.0; 45) was used to normalize read counts as

trimmed mean of M values (TMM) for downstream analysis.

DESeq2 was also used to conduct pairwise comparisons of each

treatment group at each developmental stage to the control group at

the same developmental stage.

In addition to automated GO annotation, genes in the S.

purpuratus genome (v. 5.0; 42) were also manually annotated by

functional group. Manual annotation was necessary to update

previous functional annotations for the S. purpuratus 5.0 genome,

and to incorporate recent work. In order of mention: The spicule

proteome was updated from Mann et al. (46). PMC-expressed genes

were obtained from Rafiq et al. (47). The skeletogenic GRN list was

compiled from the Davidson Lab Gene Regulatory Network model

hosted on BioTapestry. TH Transport, Signaling, Synthesis,

Sulfotransferase, Nuclear hormone receptor, and apoptosis-related

genes were manually annotated using BLAST, from chordate

orthologs, as well as from annotations available on Echinobase.

The integrin adhesome was compiled using BLAST on the

consensus adhesome from (48) as well as searching for similarly

annotated genes on Echinobase. The cadherin “cadhesome” was

sourced from (49) in a similar fashion. Lists of integrins and

cadherins were obtained by BLAST-ing known chordate integrins

and cadherins against the S. purpuratus genome. Neuronal genes
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were manually annotated by BLAST-ing chordate synthesis,

transport, and receptor genes against the S. purpuratus genome as

well as from 50–55; and 56. Immune gene list was sourced from

Rast et al. (57). R Scripts used are available in Supplement S3.
2.5 UMAP and heatmap clustering

The heatmaps were created and clustered using the

ComplexHeatmaps R package (58) with the default Euclidean

distance and partitioned by k-means. UMAP dimension reduction

visualization was performed using the umap package (59)

implementing the UMAP algorithm (described in 60).
2.6 Thyroid hormone response
element analysis

We analyzed the average number of thyroid hormone response

elements near DEGs and average log-fold-change of DEGs near TH

response elements. The “Find Motif” function in Geneious Prime

2022 (2022.0.2) was used to search for the canonical TH and RXR

response element sites in the S. purpuratus genome (v. 5.0; 42). The

search sequence used for the most permissive search allowing for 0-

6 bases spacing the repeated TRE halfsites was [AG]-[G]-G-[AT]-

C-A-N(0,6)-[AG]-[G]-G-[AT]-C-A with two allowed mismatches.

For halfsites alone, the search used was [AG]-G-G-N-C-A with no

permitted mismatches. For the canonical DR4 site, the search used

was [AG]-[G]-G-N-C-A-N-N-N-N-[AG]-[G]-G-N-C-A. Evidence

suggests that these motifs are conserved between protostomes and

deuterostomes (61, 62). Sequence logos were graphed with

seqLogo (63).

Motif sites were exported as a CSV and a custom python script

was used to tally the number of sites and their distance to every gene

in the genome. The average log-fold change of each gene with a

large number of TREs within 500bp upstream of initiation was

compared to genes with no nearby TREs. The number of TRE sites

was chosen such that at least 50 DEGs were included in the sample:

10 TREs for the Halfsite and DR0-6 analysis, and 8 TREs for the

DR4 analysis, owing to the lower number of detected DR4 sites. The

number of DEGs within 500 bp upstream of initiation of DEGs was

also compared to non-DEGs. All statistical comparisons were two-

tailed T tests.
3 Results

3.1 Thyroid hormones bind to membrane
protein extract and can be displaced by
RGD peptide

We performed competitive binding assays using fluorescence

anisotropy on membrane protein extract from sea urchin gastrulae

(Figures 1A–G). The thyroid hormones, T4, T3, and T2, as well as

Tetrac (a TH analogue) and RGD peptide (a ligand of RGD-binding
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integrins) were found to specifically bind to membrane proteins and

displaced rhodamine-labeled T4 (RHT4). Table 1 summarized the

binding affinities extracted from the binding curves in Figure 1. Out

of the tested ligands, T4 showed the highest affinity for membrane

proteins (Ki, 95% CI = 3.8 x 10-10 – 3.7 x 10-9; Table 1.), followed by

T3 (Ki, 95% CI = 1.9 x 10-8 – 3.6 x 10-7). A saturation binding assay

was performed with RHT4 alone to validate its use as a fluorescent

ligand for the competitive binding assay and it was found to have a

similar affinity to T3 (Kd, 95% CI = 4.5 x 10-8 – 2.0 x 10-7).
3.2 Thyroid hormones induce
skeletogenesis in sea urchin rudiment

Thyroid hormones (T4, T3, and T2) at 10-7M induced

skeletogenesis in sea urchin larvae in the juvenile rudiment, as

measured by the rate of initial skeletal spicule formation (1.70x,

1.57x, 1.35x respectively; t-test, p<0.05; Figures 2A, C). The TH

analog, Triac, was found to inhibit skeletogenesis (2.28x reduction;

t-test, p<0.05; Figure 2C). Effects of THs on skeletogenesis in the

rudiment were lessened by RGD peptide and PD98059, but not to a

statistically significant degree. This contrasts with skeletogenesis in

gastrulae which was significantly inhibited by RGD peptide and

PD98059 (13, Figure 2B). As well, we observed a greater degree of

skeletogenesis overall in older larvae, with T4-exposed samples

displaying the most advanced degree of skeletal development

(Figure 2A). Although we did not quantitatively measure this, T4-

exposed samples displayed complete juvenile spines, denser skeletal

growth proximal to the gut, and a more advanced stage of skeleton

in the rudiment (representative images in Figure 2A).
3.3 Patterns of gene expression on
exposure to the thyroid hormones
T3 and T4

When compared to the control, 2816 genes were differentially

regulated in thyroid hormone-exposed groups (T3, T4; Figure 3).

UMAP analysis revealed clustering of gene expression was

structured primarily by age, and secondarily by hormone

exposure. Within each age group, expression of the control and

T3-exposed groups clustered more closely with each other than with

the T4-exposed group (Figure 3A). Of genes that were differentially

regulated in both 23 day and 27 day old samples (685/690), 97.8%

were regulated to a greater degree by T4. In contrast, 50.9% of DEGs

in gastrulae (79/155) were regulated to a greater degree by

T4 (Figure 3B).

The greatest number of DEGs (2441 total) were found in T4-

exposed older larvae (23 and 27 days post-fertilization;

logfoldchange and DESeq2-derived p-values of DEGs listed in

Supplement S1). Genes can broadly be separated into those

expressed in gastrulae, and those expressed in older larvae, as well

as by those regulated and not regulated by T4. In gastrulae, only 155

DEGs were found to be regulated by T4, while in 23d and 27d

groups 1597 and 1730 DEGs were found respectively, over a 10-fold

increase in the number of regulated genes. As well, we noted that
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more DEGs were upregulated by T4 and not downregulated (58%).

