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Background: Type 2 diabetes mellitus (T2DM) is a chronic endocrine metabolic

disease caused by insulin dysregulation. Studies have shown that aging-related

oxidative stress (as “oxidative aging”) play a critical role in the onset and

progression of T2DM, by leading to an energy metabolism imbalance.

However, the precise mechanisms through which oxidative aging lead to

T2DM are yet to be fully comprehended. Thus, it is urgent to integrate the

underlying mechanisms between oxidative aging and T2DM, where meaningful

prediction models based on relative profiles are needed.

Methods: First, machine learning was used to build the aging model and disease

model. Next, an integrated oxidative aging model was employed to identify

crucial oxidative aging risk factors. Finally, a series of bioinformatic analyses

(including network, enrichment, sensitivity, and pan-cancer analyses) were used

to explore potential mechanisms underlying oxidative aging and T2DM.

Results: The study revealed a close relationship between oxidative aging and

T2DM. Our results indicate that nutritional metabolism, inflammation response,

mitochondrial function, and protein homeostasis are key factors involved in the

interplay between oxidative aging and T2DM, even indicating key indices across

different cancer types. Therefore, various risk factors in T2DM were integrated,

and the theories of oxi-inflamm-aging and cellular senescence were also

confirmed.

Conclusion: In sum, our study successfully integrated the underlying

mechanisms linking oxidative aging and T2DM through a series of

computational methodologies.
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1 Introduction

Type 2 diabetes mellitus (T2DM) is a chronic endocrine

metabolic disease caused mostly by insulin dysfunction. The

increasing prevalence of diabetes has resulted in a great economic

burden in many countries (1). According to statistics, there are

approximately 536.6 million people with diabetes worldwide, and

this number is expected to rise to approximately 783.2 million in

2045, with T2DM accounting for approximately 90% (1, 2).

Therefore, it is imperative to study the etiology of T2DM in depth.

Various reports have shown that T2DM is closely related to

aging, with aging being one of the most vital risk factors for T2DM

(3, 4). Adipose tissue (AT) is redistributed during aging, which

affects the sensitivity of insulin (5). Furthermore, the normal

function of pancreatic beta cells also declines (3), and aging

causes inflammation and low nutritional status, affecting the

endocrine system (6). Additionally, a series of risk factors for

T2DM are vital to other age-related diseases, such as Alzheimer's

disease (AD), cardiovascular disease (CVD), and cancer (7–10).

During the aging process, oxidative stress accumulates, leading

to an energy imbalance that is key to T2DM (11, 12). For example,

oxidative intermediates can damage pancreatic beta cells and

exacerbate insulin resistance (13). Moreover, accumulated reactive
Frontiers in Endocrinology 02
oxygen species also accelerate aging-related DNA damage and

induce cellular senescence (14, 15). With increasing age, the free

radical dynamic balance in cells is gradually broken, causing an

increase in free radical concentration and inducing the oxidation

reaction, leading to T2DM (16). In addition, oxidative stress is

closely interrelated with inflammation (17) by activating multiple

transcription factors in the inflammatory response (18).

Furthermore, abnormal oxidative stress dysregulates the balance

of energy metabolism during T2DM development (19–23). In

summary, the potential mechanism by which aging-related

oxidative stress (often described as “oxidative aging” (24)) triggers

T2DM needs to be further studied at the system level (Figure 1A).

With the development of artificial intelligence, many research

results on diabetes have utilized machine learning (ML), which can

gain useful information from original profiles. ML can be widely

used in the risk prediction, prognosis, and treatment of clinical

diseases such as cardiovascular disease and cancer (25, 26).

Recently, it was reported that ML can predict the occurrence of

T2DM and its complications, as well as identify key markers in

T2DM (27–29). Additionally, Mendelian randomization (MR) is

conducive to integrating biological information (30, 31). Although

numerous studies have revealed some risk factors/mechanisms

associated with T2DM, the underlying mechanism between
A

B

C

FIGURE 1

(A) Diagram of the hypothetical mechanism. (B) The workflow of our study. (C) The pipeline of integrated oxidative aging model.
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oxidative aging and T2DM is still unclear and requires

further exploration.

To further explore the potential mechanisms between oxidative

aging and T2DM, a series of computational studies was performed

in this paper (Figures 1B, C): (1) Machine learning was used to

identify aging and disease (T2DM) markers. (2) An integrative

model was built to further explore essential relationships between

oxidative aging (aging-related oxidative stress) and T2DM

(Figure 1C). (3) Network analysis, enrichment analysis and

sensitivity analysis were used to investigate the underlying

mechanisms between oxidative aging and T2DM markers. (4)

Relative biological functions of identified oxidative aging markers

were further validated across different cancer types. As a result, the

underlying mechanisms of T2DM (i.e., nutritional metabolism,

inflammatory response, mitochondrial function and protein

homeostasis) were integrated, which can also provide key indices

in cancers.
Results

2.1 Modeling prediction models and
identifying relative biomarkers

The gene expression profiles were obtained from the GEO

database, including 489 samples and 12,958 genes (Tables S1–S3).

These genes were ranked by the ReliefF algorithm, and then the

aging predictor and disease predictor were built using the k-nearest

neighbors (kNN; k=3 with the correlation distance) algorithm,

optimized by 10-fold cross-validation. The accuracy of the aging

predictor in the test set was 0.70455 and 0.7279 in the aging and

disease predictors (Figure 1; Table 1), respectively. Furthermore, the

ROC area under the curve (AUC) for the aging and disease

predictor models were 0.7712 and 0.72788 (Figure 2),

respectively. As a result, our predictors were sufficiently accurate

in both aging and disease models.

Both aging and disease markers have meaningful biological

functions. For example, OSBPL1A (oxysterol binding protein-like

1A, ReliefF weight=0.058) was the top aging marker. OSBPL1A is

one of a set of intracellular lipid receptors and is closely related to

lipid metabolism and cholesterol metabolism (32, 33). TIGD4

(tigger transposable element derived 4, ReliefF weight=0.0253), as

the top disease marker, was related to glycogen metabolism. In sum,

the abnormal metabolism of lipids, cholesterol and glycogen can

lead to T2DM (34). These results indicated the crucial role of energy

metabolism in T2DM.
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2.2 Identifying the oxidative-aging risk
factors by the integrated prediction model

The integrated oxidative aging model was built to explore

essential relationships among aging, oxidative and T2DM markers

(details are shown in Materials and Methods 5.3, with a total of

11829 “aging-oxidative-disease” triples). The top 10 aging, oxidative

and disease markers are shown in Table 2, including relative

experimental details (35–43). For example, ADP-ribosylarginine

hydrolase (ADPRH) is the top aging marker, participating in the

regulation of various cellular processes, including both immunity

and aging (44). ADPRH adversely influences the immune system

via CD8+ T cells, hence promoting an imbalance in energy

metabolism (45). TPST1 (tyrosyl protein sulfotransferase 1) is the

top disease marker, catalyzing the posttranslational sulfation of

tyrosine residues within acidic motifs of many polypeptides in all

multicellular organisms (46). TPST1 promoted the secretion of

some cytokines and then induced the inflammatory response (47).

