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Senescence: a double-edged
sword in beta-cell health
and failure?

Sneha S. Varghese and Sangeeta Dhawan*

Department of Translational Research and Cellular Therapeutics, Arthur Riggs Diabetes and
Metabolism Research Institute, City of Hope, Duarte, CA, United States
Cellular senescence is a complex process marked by permanent cell-cycle arrest

in response to a variety of stressors, and acts as a safeguard against the

proliferation of damaged cells. Senescence is not only a key process

underlying aging and development of many diseases, but has also been shown

to play a vital role in embryogenesis as well as tissue regeneration and repair. In

context of the pancreatic beta-cells, that are essential for maintaining glucose

homeostasis, replicative senescence is responsible for the age-related decline in

regenerative capacity. Stress induced premature senescence is also a key early

event underlying beta-cell failure in both type 1 and type 2 diabetes. Targeting

senescence has therefore emerged as a promising therapeutic avenue for

diabetes. However, the molecular mechanisms that mediate the induction of

beta-cell senescence in response to various stressors remain unclear. Nor do we

know if senescence plays any role during beta-cell growth and development. In

this perspective, we discuss the significance of senescence in beta-cell

homeostasis and pathology and highlight emerging directions in this area that

warrant our attention.
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1 Introduction

Cellular senescence is the phenomenon of permanent cell cycle arrest (1) that occurs in

response to a variety of stressors, and can serve as a protective mechanism by preventing

the proliferation of stressed or damaged cells (2). Senescence plays an important role in

embryonic development, tissue regeneration, and repair (3). Senescence is also a

fundamental process underlying aging and the pathogenesis of many diseases, including

diabetes (4). Accordingly, targeting senescence has emerged as a major therapeutic

opportunity in many contexts (5). While the importance of senescence in beta-cell

regenerative decline with aging and beta-cell failure in diabetes is firmly established

(6–11), we know little about senescence in the context of beta-cell growth and

development. As well, the molecular mechanisms that trigger and perpetuate beta-cell
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senescence remain far from clear. Here, we discuss the role of

senescence in beta-cell homeostasis and pathology and highlight

key emerging questions.
2 The senescence phenotype – a
spectrum, not a singularity

Senescence is a highly dynamic and heterogenous process, with

the phenotype and function of senescent cells unique to the specific

inducer and physiologic context (12) (Figure 1). Several types of

senescence responses have been identified based on the inducing

stimulus; these include the classical replicative senescence in

response to telomere shortening, oncogene-induced senescence,

mitogen-induced senescence, mitochondrial dysfunction

associated senescence, and the stress and DNA damage induced

premature senescence (5, 12). These stimuli trigger cell-cycle arrest

via the activation of two key “tumor-suppressor” modules, namely

the p53/p21 and the p16/Rb pathways. Activation of these two

pathways propels a variety of the phenotypic changes associated

with senescence (2–5, 12–14).
2.1 Hallmarks of senescence

Besides replicative arrest and mitogen refractoriness, senescent

cells display a variety of phenotypic and molecular hallmarks (12).

They often exhibit a flattened and hypertrophic morphology with

enlarged nuclei, as well as altered metabolic and mitochondrial

activity. Another frequent feature of senescence is lysosomal

dysfunction marked by increased senescence-associated
Frontiers in Endocrinology 02
b-galactosidase activity (SA-b-gal) (13). Senescent cells also

present a hypersecretory phenotype and a characteristic secretory

profile consisting of pro-inflammatory cytokines, chemokines,

growth factors and proteases, termed the Senescence-Associated

Secretory Phenotype (SASP). SASP can attract immune cells such as

macrophages, natural killer cells, and T-cells, facilitating immune

surveillance and senescent cell elimination (15). Several nuclear

changes, such as nuclear LaminB1 depletion and heterochromatic

foci, also mark the senescent phenotype (16). Finally, senescent cells

exhibit a persistent DNA damage response (DDR) and upregulation

of anti-apoptotic programs (2).
2.2 Nuclear mechanisms – transcriptional
and epigenetic changes