This trend was reversed for T3, with more DEGs being

downregulated (43%).
3.4 Thyroid hormones regulate gene
functional groups

GO annotation categories were enriched in the thyroid

hormone-exposed groups (p <0.05, Fisher’s exact test; top ten

categories displayed in Figure 4). Overall, the most enriched

GOSlim group in each major GO category was organelle (Cellular

component; CC), Signaling (Biological Process; BP), and catalytic
Frontiers in Endocrinology 05
activity (Molecular Function; MF). We saw high levels of

enrichment of protein-modification process (BP), hydrolase

activity, transporter activity, and transferase activity (MF) in the

TH exposed groups.

The most enriched groups in the upregulated as compared to

downregulated DEGs in each major GO category were cytoskeleton,

and plasma membrane (CC), signaling, vesicle-mediated transport,

and microtubule-based movement (BP), and cytoskeletal protein

binding and cytoskeletal motor activity (MF). The most enriched

groups in downregulated as compared to upregulated DEGs were

nucleus and extracellular region (CC), several categories of

metabolic processes including sulfur, carbohydrate, mRNA, and

tRNA (BP), and ligase activity (MF).
D

A B

E F

G H

C

FIGURE 1

Thyroid hormones bind to membrane protein extracts from Strongylocentrotus purpuratus gastrulae and can be displaced by integrin ligands.
(A–G) In fluorescence anisotropy competitive binding assays, T4, T3, T2, Tetrac, and RGD peptide bind to membrane protein extract. Normalized
mP: Millipolarization normalized on a scale of 0-100. We were not able to detect binding of rT3. Out of the tested ligands, T4 showed the highest
affinity for membrane proteins, with a calculated Ki of approximately 1.1 x 10-9 M. (H) In a saturation binding assay, thyroxine labeled with rhodamine
(RHT4) binds to membrane protein extract with a Kd of approximately 9.5 x 10-8 M, roughly two orders of magnitude lower in affinity when
compared to unlabeled T4.
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Genes were also manually annotated by physiological function

(summarized in Figure 5, full list of manually annotated genes in

Supplement S2). DEGs were found in Skeletogenesis (Figure 6), TH

Signaling (Figure 7), Nuclear Hormone Receptor (Figure 8),

Apoptosis (Figure 9), Adhesome/Cadhesome (Figure 10),
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Neuronal (Figure 11), and Immune (Figure 12) functional groups.

A high percentage of TH signaling-related and nuclear hormone

receptor genes were differentially regulated (22.9% and 25.8%

respectively, 22 and 8 total DEGs). 12.8% of manually annotated

skeletogenesis-related genes were differentially regulated. This is

higher than the percentage of annotated Apoptosis, Adhesome,

Neuronal, and Immune genes regulated (9.2%, 9.9%, 4.1%, and

5.7% respectively). We found the highest absolute number of

skeletogenesis-related DEGs (69 total genes).

3.4.1 Skeletogenesis
Thyroxine (T4) regulates genes known to be expressed in

skeletogenic mesenchyme cells in sea urchins. A total of 112

skeletogenesis-related DEGs were found. Effector genes (including

spicule matrix proteins, matrix metalloproteases, and proteins

associated with calcium carbonate production) involved with

skeletogenesis were regulated by T4, but only a single high-level

DEG controlling skeletogenic cell fate was detected (Figure 6;

Supplement S1, S2).

Out of genes expressed in the spicule proteome (46 – the

proteins involved in formation of the initial skeleton spicule)–the

most upregulated was LOC100889419, an uncharacterized gene

that maps most closely to the mucin family in lancelets, proteins

generally included in mucous secretions. Also upregulated was

mmp24, a matrix metallopeptidase. Matrix metallopeptidases help

degrade the extracellular matrix allowing for mesenchyme cell

activity and may also bind to integrin aVb3. Peroxidasin was also
TABLE 1 Binding constants of thyroid hormones and integrin ligands
with membrane protein extracts from Strongylocentrotus purpuratus
gastrulae, as calculated from Figure 1.

Ligand Ki (95% CI)

Thyroxine (T4) 1.1 x 10-9

(3.8 x 10-10 – 3.7 x 10-9)

3,5,3’-Triiodo-l-thyronine (T3) 8.8 x 10-8

(1.9 x 10-8 – 3.6 x 10-7)

3,3′,5′-Triiodo-thyronine (rT3) –

3,5-Diiodo-l-thyronine (T2) 3.4 x 10-6

(4.0 x 10-7 – 5.6 x 10-5)

Tetraiodothyroacetic Acid (Tetrac) 4.5 x 10-7

(7.7 x 10-8 – 5.4 x 10-6)

Triiodothyroacetic acid (Triac) –

Arg-Gly-Asp peptide (RGD) 8.2 x 10-7

(2.9 x 10-7 – 2.5 x 10-6)

Rhodamine-conjugated T4 (RHT4) 9.5 x 10-8 *
(4.5 x 10-8 – 2.0 x 10-7)
* Kd.
A B

C

FIGURE 2

Thyroid hormone exposure accelerates skeletogenesis in Strongylocentrotus purpuratus larvae. (A) Representative images of TH exposure effects on
skeletogenesis in the gastrula and late-stage larvae. In gastrulae, TH exposure accelerates initiation of skeletogenesis with initial spicules for larval
skeleton appearing several hours earlier compared to the control (no TH). In the rudiment, THs accelerate development of skeletal features,
including tube feet, spines, and test. ls: Larval skeleton, r: Rudiment, s: Skeleton, sp: Juvenile spines. (B) THs accelerate skeletogenesis in Gastrula in
a MAPK-dependent manner. Data reproduced from 13. All THs and RGD peptide are shown at a concentration of 10-7M, PD98059 at 5 x 10-6M. *
indicates a rate of skeletogenesis statistically different from the control (Binary logistic regression with Bonferroni corrected p-values). THs, including
T4, T3, and T2, accelerate skeletogenesis.†: While we have displayed here all THs at 10-7M, a higher concentration of T4 is able to outcompete the
inhibitory effect of RGD peptide, as discussed in 13. (C) THs accelerate skeletogenesis in late-stage larvae in a partially MAPK-dependent manner,
including T3 and T4 (One-way ANOVA with Bonferroni-corrected t tests; F(10,121) = [20.88], p = 4.96e-22). The effect of T2 was not significant after
correcting for multiple comparisons (adjusted p = 0.063). Unlike in gastrulae, inhibiting MAPK with PD98059 is insufficient to fully prevent the effect
of T4 on skeletogenesis. * indicates a rate of skeletogenesis statistically different from the control (Bonferroni-corrected t-test, p<0.05).
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A B

FIGURE 4

Summary of top ten significantly enriched GO slim categories of upregulated and downregulated genes. Gene ontology (GO) enrichment was
determined by Fisher’s exact test in T3 and T4-exposed gastrulae (G), 23-day old larvae (23d), and 27-day old larvae (27d). More GO categories were
enriched in the upregulated subset of DEGs. The most differentially enriched groups between (A) upregulated and (B) downregulated DEGs in each
major GO category were cytoskeleton, and plasma membrane (CC), signaling, vesicle-mediated transport, and microtubule-based movement (BP),
and cytoskeletal protein binding and cytoskeletal motor activity (MF). Cells are coloured and GO slim categories are sorted by number of DEGs
assigned to each GO slim category. Every displayed GO slim category was significantly enriched in at least one sample. Fisher’s exact test was used
to determine significantly enriched GO categories relative to control groups. The top ten groups sorted by lowest p values (<0.05) are displayed for
each major GO category (Cellular Component, Biological Process, and Molecular Function). GO annotations were sourced from Ensembl Metazoa
and mapped to GO slim annotations.
A B