COX5A (cytochrome C oxidase subunit 5A) is the top oxidative

marker related to mitochondrial function (48), which induces an

imbalance in energy metabolism and insulin resistance (35). In

addition, the predictor accuracy calculated by the selected disease

markers was 0.7662 (Table 1). In sum, these results indicated that

the integrated oxidative aging model could identify essential

relationships in T2DM, even with enough prediction ability.
2.3 Sensitivity analysis further highlighted
the imbalance of energy metabolism
in T2DM

The Markov chain Monte Carlo (MCMC) method was used to

evaluate the sensitive relationship between oxidative aging and T2DM.

As a result, a series of triples were identified as key components (2501

out of 11829) in the integrated oxidative aging model.

The top 10 sensitive relationships (by calculating the absolute

differential frequency) are shown in Table 3, where the top

relationship was “OSBPL7-COX7C-TM6SF1” (difference=-

0.03935). Additionally, Table 3 also displayed experimental details

of relative oxidative markers (49–55). OSBPL7 (oxysterol binding

protein like 7) is an oxysterol-binding protein-like (OSBPL) family

member involved in lipid binding and transport and induces

cholesterol efflux (56, 57). COX7C (cytochrome C oxidase

subunit 7C) is an enzyme in the electron transport chain related

to cellular respiration and is also a potential biomarker of diabetes

mellitus (58, 59). Transmembrane 6 superfamily member 1
TABLE 1 The accuracy of aging predictor and disease predictor.

The accuracy of
training datasets

The accuracy of
test datasets

Markers used for classification

The aging model 0.7552 0.70455 304

The disease predictor 0.8328 0.7279 299

The integrated oxidative aging model 0.8485 0.7662 282
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FIGURE 2

Machine learning results. (A, B) Aging predictor from our previous study, selecting the number of aging markers. (C, D) The improved inflamm-aging
predictor, selecting the number of disease markers. (A, C) Learning curve for the training dataset. (B, D) The ROC curve for the test dataset.
TABLE 2 The top 10 aging markers, disease markers and oxidative markers from the integrated oxidative model.

Aging
marker

Times Disease
marker

Times Oxidative
marker

Times Experimental results of the oxi-
dative marker

Reference Experimental
method

ADPRH 21 TPST1 26 COX5A 86 COX5A is related to mitochondrial
dysfunction in insulin resistance.

(35) Western blotting

OAS3 14 PGK1 25 CYB5B 83 CYB5B is related to diabetic retinopathy. (36) Quantitative PCR

RNF10 13 ADM 25 ERCC8 77 Loss of ERCC8 will have insulin-dependent
diabetes with Cockayne syndrome.

(37) DNA hybridization

LMO7 11 PLAC8 24 ANXA1 62 ANXA1 is related to weight gain and diet-
induced insulin resistance.

(38) Flow cytometry

KATNB1 10 ITGB5 22 ATRN 62

PLD1 10 STEAP4 21 BAK1 59 BAK1 is related to mitochondria-dependent
programmed cell death.

(39) Cell culture of
hepathocellular carcinoma

and renal epithelial

PTPLB 9 TMEM163 21 CD36 58 CD36 is a key molecule to limit b-cell
function in T2DM associated with obesity.

(40) Western blot analysis

ATP1B3 9 KDELR3 20 CYCS 55 CYCS affects the expression level of b cells
through regulating the production of

mitochondrial ROS.

(41) Western blot analysis

PABPC3 7 SCD 19 ALOX5 53 ALOX5 can lead to inflammation in
patients with T2DM.

(42) Normal fasting glucose
and normal glucose

tolerance

AQR 7 PELO 19 CAT 53 CAT belongs to peroxidase, which can
affect the oxidative metabolism of fatty acid.

(43) Cell culture of human
fibroblasts
F
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(TM6SF1) participates in regulating transmembrane transport in

macrophages (60). Overall, these results indicated that oxidative

stress played an important role in the development of T2DM.

The top sensitive aging, disease, oxidative markers (evaluated by

the occurrence times, also along with relative experimental details

(61–69)) and are also shown in Table 4. For example, the top aging

marker was HPS1 (Hermansky-Pudlak Syndrome 1 gene), inducing

the biogenesis of lysosome-associated cellular organelles (70), which

regulates the aging process through sphingolipids (71). The top

disease marker was PPP1R15A (protein phosphatase 1 regulatory

subunit 15A). PPP1R15A plays an important role in insulin

resistance via energy metabolism (72, 73). The top oxidative

marker was ATOX1 (antioxidant 1 copper chaperone). It has

been reported that ATOX1 can regulate the copper level in the

cell and maintain the redox balance as a defense antioxidant (74,

75). In short, the sensitivity analysis emphasized the crucial

relationship among aging, oxidative stress and T2DM.
2.4 Underlying oxidative-aging
mechanisms based on enrichment analysis

To further explore the underlying mechanisms between oxidative

aging and T2DM, the shortest path between each pair of oxidative

aging and disease markers was identified, and then enrichment
Frontiers in Endocrinology 05
analysis was performed based on the Kyoto Encyclopedia of Genes

and Genomes (KEGG) pathway and biological process (BP) terms in

Gene Ontology (GO). As a result, relative enrichment results were

summarized in Figures 3, S1, as well as Tables 5 (75–88), 6 (89–102)

and S4 (76–81, 83–85, 103, 104, 111, 113), S5 (89–91, 94, 96, 103,

105–110).

The top 10 KEGG pathways are shown in Tables 5, S3. The most

enriched KEGG pathway was “Parkinson’s Disease” (enriched in 1213

shortest paths). It has been reported that Parkinson’s disease (PD) and

T2DM have common pathological mechanisms (76–78, 111). For

example, oxidative stress and mitochondrial dysfunction are involved

in both T2DM and PD pathogenesis (77). Strikingly, there are also a

series of common biological pathways in T2DM, PD and cancer, such

as mitochondrial dysfunction and protein homeostasis (112).

Furthermore, the most significant KEGG pathway with the

minimum FDR was “Leishmania Infection” (FDR=0.0000629)

(Figure 3B), indicating the inflammatory response in the immune

system (82, 113, 114). Notably, the inflammatory response is also

often closely related to cancer (113). The classical aging pathway, the

“mTOR signaling pathway” was also enriched in shortest pathway

(Figure S2), indicating the interrelationship between oxidative aging

and T2DM.

The top 10 BP terms are shown in Tables 6, S4. For example, the

top enriched BP term was “Regulation of aerobic respiration”

(enriched in 29 shortest paths), which was related to energy and
TABLE 3 The top 10 pairs with the greatest absolute difference frequency.