FIGURE 3

Summary of transcriptome data structure. Gene expression clusters by age and hormone treatment T4-exposed samples are dissimilar from control
and T3-exposed samples within each age group. (A) UMAP analysis of individual replicates reveals clustering primarily by age, with highly divergent
gene expression patterns between the gastrulae and older larvae groups. Control and T3-exposed groups cluster more tightly together than with
T4-exposed groups. (B) Heatmap of gene expression with genes separated into 4 clusters by k-means using the ComplexHeatmap R package. Gene
counts are normalized to z-scores. The heatmap reveals that genes are differentially regulated in gastrulae and older larvae (9613 DEGs between 27-day
old and gastrulae control groups), as well as in T4-exposed groups relative to control and T3-exposed groups in older larvae (1730 DEGs in T4 27d relative
to control).
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upregulated, and is known in other animals to play a role in both

TH synthesis (9) and providing collagen-like structure to the

extracellular matrix and calcite skeleton (64–66). Other proteins

with known functions we found to be upregulated are carbonic

anhydrase 2 and calumenin, essential components of calcite

skeleton deposition, and msp130, a spicule matrix protein

associated with early spicule formation.
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3.4.2 Thyroid Hormone Signaling
A great number of TH synthesis, transport, and signaling-

related genes were regulated by T3 and T4 (Figure 7). Three

potential TH transport genes, including SLC26A7, SLC16A2 (also

known as Monocarboxylate transporter 8 or MCT8), and SLC5A5

(NIS-like; LOC584046) were dramatically upregulated by T4,

principally in the oldest larvae examined (27d). SLC26A7 and
FIGURE 5

Summary of upregulated and downregulated genes by manually annotated functional group. DEGs were determined using DESeq2 comparisons between
TH-exposed groups and the control group of the same age. T4 resulted in regulation of more genes than T3, with dramatically more DEGs in older larvae
compared to gastrulae. More DEGs are upregulated than downregulated. Individual categories are explored in more detail in Figures 6–12.
A B

FIGURE 6

T4 regulates gene expression of skeletogenesis-related genes in older larvae. (A) Heatmap of top 30 skeletogenesis-related genes, sorted by p-value
(low to high, determined by DESeq2) and clustered by expression pattern. Colours are scaled to log2(foldchange) and capped at 2-fold, while numbered
cells display foldchange. Spicule proteome was updated from 46. PMC-expressed genes were obtained from 47. The Skeletogenic GRN list was
compiled from the Davidson Lab Gene Regulatory Network model hosted on BioTapestry. (B) Volcano plots of all skeletogenesis related genes.
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SLC5A5 are transport iodide and SLC16A2 to transport TH in

chordates (67–69).

The sea urchin homolog of the nuclear TH receptor was also

upregulated by T4 exposure in older larvae, as well as two

downstream signaling cascade proteins PKC alpha and PI3K.

Three iodothyronine deiodinases (responsible for

transformation of T4 to T3 and eventual degradation of THs)

were dramatically upregulated by TH exposure in older larvae

(23d and 27d). One iodothyronine deiodinase (LOC577015) was

one of the few genes upregulated strongly in gastrulae.
Frontiers in Endocrinology 09
Peroxidasin, for the sea urchin thyroid peroxidase ortholog (an

essential component of vertebrate TH synthesis), was upregulated.

Cholinesterases which we hypothesized might be a source of tyrosine

for TH synthesis (>40% thyroglobulin identity and higher tyrosine

content) were mainly downregulated, with the exception

of LOC100893063.

Sulfotransferases, responsible for the catalysis of TH to their

sulfated analogues, were mainly downregulated in the oldest larvae

(27d) but specific cytosolic sulfotransferases were upregulated in 23 day

old larvae (LOC577458, LOC100889865, LOC589239, LOC584514).
A B

FIGURE 7

T4 regulates gene expression of thyroid hormone-related genes in older larvae. Deiodinases and some putative TH transporters are strongly
upregulated. Tg-like cholinesterases (>40% identity to Tg with >4% tyrosine content) and sulfotransferases are generally downregulated in 27-day-
old post-rudiment development larvae (27d). (A) Heatmap of top 30 TH-related genes, sorted by p-value (low to high, determined by DESeq2) and
clustered by expression pattern. Colours are scaled to log2(foldchange) and capped at 2-fold, while numbered cells display foldchange. Genes were
compiled from annotations in the S. purpuratus 5.0 genome release and verified with manual BLAST searches against chordate genomes.
(B) Volcano plots of all TH-related genes.
A B

FIGURE 8

T4 regulates gene expression of nuclear hormone receptors in older larvae. Notably, all the upregulated nuclear receptors excepting NR5A2 are in
the NR1 family. The putative nuclear TH receptor is among those genes found to be upregulated in larvae with rudiments (27d), but not in younger
larvae without rudiments (23d). (A) Heatmap of top 30 nuclear hormone receptor genes, sorted by p-value (low to high, determined by DESeq2) and
clustered by expression pattern. Colours are scaled to log2(foldchange) and capped at 2-fold, while numbered cells display foldchange. Genes were
compiled from annotations in the S. purpuratus 5.0 genome release and verified with manual BLAST searches against chordate genomes.
(B) Volcano plots of all nuclear hormone receptor genes.
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3.4.3 Nuclear Hormone Receptors
Some nuclear receptors, primarily in the NR1 family, were

upregulated by THs (Figure 8). This included THRb (LOC584535),

the TH receptor beta ortholog, as well as retinoic acid receptor alpha

and beta (RAR; LOC574567 and LOC100887874). Most

upregulated of the nuclear receptors was a putative ortholog of

liver receptor homolog 1 (LRH-1; LOC587072). Intriguingly, one

strongly upregulated nuclear receptor has no firm ortholog in

chordates but could be placed in the NR1 family (LOC756187)

and showed some similarity to Rev-Erb—other orthologues of
Frontiers in Endocrinology 10
which were also upregulated (LOC578618, LOC115917889, and

LOC580686). Notably, we did not find that the retinoid X receptor

(RXR) was differentially regulated by THs.