Aging
marker

Oxidative
marker

Disease
marker

Difference Experimental results of the oxidative
marker

Reference Experimental method

OSBPL7 COX7C TM6SF1 -0.039347869
COX7C activity is associated with pancreatic b-

cells.
(49) OGTT testing

DNAJA3 MYC GSTZ1 -0.037033525
MYC is a key factor for proliferation of

pancreatic b-cells.
(50)

Western blot analysis and real-time
PCR

OSBPL7 COX7C SLC25A37 -0.036323552
COX7C activity is associated with pancreatic b-

cells.
(49) OGTT testing

OSBPL7 MGAT3 SF3A2 -0.0357659 MGAT3 plays role in lipid homeostasis. (51)
Mouse model:oral administration of

isoindoline-5-sulfonamide

TTC25 COX7A1 CMTM8 -0.03019756
COX7A1 activity is associated with pancreatic b-

cells.
(49) OGTT testing

OSBPL7 MGAT3 RECK -0.027526704 MGAT3 plays role in lipid homeostasis. (51)
Mouse model:oral administration of

isoindoline-5-sulfonamide

MTUS1 ISCU ATP5J -0.019164871
ISCU can cause Friedreich ataxia (FRDA), which

is related to diabetes.
(52) Cell culture of endocardium

SLC23A2 GCH1 SPI1 0.01780268
GCH1 is related to endothelial dysfunction in

T2DM.
(53) Venous occlusion plethysmography

EPN1 IL18BP MRPL11 0.017333862
IL18BP is related to inflammatory response,
which plays important roles in diabetic

nephropathy.
(54)

Cell culture of human proximal
tubular epithelial and western blot

analysis

EPN1 PARK7 NFKBIA 0.014743576
PARK7 participates in glucose homeostasis and

then induces insulin resistance.
(55)

Quantitative PCR analysis and
western blotting analyses
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mitochondrial function (96). In addition, reactive oxygen species

(ROS) are byproducts of aerobic respiration that control various

cellular functions (97). The BP term with the minimum FDR was

“Regulation of DNA binding” (FDR=0.0000282) (Figure 3A), which

is vital to T2DM by dysregulating mitochondria and energy

metabolism (100). Obviously, the accumulation of DNA damage

is also a hallmark of cancer (115). Overall, these results identified

various aspects of risk factors for T2DM, such as oxidative stress,

aging, energy metabolism and immune systems.
Frontiers in Endocrinology 06
2.5 Network markers revealed key
mechanisms between aging and T2DM

Network markers were identified by calculating the betweenness

in the shortest path of each ‘‘oxidative-disease’’ pair, where the top

markers are shown in Table 7. For example, the top network marker

was SCD (stearyl-coenzyme A desaturase), which is mainly expressed

in adipose tissue and can catalyze the synthesis of monounsaturated

fatty acids (116). In addition, SCD can affect lipid metabolism and
TABLE 4 The top 10 aging markers with the most paired with oxidative markers after sensitive analysis.

Aging
marker

Times Disease
marker

Times Oxidative
marker

Times Experimental results of the oxida-
tive marker

Reference Experimental
method

HPS1 13 PPP1R15A 18 ATOX1 39 ATOX1 can protect pancreatic b-cells and
induce diabetes mellitus.

(61) Western blot analysis

SCARB1 10 ALDH4A1 16 APEX1 31 APEX1 is associated with diabetic retinopathy. (62) Western blot analysis

TMPO 7 G0S2 15 APP 29 APP is related to protein accumulation, and
then leads to T2DM.

(63) In vitro aggregation
assay

MRPL10 7 CALML4 15 ALDH3B1 27 ALDH3B1 is related to lipid peroxidation. (64) Western blot analysis

TTC25 6 STXBP2 15 AXL 25 AXL is involved in diabetic vascular disease. (65) OGTT testing

MYLK 6 ZCCHC14 15 AKT1 24 AKT1 is related to insulin resistance. (66) Western blotting
analysis and real-

time PCR

RPS4Y1 5 MCEE 15 ARNTL 21 ARNTL regulates lipid metabolism and diet-
induced insulin resistance.

(67) Plasma metabolites
analysis

ESCIT 5 HIST1H2AC 15 ADAM9 20 ADAM9 is a potential novel target for
regulating the function of diabetic EPCs.

(68) Western blotting

FKBP1B 5 PDLIM1 15 ATRN 20

PTPLB 5 MRPL18 14 CAMKK2 20 CAMKK2 plays role in diet-induced obesity,
glucose intolerance and insulin resistance.

(69) Immunoblotting
A B

FIGURE 3

Enrichment analysis of the shortest path of KEGG and BP (A). The top 10 pathway enrichment with the minimum FDR in BP terms (B). The top 10
pathway enrichment with the minimum FDR in KEGG pathways.
frontiersin.org

https://doi.org/10.3389/fendo.2023.1196293
https://www.frontiersin.org/journals/endocrinology
https://www.frontiersin.org


Chen et al. 10.3389/fendo.2023.1196293
mediate steroidogenesis, playing an important role in insulin

resistance (117, 118). Furthermore, SCD participates in mediating

the inflammatory reaction, which promotes the progression of cancer

(119). Moreover, there were also a series of shortest paths through
Frontiers in Endocrinology 07
SITR1 (Figure S3, where permutation p-value=0.002 and 0, before

and after sensitive analysis), which was as a clssical aging marker.

Thus, network markers indicate the crucial role of oxidative stress

dysfunction, along with energy metabolism, in T2DM.
TABLE 5 The top 10 enriched KEGG pathways.

KEGG Enriched shortest
paths

Functions Reference

PARKINSON DISEASE
1213 (1) T2DM and Parkinson Disease have shared pathological mechanism.

(2) T2DM is a determinant of Parkinson Disease risk and progression.
(76–78)

OXIDATIVE PHOSPHORYLATION
1175 Causing metabolic alterations at the organism level through producing energy-

rich molecules like ATP.
(87)

ALZHEIMERS DISEASE 1128 (1) T2DM is modifiable risk factor for Alzheimer’s Disease.
(2) Insulin resistance is a common mechanism between Alzheimer’s Disease and

T2DM.

(79, 80)

HUNTINGTONS DISEASE 1115 T2DM and Huntington’s Disease have shared treatment method. (81)

LEISHMANIA INFECTION 702 Related to the immune system. (82)

CARDIAC MUSCLE CONTRACTION 357 Related to insulin sensitivity and mitochondrial function. (88)

TOLL LIKE RECEPTOR SIGNALING
PATHWAY

239 Producing and releasing various inflammatory mediators and triggering immune
response.

(83)

COLORECTAL CANCER 163 T2DM is the risk factor for colorectal cancer. (84)

ADHERENS JUNCTION 145 Regulating insulin vesicle trafficking. (85)

T CELL RECEPTOR SIGNALING
PATHWAY

84 Related to immune system. (86)
f

TABLE 6 The top 10 enriched BP terms.

BP Enriched
shortest paths

Functions Reference

RESPONSE TO REACTIVE OXYGEN
SPECIES

418 (1) Modifying cell signaling proteins and then mediating T2DM.
(2) As a central mechanism for the development of T2DM.

(89, 101)

RESPONSE TO OXIDATIVE STRESS
308 (1) Causing the function of pancreatic beta cells damaged.

(2) Related to insulin resistance.
(90, 91)

CELLULAR RESPONSE TO REACTIVE
OXYGEN SPECIES

260 (1) Maintaining the cellular redox homeostasis.
(2) Related to mitochondrial oxidative stress and cell senescence.

(92, 93)

CELLULAR RESPONSE TO CHEMICAL
STRESS

179 Regulating the cellular redox state. (94)

RESPONSE TO OXYGEN CONTAINING
COMPOUND

142 Controlling the intracellular metabolism and energy metabolism. (95)

REGULATION OF AEROBIC
RESPIRATION

131 (1) Regulating the level of glucose metabolism.
(2) Reactive oxygen species (ROS) are a byproduct of aerobic respiration and

signaling molecules, which controls various cellular functions.

(96, 97)

CELLULAR RESPONSE TO OXYGEN
CONTAINING COMPOUND

104 Disorder of glucose and lipid metabolism is an important cause for the development
of T2DM.

(102)

AEROBIC RESPIRATION 101 Regulating energy metabolism,and then affecting T2DM. (98)

REGULATION OF GLYCOLYTIC
PROCESS

98 Producing energy and inducing mitochondrial dysfunction and oxidative stress. (99)

REGULATION OF DNA BINDING 91 Regulating the function of mitochondrial. (100)
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2.6 Pan-cancer analysis further verified the
mechanism of oxidative aging in T2DM

Pan-cancer analysis was used to further verify the relative

functions of T2DM oxidative aging markers in cancer. For

example, oxidative aging markers in the integrated model were

used to evaluate the survival index across different cancer types.

There were 9 out of 15 cancer types with significant results

(including COAD, ESCA, KIRC, LIHC, LUAD, LUSC, PRAD,

THCA and UCEC, shown in Figure 4). These results suggest that

oxidative aging markers can also be used as relative risk factors

in cancer.

Additionally, both the commonality and specificity across 15

cancer types were investigated based on enrichment analysis. The
Frontiers in Endocrinology 08
top 10 common KEGG pathways are shown in Figures 5, S4, where

“Alzheimer’s Disease” was the top KEGG pathway. Alzheimer’s

disease (AD) and cancer share common risk factors. For example,

aging is one of the greatest risk factors for the development of

Alzheimer’s disease, and the risk of cancer also increases with

increasing age (120). In addition, some cancer patients may have

a higher risk of Alzheimer’s disease (121). Figures 6, S2 showed the

top 10 common BP terms in 15 cancers. “Regulation of cellular

respiration” was the top BP term, indicating the key role of energy

metabolism in cancer (122). Cellular respiration participates in

energy metabolism and is also a hallmark of many cancers (123).

The specific enrichment results within each cancer are also

summarized in Tables 8, 9, S6, S7 (112, 120–163), indicating a

series of oxidative aging-related risk factors in cancer, such as the
TABLE 7 The top 10 genes with the highest number before and after sensitive analysis.

Before sensitive analysis After sensitive analysis

Gene Symbol Betweenness P-value Gene Symbol Betweenness P-value

SCD 3403 0 SCD 355 0

MARCKSL1 2049 0 MRPL11 325 0

APOD 1910 0 ATOX1 300 0

FOS 1827 0 COX7A2 223 0

ATOX1 1462 0 FOS 212 0

PCGF2 1288 0 NENF 164 0

COX7A2 1266 0 ISCU 163 0

MRPL11 1135 0 COX4I1 151 0

OGT 1098 0 HYAL2 146 0

NDUFA8 10003 0 MMP9 101 0
fron
DA B E

F G IH J

K L M N O

C

FIGURE 4

The results of survival analysis across different cancer types. (A) BLCA; (B) BRCA; (C) COAD; (D) ESCA; (E) KICH; (F) KIRC; (G) KIRP; (H) LIHC; (I)
LUAD; (J) LUSC; (K) PRAD; (L) READ; (M) STAD; (N) THCA; (O) LIHC.
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inflammatory response, energy metabolism and mitochondrial

function. Overall, our results highlighted a series of crucial

functions related to oxidative aging, which can also be used to

study potential mechanisms in cancer.
3 Discussion

It is well known that aging-related oxidative stress plays a

crucial role in T2DM (3). However, the essential relationship
Frontiers in Endocrinology 09
among aging, oxidative stress and T2DM still needs to be

explored in more depth. In this paper, a series of computational

methods were performed to explore these relationships in T2DM as

well as the relative mechanisms. First, both the aging model and

disease model were optimized, and relative aging markers and

disease markers were identified. Next, the integrated oxidative

aging model was built to identify essential “aging-oxidative-

disease” relationships. Finally, network analysis, enrichment

analysis, sensitivity analysis and pan-cancer analysis were used to

further explore the potential mechanisms between oxidative aging

and T2DM. As a result, various risk factors in T2DM

were integrated.

Our results highlighted that energy metabolism was vital to the

development of T2DM. For example, the integrated oxidative aging

model identified a series of key markers in T2DM that were closely

related to energy metabolism. OSBPL1A and T1GD4 participate in

nutritional metabolism; the former is mainly involved in lipid

metabolism and cholesterol metabolism, and the latter is mainly

related to glycogen metabolism (32–34). ADPRH and PPP1R15A can

lead to energy metabolism imbalance (35, 63). COX5A can affect

mitochondrial function, and ATOX1 is the redox catalyst, both of

which can affect energy metabolism through mitochondrial

dysfunction (39, 65). Furthermore, as the top network marker,

SCD is mainly expressed in adipose tissue and can catalyze the

synthesis of monounsaturated fatty acids (116). It can affect lipid

metabolism and mediate steroidogenesis, which plays an important

role in insulin resistance (117, 118). SIRT1 was also identified by

calculating the betweenness. In MCMC, the greatest difference in the

absolute value pair was “OSBPL7-COX7C-TM6SF1”, where OSBPL7

participates in lipid binding and transport (49, 50) and COX7C is

related to cellular respiration as a potential biomarker of diabetes (51,

52). The classical energy metabolism pathway, “mTOR signaling

pathway”, was also identified using the enrichment analysis,

indicating the key interaction between oxidative aging and T2DM.