3.4.4 Apoptosis
56 apoptosis-related genes were regulated by T4 in older larvae

(Figure 9). The most highly upregulated and downregulated

apoptosis-related genes are putative orthologs of cytochrome C,

an activator of apoptosis (LOC575347 and LOC582864

respectively). Other anti-apoptotic genes and cell growth
A B

FIGURE 9

T4 regulates gene expression of apoptosis-related genes in older larvae. The most highly upregulated and downregulated genes are putative
orthologs of cytochrome C (Cyt C), an inhibitor of apoptosis. (A) Heatmap of top 30 apoptosis-related genes, sorted by p-value (low to high,
determined by DESeq2) and clustered by expression pattern. Colours are scaled to log2(foldchange) and capped at 2-fold, while numbered cells
display foldchange. Apoptosis-related genes were compiled from the Reactome pathway database and matched to S. purpuratus via annotations
available on Echinobase or by best BLAST match to the S.p. 5.0 genome. (B) Volcano plots of all apoptosis related genes.
A B

FIGURE 10

T4 regulates gene expression of adhesome-related genes in older larvae, however not to the extent of other categories we examine. Integrin alpha-
8-like is dramatically downregulated, while integrin alpha-PS1 and several cadherins are moderately upregulated, along with elements of the
Cadhesome and Adhesome. Transglutaminases are also notably downregulated in older larvae. (A) Heatmap of top 30 adhesome-related genes,
sorted by p-value (low to high, determined by DESeq2) and clustered by expression pattern. Colours are scaled to log2(foldchange) and capped at
2-fold, while numbered cells display foldchange. Genes were compiled from annotations in the S. purpuratus 5.0 genome release and verified with
manual BLAST searches against chordate genomes. (B) Volcano plots of all adhesome related genes.
frontiersin.org

https://doi.org/10.3389/fendo.2023.1195733
https://www.frontiersin.org/journals/endocrinology
https://www.frontiersin.org


Taylor et al. 10.3389/fendo.2023.1195733
promotors are upregulated, including mxd1, Six1, trim71, and kif11

and GRK5 (LOC577815, LOC587141, Six1, LOC579482,

LOC373241, LOC756375). Six1 and nfia (LOC105437035) were

also upregulated in gastrulae exposed to T4.

In contrast, several activators of apoptosis are also upregulated,

particularly in post-rudiment larvae (27d), including Sox17-like,

ppp1c, STK17A, and E2F (LOC587141, LOC752338, LOC582485,

E2E3). Two important proapoptotic genes are also suppressed,

CEBPA and tp63 (LOC 100893285 and LOC756859).

We did not find any caspases to be statistically significant DEGs,

although the effector caspase, caspase 3/7 (LOC587820) did trend to

downregulation (1.31-fold) by T4 in 27 day-old larvae, but not 23

day-old larvae.
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3.4.5 Adhesome/Cadhesome
T4 significantly upregulated cadhesome and adhesome-related

genes, while downregulating two tight junction-related genes

(Figure 10). Of the integrin adhesome genes, integrin alpha-PS1 was

upregulated in 27 day old larvae, while integrin alpha-8-like was

severely downregulated (LOC584174 and LOC105436778). We found

no significant effect of THs on the expression of other integrins. Other

adhesome genes involved in extracellular matrix secretion, adhesion,

and regulation were upregulated, including dnajb1, PPIB, filamin,

tensin1, and Sorbs1 (LOC574994, LOC577919, LOC587438,

LOC115919752, LOC574636). In contrast, two orthologs of tgm1,

an enzyme which crosslinks proteins increasing stability of the ECM,

were downregulated (LOC592750).
A B

FIGURE 11

T4 regulates gene expression of neuronal genes in older larvae. Aromatic L-amino acid decarboxylase (AADC), a key component of dopamine and
serotonin synthesis, is dramatically upregulated by T4 in older larvae. As well, histamine receptors and several acetylcholine receptors are also
upregulated. Several serotonin and acetylcholine receptors are downregulated. (A) Heatmap of top 30 neuronal genes, sorted by p-value (low to
high, determined by DESeq2) and clustered by expression pattern. Colours are scaled to log2(foldchange) and capped at 2-fold, while numbered
cells display foldchange. Genes were compiled from annotations in the S. purpuratus 5.0 genome release and verified with manual BLAST searches
against chordate genomes. (B) Volcano plots of all neuronal genes.
A B

FIGURE 12

Some immune genes are strongly upregulated in our T4-exposed groups (5.7% of total annotated genes), including a variety of SRCR-domain
containing proteins. Several clotting and coagulation-related genes were strongly downregulated by T4. (A) Heatmap of top 30 immune genes,
sorted by p-value and clustered by expression pattern. Colours are scaled to log2(foldchange) and capped at 2-fold, while numbered cells display
foldchange. Immune gene list was compiled and updated from 57. (B) Volcano plots of all immune genes.
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Four cadherin orthologs (LOC100891456, LOC580257,

LOC105442843, and LOC580453) were significantly upregulated

by T4 in 27 day old larvae. As well, two orthologues of Rap1A

(responsible for regulating cadherin-mediated cell adhesion;

LOC115919354, LOC580151), TRPC4 (a Ca2+ channel which

interacts with Cadherin to regulate cell adhesion; LOC586872),

ARHGAP21 (enhances cell adhesion and necessary for epithelial-

to-mesenchyme transition; LOC115918380), Shroom3 (interacts

with cadherin and actin to control morphology; LOC578304),

Delta-2-catenin (complexes with cadherins and actin,

LOC594353). A cadherin/flamingo ortholog (LOC100891456) was

a rare example of a gene upregulated by T4 in gastrulae.

Other structural and regulatory proteins associated with both

cadherin and integrin cell adhesion were upregulated, including two

filamins (LOC587438 and LOC479510), pard3 (LOC580534), and

MAGUK (LOC752750). The two essential tight junction genes

tetraspanin and melanotransferrin were both significantly

downregulated by T4 in 23 day- and 27 day-old larvae

(LOC751836 and LOC581063).

3.4.6 Neuronal signaling
While most neuronal genes we examined were not regulated by

T4 (Supplement S1, S2), the DEGs we found showed dramatic

increases and decreases in expression (Figure 11). Most neural

peptide precursors we examined showed little change in expression,

however the thyrotropin-releasing hormone precursor Trh

(LOC580381) was upregulated by T4 in 27 day old larvae.

Notably, the dopamine and serotonin synthesis enzyme, AADC,

was upregulated by T4 in both 23d and 27d groups (LOC593847),

while the serotonin synthesis enzyme tryptophan hydroxylase

(LOC581035) and two serotonin receptor orthologs LOC581142

and LOC574784 were downregulated.

The GABA receptor GABRG2 (LOC762549) was upregulated in

gastrulae, but not strongly regulated in older larvae. However, the

two orthologs of the GABA transporter S6A13 (LOC585204 and

LOC764578) were downregulated in older larvae (23d and 27d).

The acetylcholine receptor genes nAChRa7 (LOC764011) and

muscarinic M4R (LOC115919284) were upregulated in both 23d

and 27d groups, but not detectable in gastrulae. In contrast,

Muscarinic M2RR and nAChRa9 (LOC592935, LOC582635) were

downregulated in both older groups (23d and 27d).

Histamine N-methyltransferase orthologs, responsible for the

methylation and metabolism of histamine were regulated by T4 in

23 day-old larvae, but less so in the older 27 day-old larvae. In

contrast, the histamine H2 and H1 receptors were highly

upregulated by T4 in 27 day-old larvae, but less so in 23 day-old

larvae. As a general trend, histamine degradation genes were more

pronounced in 23 day-old larvae while histamine receptor

expression was more enhanced by T4 in 27 day-old larvae.