Protein homeostasis is also involved in the progression of

T2DM. For instance, amyloid precursor protein (APP) is an
A

B

FIGURE 5

The enrichment analysis shared by cancers. (A)KEGG pathways
enriched in 15 cancers (B). BP terms enriched in 15 cancers.
FIGURE 6

Summarized mechanisms of oxidative-aging in T2DM Rectangle genes represent aging markers, oval genes represent disease markers, rhombus
genes represent oxidative markers, hexagon genes represent network markers with high numbers. Orange arrows indicate the gene involved in
nutritional metabolism, yellow arrows indicate the gene involved in inflammation response, red arrows indicate the gene associated with
mitochondrial function, green arrows indicate the gene associated with protein homeostasis.
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TABLE 8 KEGG pathways in each cancer with the minimum FDR.

Type of
cancer

FDR KEGG Functions Reference

BLCA
8.72e-
05

ERBB SIGNALING PATHWAY Related to human cancer pathogenesis. (124)

BLCA
8.72e-
05

PROGESTERONE MEDIATED
OOCYTE MATURATION

The source of immune cells and macrophages. (125)

BLCA 8.72e-
05

PANCREATIC CANCER A fatal malignancy with an aggressive disease course. (126)

BRCA 7.82e-
06

INTESTINAL IMMUNE NETWORK
FOR IGA PRODUCTION

Related to immune system. (127)

COAD 9.79e-
06

HUNTINGTONS DISEASE Cancer and Huntington’s Disease have common pathogenesis. (128)

ESCA
1.08e-
07

PARKINSONS DISEASE Parkinson Disease and cancer share some common biological pathways, such as
mitochondrial dysfunction and protein homeostasis.

(112)

KICH
7.64e-
07

OXIDATIVE PHOSPHORYLATION Cancer cells utilize certain pathways to enhance oxidative phosphorylation. (129)

KICH
7.64e-
07

PARKINSONS DISEASE Parkinson Disease and cancer share some common biological pathways, such as
mitochondrial dysfunction and protein homeostasis.

(112)

KIRC
1.47e-
05

RENAL CELL CARCINOMA Main factor contributed to kidney cancer. (130)

KIRC
1.47e-
05

MELANOMA The most lethal form of skin cancer. (131)

KIRP
4.32e-
07

ALZHEIMERS DISEASE (1) age is the risk factor for the development of Alzheimer’s Disease and cancer.
(2) some cancer patients may have a higher risk of Alzheimer’s Disease.

(120, 121)

LIHC
1.31e-
04

ERBB SIGNALING PATHWAY Related to human cancer pathogenesis. (124)

LIHC
1.31e-
04

PANCREATIC CANCER A fatal malignancy with an aggressive disease course. (126)

LUAD
5.99e-
08

OXIDATIVE PHOSPHORYLATION Cancer cells utilize certain pathways to enhance oxidative phosphorylation. (129)

LUAD
5.99e-
08

PARKINSONS DISEASE Parkinson Disease and cancer share some common biological pathways, such as
mitochondrial dysfunction and protein homeostasis.

(112)

LUSC
2.54e-
05

BLADDER CANCER The ninth most common malignancy worldwide. (132)

PRAD
2.13e-
04

OXIDATIVE PHOSPHORYLATION Cancer cells utilize certain pathways to enhance oxidative phosphorylation. (129)

PRAD
2.13e-
04

PARKINSONS DISEASE Parkinson Disease and cancer share some common biological pathways, such as
mitochondrial dysfunction and protein homeostasis.

(112)

READ
4.88e-
05

ADHERENS JUNCTION Downregulation of E-cadherin, the two major components of adherens junctions,
and p120, is a frequently recurrent hallmark of carcinomas.

(133)

READ
4.88e-
05

GLIOMA The most malignant and aggressive form of brain tumors, accounting for the
majority of brain cancer-related deaths.

(134)

READ
4.88e-
05

MELANOMA The most lethal form of skin cancer. (131)

STAD
2.94e-
05

MELANOMA The most lethal form of skin cancer. (131)

THCA
5.08e-
05

GAP JUNCTION Genetic or acquired alterations of connexin proteins have been implicated in cancer. (135)

UCEC
6.41e-
06

ALZHEIMERS DISEASE (1) age is the risk factor for the development of Alzheimer’s Disease and cancer.
(2) some cancer patients may have a higher risk of Alzheimer’s Disease.

(120, 121)
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oxidative marker identified by MCMC that promotes the secretion

of amyloid proteins (164). SPI1 (Spi-1 Proto-Oncogene) was

involved in the negative regulation of protein, which caused

restraint of aerobic glycolysis (165) (Figure 3). In summary, both

APP and SPI1 are related to protein homeostasis and even

accelerate the development of both T2DM and neurodegenerative

diseases (NDs). That is, protein homeostasis is a common

mechanism in both T2DM and ND (166, 167).

The inflammatory response also plays an important role in the

development of T2DM. For example, the aging marker HPS1 affects

the biogenesis of lysosome-associated cellular organelles and even

participates in regulating cellular inflammation (61, 62). The disease

marker TPST1 induces the secretion of some cytokines, along with
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the inflammatory response (37, 38). TM6SF1, as one of the key

markers identified by MCMC, was involved in transmembrane

transport in macrophages, thus highlighting the key role of the

immune system in T2DM (53).

Furthermore, there are a series of experiments and relative

clinical stastic results also revealed significant relationships between

the identified oxidative aging markers and T2DM. For example, it

has been reported that in vitro oxidative stress in mammalian

skeletal muscle leads to substantial insulin resistance to distal

insulin signaling and glucose transport activity (p=9.2e-05) (168).

Chronic oxidative stress can also leads to decreased responsiveness

to insulin, ultimately leading to diabetes reported by Alina

Berdichevsky et al (p=0.01) (169). Besides, NFKBIA affects the
TABLE 9 BP terms in each cancer with the minimum FDR.

Type
of

cancer

FDR BP Functions Reference

BLCA
7.53e-
07

NEGATIVE REGULATION OF INSULIN
SECRETION INVOLVED IN CELLULAR
RESPONSE TO GLUCOSE STIMULUS

Creating conditions that force cancer cells to rely more on metabolites
and limited factors.

(136)

BRCA 2.09e-
05

REGULATION OF OXIDATIVE
PHOSPHORYLATION

Playing a crucial role in cancer progression. (137)

BRCA 2.09e-
05

RESPONSE TO HEPATOCYTE GROWTH FACTOR The Cancer cell growth, survival, and migration of cancer cell are relied
on an HGF-dependent manner.

(138)

COAD
9.24e-
07

CELLULAR RESPONSE TO CADMIUM ION Cadmium is an established carcinogen in both humans and animals. (139)

ESCA
9.12e-
07

NEGATIVE REGULATION OF PROTEIN
CATABOLIC PROCESS

Playing dual roles in tumorigenesis and cancer progression. (140)

KICH
2.36e-
06

RESPONSE TO HYDROGEN PEROXIDE The progression of cancer is related to effect of hydrogen peroxide. (141)

KIRC
2.86e-
05

RESPONSE TO IMMOBILIZATION STRESS Enhancing the ability of some cancer cells to enter a dormant state. (142)

KIRP
1.76e-
06

MITOCHONDRIAL ELECTRON TRANSPORT
NADH TO UBIQUINONE

Cancer cell propagation is closely related to the regulation of the electron
transport chain.