The noradrenaline transporter SLC6A2 (LOC105445726) is

notable for being upregulated by T4 in gastrulae and 23 day-old

larvae, but not in 27 day-old larvae. A sea urchin ortholog of the

beta-1 adrenergic receptor (LOC577816), which binds to adrenaline

and noradrenaline, was upregulated by T4 in 23d and 27d larvae.
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No other adrenergic system-related genes were found to be

regulated by T3 or T4.

Of genes regulating neural development and differentiation, zic

and emx (promotors of neurogenesis; LOC578589, LOC577702)

were upregulated in older larvae, while SoxB1 (repressor of

neurogenesis; SoxB1) was downregulated.

3.4.7 Immune genes
We found fewer immune-related DEGs compared to the other

categories annotated (Figure 12). Several immune-related genes

were differentially upregulated by T3 and T4, including MDA5, (a

viral recognition receptor; LOC115921168), LOC754218, (a

putative ortholog of MIF, which regulates the innate immune

system and also plays a role in integrin-mediated MAPK

signaling and adhesion), and several SRCR domain-containing

genes which may mediate innate immune response at the cell

membrane (LOC100888472, LOC100889653, LOC105441964,

LOC105447538, LOC578206, LOC764257), as well as an alpha-

GalNAc lectin (LOC585907).

Also upregulated by T4 is an IRF ortholog (LOC115918232).

Pias2 and SOCS2, repressors of the JAK/STAT pathway, are both

also upregulated by T4 in 23 day- and 27-day old larvae

(LOC578583, LOC594503). Several proteases/cytolytic genes are

also upregulated (LOC105438173, LOC577926) or downregulated

(LOC763692, LOC593009) by T4 in older larvae.

Plasminogen, a clotting precursor, is a rare example of a gene

upregulated by T3 but downregulated by T4 (LOC105444510). Two

other sea urchin-specific clotting genes (amassins; AMAS2,

AMAS3) which enhance coelomocyte adhesion, are also

downregulated by T4 in older larvae.
3.5 Thyroid hormone response
element enrichment near
differentially regulated genes

Genes with nearby thyroid hormone response elements (TREs)

were more likely to be regulated by THs (Figure 13). The subset of

the transcriptome with a large number of TREs (>10) within 500 bp

upstream or 20 bp downstream of the predicted transcription

initiation site were significantly more likely to be regulated by T4

and T3. For example, genes with greater than 10 nearby TRE

halfsites were regulated 2.6-fold and 2.0-fold more strongly by T4

and T3 respectively in 27 day-old larvae when compared with genes

that have no nearby TRE halfsites (t-test, p<0.05). Similarly, gene

initiation sites with nearby DR4 TREs (the canonical TH response

element motif), were 1.8-fold and 2.2-fold regulated by T4 and T3

respectively, while genes with a more permissive search pattern

allowing for DR0-6 motifs were 1.7-fold and 1.6-fold upregulated by

T4 and T3 (t-test, p<0.05).

In all cases, regulation of genes with nearby TREs was highest in

27 day-old larvae, and lower in 23 day-old larvae and in gastrulae.

Generally, gastrulae showed the lowest degree of gene regulation of

genes with nearby TREs by T4/T3, however there was still a
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significant increase in gene regulation in gastrulae by T4 with all

examined motifs, and by T3 with DR4 and DR0-6 motifs.

We also examined the number of TRE sites within proximity of

detected DEGs and found a similar pattern (Figure 14). DEGs

typically had more nearby TRE sites compared to non-regulated

genes, with a peak of 2.3-fold more TRE halfsites, 2.7-fold more

DR4 sites, and 2.76-fold more DR0-6 sites nearby genes

differentially regulated by T3 in 27 day-old larvae. Generally,

genes regulated by T3 and genes regulated in gastrulae required

more nearby TRE sites when compared to genes regulated by T4 in

27-day old larvae (t-test, p<0.05).
4 Discussion

4.1 Evidence for thyroid hormone binding
and signaling in sea urchin development

4.1.1 Evidence for nongenomic signaling
We found that THs bound to membrane protein extract from S.

purpuratus gastrulae. The binding constant of T4 is within 95% CI

of that detected in a mammals (CV-1 cell line; 70). However, we

found a greater affinity of T3 in sea urchins compared to mammals

but still magnitudes lower than T4. Lower still was the affinity of

Tetrac and T2, while we were not able to find binding of rT3 or

Triac. The ability of RGD peptide to displace fluorescently

conjugated T4 provides further evidence that T4 binds integrin

near or within the RGD-binding pocket, an evolutionarily ancient

region on integrins (71, 72). While T4 has a higher affinity to the

integrin receptor and greater physiological effect, previous work has

shown that T3 is present at roughly 50-fold higher concentration

than T4. Both THs may have physiological relevance in sea urchins

(3). It should be noted that up to 10% cytosolic proteins may remain
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in a membrane protein fraction (73). However, fluorescently labeled

thyroid hormones were displaced by an integrin ligand, RGD

peptide, which is not known to bind to the nuclear membrane

receptor, and THs have been found previously not to bind to

cytosolic proteins in sea urchins (74), increasing the likelihood

that our binding constants reflect binding to an integrin

membrane protein.

Fewer DEGs were detected in gastrulae as compared to older

larvae. The DEGs that were found were less tightly linked to TRE

presence and less likely to show a greater magnitude of differential

expression when exposed to T4 compared to T3. Most notable is the

upregulation of iodothyronine deiodinase by both T3 and T4 in

gastrulae. This suggests that TH metabolism may be active early in

development. We consider this to be likely, especially given the high

concentration of iodinated tyrosine derivatives in a typical larval

diet (3, 75) and the potential for larvae to derive THs from them

(Vitamin hypothesis; 1).

When it comes to T3, the ratio of upregulated to downregulated

DEGs was lower than 50%, which is universally not the case in TH

exposure transcriptomes (E.g. 18, 21, 22). As well, the total number

of detected DEGs was much lower than in T4-exposed groups.

These data suggest that T3, if acting via the nuclear hormone

receptor, does so to a lesser degree than T4 and that the

nongenomic effects of T3 may be more prominent. Future work

should test the effects of RGD and PD98059 inhibition on T3

acceleration of skeletogenesis to determine whether it is affected to a

lesser or greater degree than T4, and testing whether T3 acts

primarily via the membrane receptor in sea urchins. This would

shed light on the relative importance of T3 versus T4 binding.

4.1.2 Evidence for genomic signaling
Previous work has shown that in gastrulae, the effect of THs on

skeletogenesis was completely inhibited by high levels of RGD
A B

C

FIGURE 13

Genes with thyroid hormone response elements (TREs) <500 bp upstream are more likely to be regulated by THs. (A) Genes with >10 nearby TRE
halfsites were regulated an average of 2.6-fold and 2.0-fold more strongly by T4 and T3 respectively when compared with genes that have no
nearby TRE halfsites. Similarly, genes with nearby DR4 (B) and DR0-6 (C) sites were more heavily regulated by THs than genes with no nearby TRE
sites. Nearby TRE sites were the strongest predictor of regulation in 27-day-old larvae, compared to younger larvae and gastrulae. * represents
p<0.05 by two tailed T test comparison to sites with no nearby TRE.
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peptide, a competitive ligand of the integrin membrane receptor to

which T4 potentially binds (13). As well, inhibition of MAPK

ERK1/2 prevented the acceleration of skeletogenesis by T4 in

gastrulae (13). While this previous work also showed T4-induced

acceleration of skeletogenesis in the rudiment, it did not test the

mechanism involved. We now show that during development of

the sea urchin rudiment, acceleration of skeletogenesis by T4 is

potentially decreased by RGD peptide and PD98059, but not

completely suppressed. These data suggest a role for T4

regulation of metamorphic development by genomic means

as well.

Genomic regulation by THs via the nuclear TH receptor is

characterized in chordates by the regulation of a large number of

genes (primarily upregulation) over a period of hours to days.

When we exposed sea urchin gastrulae and larvae to THs for a

period of 24 hours, we saw some regulation of gene expression in

gastrulae, but many more genes regulated in older larvae, both pre-

and post- initiation of rudiment development. This provides further

evidence that while T4 may accelerate skeletogenesis in gastrulae

primarily via nongenomic means, T4 regulation of gene expression

by genomic means is a major force in larval development

to metamorphosis.

However, the nuclear TH receptor is expressed in gastrulae as

well and TRE analysis revealed some genes responsive to T4 are also

more highly associated with putative nuclear TH receptor binding

sites on the genome. Genes regulated by THs are known to have
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enriched TRE presence (61). That we find a significant association

of TRE sites with TH-induced DEGs in sea urchin larvae provides

strong evidence for genomic signaling activity.

Cocurullo et al. (76) performed a single cell transcriptomic

analysis of nuclear thyroid hormone receptor expression, suggesting

that THR is expressed in sea urchin gastrulae in skeletogenic cells,

globular cells, oral ectoderm, and anterior neuroectoderm, as well as

in the coelomic pouch and muscle cells of pluteus larvae. The

authors confirmed strong expression of THR in skeletogenic

mesenchyme cells with fluorescence in-situ hybridization (FISH).

This suggests that action via THR may also play a role during early

larval development.

Genomic TH signaling may play a significant part in regulation

of sea urchin development. The stronger association of DEGs with

TREs in post-rudiment development larvae suggests an association

of genomic signaling with later stages of development, especially

development to metamorphosis. In post-rudiment larvae, the

nuclear THR was upregulated by T4, indicating autoinduction of

THR signaling, a classic signature of TH signaling via the nuclear

hormone receptor during metamorphosis (77, 78). As THR levels

are not significantly different between older larvae and gastrulae, the

increased autoinduction in older larvae may partially explain the

greater number of DEGs. We propose that while THs accelerate

skeletogenesis primarily via non-genomic means in gastrulae, they

may regulate other physiological systems—especially in older larvae

—via a genomic mechanism.
A

B

FIGURE 14

(A) Average enrichment of predicted TRE sites within <500 bp upstream of >2-fold DEG transcription initiation sites, relative to unregulated genes.
Genes which are at least 2-fold upregulated by THs are more likely to have nearby (<500bp) TRE sites. In 23 and 27-day old larvae, T3 requires more
nearby TRE sites to regulate genes than T4. In particular, genes sensitive to T3 regulation in 27-day old larvae had over 2-fold enrichment of nearby
TRE halfsites, DR4 and DR0-6 predicted sites. * represents p<0.05 by two tailed T test comparison to unregulated genes. (B) Proportion of DEGs
with nearby predicted TRE sites. Significantly more TRE halfsites and DR4 sites were present in genes regulated by T4 in Gastrulae, and T3 in 27-day-
old larvae, with a trend of increased TRE sites near DEGs in 23-day-old larvae as well. * represents p<0.05 by two-tailed T test comparison to
unregulated genes.
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4.1.3 Differential regulation by genomic and
nongenomic pathways

n our analysis, we frequently found that TH effects in gastrulae

were opposite in direction to those in 23 day-old and 27 day-old

larvae. We have proposed that nongenomic signaling may be more

prominent during gastrulation, and so a potential explanation for

the contrasting effects of THs in gastrulae and pluteus larvae is

differential regulation depending on the pathway.

THs are known to have differential effects via non-genomic and

genomic pathways in chordates. These effects can be antagonistic or

synergistic. Wang et al. (79) knocked down the nuclear TH receptor

in frog tadpoles and found that T3 still regulated gene expression.

The authors provided evidence that the immune and metabolic

effects of T3 in chordates may depend on nongenomic signaling and

found differential effects of the genomic and nongenomic pathways

on apoptosis and regulation of development. Notably, Wang et al.

found that 33% of total DEGs were regulated by T3 in TR-

knockdown tadpoles, with only 8% of TR+ DEGs being regulated

in the same fashion in TR-knockdown tadpoles.

It is intriguing that the most enriched GOslim categories in

gastrulae on exposure to T4 were microtubule binding and

cytoskeletal protein binding (MF) and regulation of microtubule-

based process (BP). This is consistent with T4 regulation of primary

mesenchyme cells in gastrulae via an integrin membrane receptor.

THs are well-known to regulate actin processes in chordate (14, 80),

which is closely associated with mesenchyme cell regulation and the

epithelial-to-mesenchyme transition (81). In contrast, late-stage

pluteus larvae showed greater regulation by THs of apoptosis,

immune, neuronal, and signaling-related processes. These

differences may be accounted for by the specific TH signaling

pathways active during each developmental stage, and by the cell

types expressing integrin membrane receptors and nuclear

TH receptors.

4.1.4 Sulfated THs
In-silico docking models have suggested that sulfated THs may

bind with high affinity to the integrin membrane receptor, integrin

avb3 (82). Low levels of sulfated THs have previously been detected

in chordate neural tissue (83). Consequently, we included

sulfotransferases in our analysis of TH metabolism. We found

four cytosolic sulfotransferases which were upregulated by T4 in

larvae with no juvenile rudiment (23d), but six sulfotransferases to

be downregulated by T4 in larvae which had begun rudiment

development (27d). This suggests that there may be a differential

sulfation of THs pre- and post- rudiment development. Sulfation of

THs is also an essential step in catabolism and degradation (84–86).

Additionally, iodothyronine deiodinase orthologs were highly

upregulated. Iodothyronine deiodinases preferentially target

sulfated TH derivatives, which are degraded more quickly than

T4 (87, 88). Therefore, our analysis suggests that TH sulfation may

be attenuated by T4 exposure in larvae with developing rudiments.