(143)

LIHC
3.87e-
07

CELLULAR RESPONSE TO HYDROGEN
PEROXIDE

Regulating catalase expression to target the redox state of cancer cells. (144)

LUAD
2.37e-
07

ELECTRON TRANSPORT CHAIN Electrons originating from different metabolic processes are guided into
the mitochondrial electron transport chain (ETC) to drive the oxidative

phosphorylation process.

(145)

LUSC
2.74e-
05

CELLULAR RESPIRATION Tumors gain energy mainly from glucose to lactate and only partially
through cellular respiration involving oxygen.

(146)

PRAD
3.42e-
04

RESPONSE TO OXIDATIVE STRESS Related to cancer, which can regulate the progression of cancer. (147)

READ
2.02e-
05

CELLULAR RESPONSE TO REACTIVE OXYGEN
SPECIES

ROS dynamically affect the tumor microenvironment, and are known to
initiate cancer angiogenesis, metastasis, and survival at various

concentrations.

(148)

STAD
6.00e-
05

POSITIVE REGULATION OF CYTOSOLIC
CALCIUM ION CONCENTRATION

Cancer cell proliferation and apoptosis depend on the intracellular Ca (2
+) concentration.

(149)

THCA
7.46e-
05

REGULATION OF NUCLEOCYTOPLASMIC
TRANSPORT

The nucleocytoplasmic transport of macromolecules is critical for both
cellular physiology and pathology, playing an important role in the

treatment of cancer.

(150)

UCEC
2.10e-
07

AEROBIC RESPIRATION Alterations in cancer glucose metabolism include leading to a shift in
metabolism from aerobic respiration to glycolysis.

(151)
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wound healing in diabetic foot ulceration (DFU) (p=0.006) (170),

MYC and SCD are related to pyroptosis and immune infiltration in

T2DM (p=0.001) (171). The experiment of Parker C. Wilson et al

using single-nucleus RNA sequencing has been revealed that GCH1

is associated with early-stage diabetic nephropathy (p=4.88e-09)

(172) In short, our results also presented key clinical indices with

the help of the integrated oxidative model.

T2DM is associated with an increased risk of developing

cancers, such as COAD, PRAD, and THCA (30). It is well known

that T2DM and cancer have common risk factors, such as oxidative

stress, energy metabolism, inflammation and protein homeostasis

(22, 23, 173). Our results also proved that inflammation and energy

metabolism were common risk factors in cancers, and even survival

analysis further verified the key role of oxidative aging markers

across different cancer types. Oxidative stress may lead to chronic

inflammation, which in turn can induce most chronic diseases,

including both cancer and T2DM. In addition, oxidative stress can

damage the normal function of mitochondria as well as energy

metabolism, which plays an important role in the development of

T2DM and cancer. In short, various risk factors related to oxidative

aging were also confirmed in cancer.

According to the oxi-inflamm-aging theory, the aging process is

regulated by chronic oxidative stress, as well as the inflammatory

response (174). It is well known that dysregulated oxidative stress

triggers a series of signaling pathways, thus leading to pancreatic beta

cell damage (175). In addition, the cellular senescence theory also

highlights cellular inflammation and the oxidative stress response

during the aging process (176, 177). That is, cellular senescence may

also play an important role in the pathogenesis of T2DM (i.e.,

through the mTOR signaling pathway) (177, 178). Furthermore,

these risk factors even interact with each other and then promote

T2DM. For example, the imbalance of energy metabolism could

interact with a series of pathways, such as lipid accumulation, chronic

inflammation and insulin resistance, triggering T2DM progression

(179). It has been reported that normal homeostasis in the insulin-

driven immunometabolic network is vital to the preservation of

insulin sensitivity in healthy aging (180). Here, our work also

highlighted the interaction between the immune system and energy

metabolism in the development of T2DM (Figure 3; Tables 5, 6),

which is also crucial in cancer (Figures 4, 5). With the help of the

integrated oxidative aging model, our study revealed that oxidative

stress was interrelated with various aging-related risk factors in

T2DM (Tables 2–6), such as the inflammatory response,

mitochondrial function and protein homeostasis. These results

further confirmed both the oxi-inflamm-aging and cellular

senescence theories. Overall, potential aging-related mechanisms in

T2DM were integrated in the context of oxidative stress (Figure 6).
4 Conclusion

In this study, machine learning was performed to predict aging

and T2DM, and then relative biomarkers were identified. An

integrated oxidative aging model was built to explore the essential

relationship between oxidative aging and T2DM. The key roles of

nutritional metabolism, the inflammatory response, mitochondrial
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function and protein homeostasis in T2DM were highlighted in our

work with the help of sensitivity analysis, enrichment analysis,

network analysis and pan-cancer analysis. In conclusion, various

risk factors were integrated in the development of T2DM as well as

cancer based on oxidative aging.

5 Materials and methods

5.1 Data and preprocessing

All gene expression data were downloaded from the Gene

Expression Omnibus (GEO) database (https://www.ncbi.nlm.nih.gov/

geo/), including GSE362, GSE15790, GSE18732, GSE29221, GSE29226,

GSE29231, GSE37171, GSE38642, GSE76894, and GSE182120. These

datasets were from eight different platforms: GPL96, GPL97, GPL8450,

GPL9486, GPL6947, GPL570, GPL6244, and GPL17586.

The gene expression profiles were processed as follows:
(1) Only the samples with both the age and phenotype index

(i.e., type 2 diabetes versus control) were retained;

otherwise, they were deleted.

(2) The gene expression matrix for each dataset was integrated

by summarizing the probe number within the gene symbol.

(3) The total data matrix was integrated, and the missing gene

expression values were filled with values of 0.

(4) Genes with missing values ≥ 30% were deleted.

(5) The gene expression matrix was transformed by

logarithmic transformation if it contained outliers.

(6) Based on the mean and the standard deviation of gene

expression for control individuals , the z-score

normalization was performed for both T2DM and control

samples.

(7) The singular value decomposition (SVD) method was

performed to eliminate the intersample variation based

on the top three principal components of the control

samples.

(8) The z score was then utilized to normalize all samples based

on the mean and the standard deviation of the control

samples.

(9) The training set and the test set were randomly divided

according to a ratio of approximately 2:1.
As a result, a total of 489 samples were obtained, including 208

samples of healthy aged people (age > 50 years old, 145 training

datasets + 63 test datasets), 131 samples of healthy young people

(age ≤ 50, 90 + 41), 110 samples of T2DM aged people (age > 50,

75 + 35) and 40 samples of T2DM young people (age ≤ 50, 25 + 15),

containing 12958 gene symbols (Tables S1–S3).

We also obtained paired gene expression (RNAseq) profiles

(“Batch effects normalized mRNA data”) and clinical data from the

TCGA database through the xena plat form (https : / /

xenabrowser.net/hub/). Cancer types with ≥10 adjacent normal

samples were retained. As a result, there were 15 cancer types

used in this work: BLCA (408 cancer samples and 19 adjacent
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normal samples), BRCA(1102 + 113), COAD(451 + 41), ESCA

(185 + 11), KICH(66 + 25), KIRC(534 + 72), KIRP(291 + 32), LIHC

(376 + 50), LUAD(517 + 59), LUSC(504 + 51), PRAD(498 + 52),

READ(160 + 10), STAD(414 + 35), THCA(513 + 59) and UCEC

(533 + 22). The tumor expression profiles from the same patient

were averaged. Genes with missing values ≥30% were deleted.

5.2 Modeling the aging model and
disease model

After randomization as well as a random disorder, the healthy

population samples were divided into a training dataset and a test

dataset. The ratio of training dataset samples to test dataset samples

was close to 2:1. The ReliefF algorithm was used to select key

features, and then the first 500 models were studied to train

predictors. The optimal model was selected by 10-fold cross-

validation. To verify the accuracy of the aging predictor, the

selected model was verified in the test dataset.
Fron
(1) In the aging model, the normal aged group (age>50) was

labeled 1, and the young healthy group (age ≤ 50) was

labeled 0; in the disease model, the T2DM group was

labeled 1, and the control group (age ≤ 50) was labeled 0.

(2) The 12958 genes were sorted by the ReliefF algorithm;

(3) The predictor was generated using the k-nearest neighbor

(kNN, k=3, correlation distance) algorithm. The optimal

model was selected by 10-fold cross-validation, where the

model with the highest accuracy rate was chosen.

(4) The identified features were considered aging and disease

markers. As a result, 304 aging markers and 299 disease

markers were identified.
5.2 Identifying essential relationships in
T2DM by an integrated oxidative aging
model

The integrated oxidative aging model was built to identify the

essential relationship among aging, oxidative stress and T2DM. The

computational pipeline was referred to by Mendelian

randomization (MR), although it was not as strict as

MR (Figure 1C).

In this model, the aging-related oxidative stress markers were

considered oxidative aging markers, where the relative aging/

disease markers were identified in “Methods 5.2”. As a result, the

essential relationships among aging, oxidative stress and disease

(T2DM) markers were identified as key “aging-oxidative-disease”

triples in T2DM.

MR is a statistical method for assessing the causal relationship

between risk factors and outcomes based on observational data
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(181, 182). The causal relationships between the instrumental

variables, risk factors, and outcome variables were assessed

as follows.
(1) There was a correlation between the instrumental variable

and the risk factor.

(2) There was no correlation between the instrumental variable

and the confounding factor.

(3) There was no correlation between the instrumental variable

and the outcome variable after deleting the effect from the

risk factor.
Here, the aging marker was used as the auxiliary variable

(similar to the instrumental variable in MR), and the oxidative

stress markers were used as the candidate risk factor. Then, aging-

related oxidative (“oxidative aging”) markers were identified as the

risk factor, and disease markers were used as the outcome variable.

That is, the integrated oxidative aging model aimed to explore

essential relationships among aging, oxidative stress and disease

markers in T2DM. This model was performed as follows:

(1) Oxidative markers were obtained as candidate risk factors

based on Biological Processes (BP) of Gene Ontology (GO) through

the Gene Set Enrichment Analysis (GSEA) platform (http://

www.gsea-msigdb.org/gsea/downloads.jsp, “OXIDATIVE” was

taken as the keyword). As a result, 310 candidate oxidative

markers were selected.

(2) The correlation (differential coexpression) pattern was used

to select aging markers that strongly correlated with candidate

oxidative stress markers with the help of the Kruskal−Wallis test.

Here, the differential coexpression was calculated as follows:

p = Kruskal

−Wallis test (aging _marker: ∗ oxidative _marker,  phenotype)

(1)

where the phenotype could be defined as 1 (T2DM) and

0 (control).

Furthermore, both a p-value<0.05 and Benjamini−Hochberg

false discovery rate (FDR)<0.1 were used to select strongly

correlated aging markers.

(3) To reduce the correlation between the auxiliary variable

(aging marker) and confounding factors, as well as further select a

strong correlation between the aging marker and the candidate

oxidative marker, a permutation test was performed by generating

the simulated aging markers from the same number of randomly

selected markers to each candidate oxidative marker; this process

was repeated 1000 times, and then the p-value was calculated as the

proportion of occurrence times (larger than the real mean

difference) of the absolute difference between T2DM and control

in 1000 permutations. The relationship between each aging marker

and the candidate oxidative marker was retained if the

permutation P<0.05.
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(4) Correlation (differential coexpression) was used to select

oxidative markers that strongly correlated with disease markers

with the help of the Kruskal−Wallis test. Here, the differential

coexpression was calculated as follows:

p = Kruskal

−Wallis test (oxidative _marker: ∗ disease _marker,  phenotype)

(2)

where the phenotype could be defined as 1 (T2DM) and

0 (control).

Furthermore, both a p-value<0.05 and Benjamini−Hochberg

false discovery rate (FDR)<0.1 were used to select strongly

correlated oxidative markers.

(5) To reduce the correlation between the risk factor (oxidative

marker) and confounding factors, as well as further select a strong

correlation between the oxidative marker and the disease

marker, a permutation test was performed by generating the

simulated oxidative markers from the same number of randomly

selected markers to each disease marker; this process was

repeated 1000 times, and then the p-value was calculated as the

proportion of occurrence times (larger than the real mean

difference) of the absolute difference between T2DM and control

in 1000 permutations. The relationship between each aging marker

and the candidate oxidative marker was retained if the

permutation P<0.05.

(6) The direct relationships for any other factors (genes) were

found to reduce the correlation between the auxiliary variable

(aging marker) and confounding factors. If there was another

factor (gene) that was directly correlated (differentially

coexpressed) to both the aging marker and the disease marker,

then the relationship from aging to disease was deleted.

p = Kruskal

−Wallis test (aging _marker: ∗ other _ gene,  phenotype) (3)

p = Kruskal

−Wallis test (disease _marker: ∗ other _ gene,  phenotype)
(4)

where the phenotype could be defined as 1 (T2DM) and

0 (control).

Furthermore, both a p-value<0.05 and Benjamini−Hochberg

false discovery rate (FDR)<0.1 were used to filter out any

direct relationships.

(7) To filter out the effect of horizontal pleiotropy, the aging–

disease relationship was further examined by comparing the

correlation between each aging and disease marker, through the

oxidative marker or otherwise. Herein, steps ①–③ were used to

calculate the correlations between auxiliary variables and outcome

variables without the background of the risk factor, and step ④ was

used to calculate the correlations between auxiliary variables and

outcome variables with the context of the risk factor.