In contrast, sulfotransferases are either unregulated or slightly

upregulated in gastrulae, and iodothyronine deiodinases are not

dramatically upregulated, suggesting a potentially greater presence

of sulfated TH derivatives in gastrulae.
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4.1.5 Thyronamines
A thyronamine, 3T1AM, has been shown to cause nongenomic

effects in chordates (89). 3T1AM may be derived from T4 or T3,

although the biosynthesis pathways are unclear (90) and the

physiological relevance of thyronamines is still unknown (91).

Ornithine decarboxylase has been proposed as the enzyme

responsible for the decarboxylation of THs into biologically active

thyronamines partially responsible for the nongenomic actions of

T4, and the expression has been found to be regulated in

hypothyroid mice, but not by T4 exposure (92). Similarly, we

found no regulation of ornithine decarboxylase by T3 or T4 in

our transcriptomic analysis. The alpha-2A adrenergic receptor

(Adra2a) has previously been suggested as a receptor for 3T1AM

(93, 94). We did find significant upregulation of Adra2a in 23d and

27d groups, but did not find regulation of any other proposed

aminated T4 receptors or transporters. If Adra2a is a physiologically

relevant 3T1AM receptor in sea urchins, we have provided evidence

of positive feedback driven by T4-exposure.
4.2 Thyroid hormone-regulated
skeletogenesis in sea urchin development

Of skeletogenesis-related genes significantly regulated in the

TH-exposed groups, 100% were upregulated in gastrulae, and 56%

in late-stage larvae. However, the magnitude of the regulation was

lower in gastrulae, with critical skeletogenesis-related genes not

detected as significantly different in the TH-exposed groups. This is

at-odds with the physiological effects caused by THs in early

gastrulation in S. purpuratus (and other echinoderms, including

Dendraster excentricus and Ophiopholis aculeata ; 95 [in

preparation]). We hypothesize that much of the regulation of

skeletogenesis in early stages may act via the integrin receptor,

non-genomically, whereas the nuclear TH receptor plays a more

active role during later stages, especially during rudiment

formation and metamorphosis. Phosphorylation cascades

triggered by the integrin membrane receptor may allow for rapid

regulation of skeleton deposition over short time periods not

suitable for transcriptional regulation by the nuclear thyroid

hormone receptor (<5 hours; 13).

We detected differences between the gastrula stage and later

stages with respect to TH effects, despite evidence that the

skeletogenic gene regulatory networks are similar (96). In

gastrulae, the upregulated skeletogenesis-related genes are effector

genes, either from the spicule proteome or known to be expressed in

PMCs, e.g. SM-30, and MSP130, two of the most abundant and

important spicule matrix proteins. In late-stage larvae, the

upregulated genes are related to both skeletogenesis and other

developmental processes such as the remodeling of extracellular

matrix and the epithelial-mesenchyme transition more generally.

However, most spicule proteome genes are still upregulated in late-

stage, including the sm-29, sm30 families, and MSP130. Juvenile

skeleton comprises multiple complex elements, including juvenile

spines, tube feet, and test, which develop under spatial and temporal

regulation (39). It is possible that genomic TH regulation of
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skeletogenesis during rudiment development allows for regulation

of a more complex process, relative to embryonic skeletogenesis.

While the known juvenile gene regulatory network (GRN)

governing skeletogenesis in the juvenile rudiment shares features

with the gastrula GRN, there are also significant differences,

including entirely missing signaling modules (PMAR-HesC

Tbrain, Tel, FoxB/FoxO; 96). One possibility is that TH signaling

and other signaling mechanisms controlling development to

metamorphosis may replace missing regulatory modules, allowing

for mesenchyme cell specification and regulation.

In previous work, we found that a 90-minute exposure to THs

increased expression of Ets1, a transcription factor regulating

skeletogenesis, in gastrulae. In this 24-hour exposure we find no

significant effect on Ets1 levels. However, we have found

upregulation of genes directly downstream of Ets1. We expect

that Ets1 upregulation may be a stage- cell-specific result of

MAPK ERK1/2 signaling induced by T4 exposure. By the end of

gastrulation, Ets1 is no longer expressed in primary mesenchyme

cells, and may therefore not be accessible to regulation by THs (97).

We do not see higher expression of VEGF in the T4-exposed

groups. VEGF is typically believed to be the primary external

signaling factor responsible for skeletogenesis in sea urchin

primary mesenchyme cells. Given that both the integrin

membrane receptor and nuclear hormone receptor are expressed

by the primary mesenchyme cells, we propose that a direct

regulation of PMCs by THs is more likely than a VEGF-

mediated mechanism.
4.3 Regulation of other functional groups
by thyroid hormones

4.3.1 Programmed cell death (PCD)
PCD is a critical process in both chordate and non-chordate

metamorphosis (reviewed in 98). Apoptosis in particular plays an

important role in morphogenesis during sea urchin larval

development (38, 99–101). We previously found that THs

regulate larval arm retraction via programmed cell death in sea

urchin larvae, with increased levels of caspase 3/7 activation and

apoptosis (38). In this transcriptome analysis, we find that caspase

gene expression was not affected by THs.

We found increased transcription of activators of apoptosis,

including Sox17, protein phosphatase 1 catalytic subunit (ppp1c),

STK17A, and E2F. These proteins have been previously described

increasing apoptosis and caspase 3/7 activation in chordates (102–105).

SOX17 in particular is associated with activation of the intrinsic

pathway and caspase 3/7 cleavage (104). Crucially, the most

upregulated apoptosis-related gene is a variant of cytochrome C

(LOC575347). Cytochrome C is responsible for binding apaf-1 and

procaspase-9 leading to the formation of the apoptosome and

subsequent cleavage/activation of caspase-9 and activation of the

intrinsic pathway (98). Therefore, we propose that THs may increase

caspase activation without increasing caspase transcription.
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4.3.2 Adhesome (Cadhesome/Septate
Junction) proteins

While genes involved in extracellular matrix secretion,

adhesion, and regulation were upregulated, two orthologs of

tgm1, an enzyme known to increase ECM stability, were

downregulated. These data suggest that THs may increase ECM

deposition and remodeling in older larvae. Additionally,

cadhesome-related genes were generally upregulated, with the

exception of fascin orthologs. Four cadherins were upregulated by

T4, including an ortholog of N-Cadherin, a cadherin associated

with mesenchyme cells and the epithelial to mesenchyme transition

(106, 107). A switch of expressed cadherin types is thought to be

essential for the epithelial to mesenchyme cell transition (108),

therefore changes in cadherin expression may allow for cell motility

and tissue remodeling during development. A decrease in

Cadherin-E expression regulated by Snail is necessary for EMT

during sea urchin gastrulation (109–112). Snail is also upregulated

in T4-exposed older larvae, and is downstream of Ets1, a gene we

propose to be regulated by T4 via nongenomic MAPK cascade (13).

Evidence suggests Snail may participate in T4 regulation of

cadherin expression.