① The residual of each disease marker (“residual A”) was

calculated based on the oxidative marker:
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residual _A = disease _mar ker−b1*oxidative _mar ker (5)

where b1 is the regression coefficient.

② The residual of each aging marker (“residual B”) was

calculated based on the oxidative marker:

residual _ B = aging _mar ker −b2*oxidative _mar ker (6)

where b2 is the regression coefficient.

③ The abovementioned two residuals were further compared,

and the residual of the disease marker was calculated (as “residual

C”):

residual _C = residual _A − b3*residual − _ B (7)

where b3 is the regression coefficient.

④ The residual of the disease marker (“residual D”) was

calculated based on the aging marker.

⑤ The difference (between “residual C” and “residual D”) was

tested between the T2DM and control subgroups using the

Kruskal–Wallis test (P<0.05 and FDR<0.1).

Finally, the essential relationship among the aging marker,

oxidative marker and disease marker was retained. Thus, 11829

“aging-oxidative-disease” triples were identified, including 105

aging markers, 83 oxidative markers and 282 disease markers.

Thus, these 83 oxidative markers were used as oxidative aging

markers (risk factors), and 282 disease markers were also used to

discriminate the T2DM phenotype.
5.4 Sensitivity analysis using the
MCMC method

To further explore the relationship among aging, oxidative

stress and T2DM, sensitivity analysis was performed based on the

Markov chain Monte Carlo (MCMC) method, where “aging-

oxidative-disease” triples identified by MR were further evaluated

as a candidate relationship. The MCMC method is used to sample

certain posterior distributions in a high-dimensional space based on

a given probabilistic background. The key step of MCMC is to

construct a Markov chain whose equilibrium distribution is equal to

the target probability distribution. The steps were as follows:

(1) Constructing the transfer cores of the ergodic Markov chain.

The prior distribution of each parameter was normally distributed

based on all identified markers in each group (i.e., T2DM and

control), respectively.

(2) Simulate the chains until equilibrium is reached. The

Metropolis−Hastings sampling method was used to determine

whether the new sample (q *) was acceptable based on the a value.

a =
P ( q* jX)* q ( qn ! q* )
P ( qn jX )* q ( q

n ! q* )
(8)

where P (q n | X) and P (q * | X) are the posterior probability of

the nth accepted sample, the new sample q (q n ! q *) is the

transition probability from the nth accepted sample to the new

sample, and q (q *! q n) is the transition probability from the new

sample to the n-th accepted sample.
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In this work, the disease score was used to evaluate the

simulated samples, with 1000 random samples used as candidate

samples for each group (i.e., T2DM or control). The disease score

was calculated by comparing the distance between normal and

T2DM training samples based on the 282 disease markers identified

by the integrated oxidative aging model:

disease _ score

=o7
k=1distance _ of _ neareast _ neighbour _ in _ control

−o7
k=1distance _ of _ neareast _ neighbour _ in _ T2DM (9)

(3) Performing the global sensitivity analysis

The correlation index was used to evaluate each “aging-

oxidative-disease” triple in the accepted samples (including both

T2DM and control):

correlation _ index =
disease _marker − aging _marker
oxidative _marker − aging _marker

(10)

As a result, the correlation index was calculated in each “aging-

oxidative-disease” triple for all accepted samples. Then, the

Kruskal–Wallis test was used to evaluate each correlation index in

each “aging-oxidative-disease” triple, where p-value<0.05 and

FDR<0.1 were set as the threshold. Finally, 2501 “aging-oxidative-

disease” triples were identified as sensitive relationships, including

41 aging markers, 37 oxidative markers and 61 disease markers.
5.5 Constructing the differential
coexpression network

To further reveal the relationship between “oxidative aging” and

T2DM, a differential coexpression network was constructed by the

following steps:
Fron
(1) The Pearson correlation coefficient for each pair of genes

was calculated based on the T2DM and control groups.

(2) The Benjamini−Hochberg FDR method was used to adjust

the p-values of the correlation coefficient.

(3) The relationship between each gene pair was retained if the

coefficient value in T2DM had the opposite sign (i.e., + or -)

to that in control, as well as p< 0.05 and FDR< 0.1.

(4) The shortest path between each pair of oxidative aging and

disease markers was selected based on the differential

coexpression network using the Dijkstra algorithm.
5.6 Enrichment analysis

The gene functions were further explored by enrichment

analysis of the shortest pathway. Gene Ontology (GO) terms and

KEGG pathways for the GSEA platform were obtained from gene

set enrichment analysis (http://software.broadinstitute.org/gsea/
tiers in Endocrinology 15
downloads.jsp, version 7.5). The hypergeometric distribution was

used to test the degree of enrichment of the GO BP and KEGG

pathways. Hypergeometric test formula:

P(X ≥ x) = 1 −ox−1
k=0

Ck
M � Cn−k

N−M

Ck
M

(11)

where N is the total number of genes in the gene set, M is the

number of known genes (such as KEGG pathway or BP terms), which

is the number of genes identified in each shortest pathway, and k is

the number of common genes between known genes and candidate

genes identified in each “oxidative-disease” shortest pathway. The p-

value of each path was controlled using the Benjamin-Hochberg

method. Finally, pathways with p<0.05 and FDR<0.1 were retained.
5.7 Identifying network markers

The subnetwork with the shortest pathways among the selected

“oxidative-disease” pairs was constructed, and genes in the

subnetwork were sorted by their betweennesses in descending

order. To test whether the top betweenness genes were hubs in

the background network, we ran a permutation to count the

occurrence time of the top genes in the shortest paths between

randomly selected genes (containing the same numbers of

“oxidative-disease” pairs, based on the identified “aging-oxidative-

disease” triples) when they had greater betweennesses than those in

our study. We repeated this process 1000 times, and the p-value was

calculated as the proportion of occurrence times of the top

betweenness genes in 1000 permutations.
5.8 Pan-cancer analysis

The survival analysis was performed based on the oxidative

aging markers (identified by the integrated oxidative aging model in

5.3) for each cancer using the Kaplan−Meier method. The tumor

samples of each cancer were divided into two groups based on the

mean value of the oxidative aging markers. Then, the Kaplan−Meier

method was used to evaluate the survival difference between these

two groups, and the significance was estimated by the log-rank test.

A p-value<0.05 was considered statistically significant.

Genes were considered differentially expressed if they satisfied

the following criteria:
(1) Fold change>2;

(2) p-value<0.05 in the Kruskal−Wallis test;

(3) Benjamin-Hochberg false discovery rate (FDR)<0.1.
Then, the differential expression networks were constructed for

each cancer, where the details were also the same as 5.5. As a result,

each shoreat pathway was selected from each pair of oxidative aging

markers and differentially expressed genes (as disease markers in

cancer) using the Dijkstra algorithm. Furthermore, enrichment

analysis was performed by the “oxidative-disease” shortest
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pathway for each cancer type, where both p<0.05 and FDR<0.1

were used.
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