Tight junction-related genes are typically downregulated during

EMT, a process which has also been linked to Snail expression

(113). Sea urchin septate junction genes share similarities with

chordate tight junctions (114). Tetraspanin and melanotransferrin,

two essential tight junction/septate junction genes, were both

significantly downregulated by T4 in older larvae. Tetraspanins

are often inhibitors of the epithelial to mesenchyme transition, and

the closest vertebrate ortholog to the most abundant sea urchin

tetraspanin, tetraspanin18, also acts to inhibit EMT (115). We did

not find significant regulation of Mesh, an integral component of

gut septate junction in pluteus larvae, (114), although several

orthologs trended to downregulation by T4 in post-rudiment

larvae (LOC580458, LOC574757, LOC105439366). Taken

together, these data suggest T4 regulation in pre- and post-

metamorphic sea urchin plutei increases cell motility, facilitates

the epithelial to mesenchyme transition, and enhances tissue

remodeling prior to metamorphosis.

4.3.3 Neuronal signaling and crosstalk
76 found expression of the nuclear TH receptor in neuronal

cells of 3-day old pluteus larvae using a single cell transcriptomics

approach and the authors suggest that THs may colocalize with

serotonergic neurons described as “Sp-Pdx1/Sp-Brn1/2/4

expressing neurons”. We find in our transcriptome analysis that

THs induce a strong upregulation of Aromatic L-amino acid

decarboxylase (AADC), a key serotonin (5-HT) synthesis enzyme,

as well as downregulation of two serotonin receptors. This coincides

with previous research on chordates: THs have previously been

found to decrease serotonin receptor levels and increase serotonin

levels in chordates (116, 117). The nuclear TH receptor in sea

urchins colocalizes to neurons expressing the sea urchin serotonin

receptor (118). We found T4 downregulated two serotonin
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receptors, one of which (LOC581142) was found to colocalize with

the nuclear TH receptor by Paganos et al. (118). Paganos et al. (118)

also describe several glucose co-transporter genes to be markers of

this cell type, which we found to be downregulated by T4 in older

larvae (Slc5a9 and Slc2a1). Together, these data suggest regulation

of “Sp-Pdx1/Sp-Brn1/2/4 expressing neurons” by THs, reducing

sensitivity of these neurons to both serotonin and glucose. In

chordates, THs regulate and induce differentiation of Pdx1-

expressing cells (119). While THs slightly increased Pdx1 and

Brn1/2/4 levels in older larvae, it was not to a significant extent,

and we found no support for the hypothesis that THs control

differentiation of these neurons during the developmental stages

we tested.

A serotonergic nervous system has also been described in older

pluteus larvae, with axons reaching from the apical ganglion to the

larval arms and juvenile rudiment (120). In this context, nuclear TR

colocalization with and regulation of serotonergic neurons has

implications for TH control of juvenile rudiment development

and metamorphosis. Excision of the serotonergic neurons along

with the pre-oral hood, resulted in spontaneous metamorphosis of

sea urchin larvae, while electrical stimulation of these neurons

resulted in a greater degree of metamorphosis (121). The

downregulation of serotonergic receptors we observed might

therefore be one of the mechanisms by which THs

stimulate metamorphosis.

Previous research has shown that THs induce apoptosis in sea

urchins (38) and that the histaminergic system may be crucial for

regulation of metamorphosis and settlement, with histamine

accelerating metamorphic competence but inhibiting settlement

and apoptosis in the larval arms (52, 122). We find that in post-

rudiment larvae (27d), T4 significantly increased histamine receptor

expression, while in pre-rudiment larvae (23d), T4 increased

expression of histamine-metabolizing enzymes. Histamine

crosstalk may play a role in TH acceleration of metamorphic

competence, with T4 increasing histamine receptor expression to

accelerate rudiment development. This provides further evidence

that crosstalk between these two signaling pathways is important for

regulation of development to metamorphosis in sea urchins, as

originally proposed in Sutherby et al. (122).

The adrenergic system has been linked with nongenomic TH

signaling in chordates, and THs have been proposed as a

neurotransmitter (27, 29, 123). We found that T4 (and to a lesser

degree T3) upregulated beta-1 adrenergic receptor and the

noradrenaline transporter SLC6A2 orthologs in our transcriptome

analysis. While little work has been done on sea urchin adrenergic

receptors, adrenergic signaling has been shown to be necessary for

tube foot motility in adult sea urchins (124).

Retinoic acid signaling has been implicated in metamorphosis

of numerous non-sea urchin echinoderms (125) and can cause

pseudopodial cable growth in sea urchin skeletogenic mesenchyme

cells in culture (126). We found that thyroid hormones strongly

upregulated both orthologs of the retinoic acid receptor, suggesting

a possible link between thyroid hormone exposure and retinoic

acid receptivity.
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4.3.4 Innate immune system
Echinoderms possess an innate immune system with a diverse

array of immune recognition receptors (57, 127). THs can regulate

immune response in chordates (16), and remodeling of the immune

system is implicated in chordate metamorphosis (128, 129). We

found that some immune-related genes were highly upregulated by

T4, including a variety of SRCR-domain containing proteins, a

protein family which has been greatly expanded in echinoderms

and is involved in innate immune response (130–133). A few

immune DEGs were also regulated in gastrulae, suggesting a

potential non-genomic response to THs. However, we found

fewer immune-related DEGs than the other categories of genes

we manually annotated.
4.4 Evolution of thyroid hormone
regulation of development

TH effects have long been described in non-chordates, but until

recently, the mechanisms were not understood (reviewed in 1, 2).

Non-chordates do not possess a thyroid gland but are capable of TH

synthesis and receptor function (2, 134). Orthologs of all necessary

TH signaling system components are present in Bilateria, with TH

synthesis having been described even in prokaryotes (2).

Previously, the TH T4 has been described binding to nuclear

extract from a sea urchin larva (74). We have provided evidence

linking TH action to genomic signaling via the nuclear hormone

receptor. Our data suggest that actions of THs on older sea urchin

larvae can be attributed at least in part to genomic signaling via a

nuclear hormone receptor, likely THRb. Along with previous

evidence linking THRb to regulation of metamorphosis by THs in

molluscs and annelids (62, 135) and the fact the THR signaling is

likely a bilaterian innovation (37), it is plausible that TH signaling is

widespread among bilaterians.

Nongenomic signaling has not yet been demonstrated in a non-

deuterostome, having only been shown in sea urchins and

vertebrates. However, the proteins and domains essential for non-

genomic signaling are also evolutionarily ancient (37). Future

research should explore this integrin mediated non-genomic TH

signaling pathway in these groups.
5 Conclusion

Our data provide further evidence that TH signaling can occur

via an integrin membrane receptor in sea urchin development and

that both genomic and non-genomic signals are involved in the

regulation of skeletogenesis in sea urchins. Our detailed

transcriptional analysis suggests that TH signaling in later stages

of development involves the nuclear TH receptor in addition to

non-genomic actions. Furthermore, differentially expressed genes in

response to THs cover a broad range of physiological and

developmental processes, previously implicated in TH signaling in

chordates, such as apoptosis, cell adhesion, neuronal signaling and
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morphogenesis. Together with previously published evidence that

THs are synthesized by sea urchin embryos and larvae and the role

of THs in metamorphic development, our data suggest that the

function of THs in development is a shared feature of bilaterians or

even animals.
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