Cell-cycle arrest during senescence primarily involves the

activation of either p53/p21 or p16/pRB pathways, or both. p53

and RB serve as transcriptional regulators while p21 and p16 are

Cyclin-dependent kinase inhibitors (CDKIs) which mediate cell-

cycle arrest (2, 17). The p53/p21 pathway is activated in response to

DNA damage caused by telomere attrition, oxidative stress, or

oncogenic stimuli (17, 18). A key event in p53 response is the

activation of p21, which inhibits CyclinE-Cdk2 complex to mediate

cell-cycle arrest. The p53 dependent phosphorylation cascade also

stimulates DNA repair and is called the DNA damage response

(DDR) (18). Collectively, this response delays cell-cycle until

damage is repaired. The RB/p16 pathway, on the other hand, is

appropriated not only for oncogene induced senescence, but also

during the age-dependent replicative senescence. p16 and p14, both

encoded by the Ink4a/Arf locus, constitute the cell-cycle inhibitor
FIGURE 1

Characteristics of a senescent cell. Senescence, which is a state of irreversible cell cycle arrest, is induced by a variety of stress conditions,
resulting in several cellular and morphological changes. Cell cycle arrest in senescence is achieved through the activation of the p16/pRb and/or
the p21/p53 pathways, depending upon the type of stress. Apart from cell cycle arrest, the senescent phenotype is heterogenous and may
display a combination of morphological features. Overall, a senescent cell (right) exhibits a flattened and hypertrophic morphology compared to
a non-senescent cell (left). The structure and function of several organelles is also altered during senescence, such as dysfunctional
mitochondria with increased production of Reactive Oxygen Species (ROS), and increased lysosomal number and size along with the induction
of a lysosomal senescence associated b-galactosidase (SA-b-gal). In contrast to the intact LaminB1 and structured Lamin Associated-Domains
(LADs) in the nucleus of a non-senescent cell, a senescent cell displays an enlarged nucleus with disrupted LaminB1, formation of senescence-
associated heterochromatin foci (SAHF), increased DNA breaks, and an elevated DNA damage response (DDR). Senescence can also involve the
formation of cytoplasmic chromatin fragments (CCFs) that translocate from the nucleus to the cytosol, and activate the cytosolic DNA sensor
cGAS-STING-TBK pathway which further activates the pro-inflammatory senescence associated secretory phenotype (SASP). The SASP response
involves direct or extracellular-vesicle (EV) mediated secretion of extracellular matrix modulators, growth factors, cytokines, chemokines, to
modulate the tissue micro-environment through autocrine/paracrine signaling.
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components of the RB/p16 pathway (17, 19). p16 blocks the

formation of the cyclinD-CDK4/6 complexes to prevent RB

phosphorylation and promote cell-cycle arrest, while p14

establishes a cross-talk between the p53 and pRB pathways by

stabilizing p53 (17).

The transcriptional reprogramming in senescence is assisted by

a variety of underlying epigenetic changes. The initial epigenetic

changes mediate cell-cycle arrest and establish a pro-survival

response to cope with irreparable damage, while the subsequent

epigenetic alterations facilitate the pro-inflammatory SASP to

modify inter-cellular communication (2). Chromatin changes in

senescence involve reduced expression of certain histones and the

incorporation of non-canonical histones such as macroH2A.

Senescent cells often display a loss of the DNA-nuclear lamina

interactions (20). Specifically, the loss of LaminB1 at the Lamina

Associated Domains (LADs) leads to heterochromatin

redistribution and the formation of senescence-associated

heterochromatin foci (SAHF) to facilitate the silencing of

proliferation related genes (16).
2.3 Cytoplasmic and
extracellular responses

DNA damage and genomic instability not only induce changes

in gene expression and cell fate, but also trigger an inflammatory

response by releasing cytoplasmic chromatin fragments (CCFs)

(21). The CCFs are recognized by the cytosolic DNA sensor cyclic

GMP-AMP synthase (cGAS), which generates cytosolic GMP-AMP

(22). This, in turn, activates the stimulator of interferon genes

(STING) and TANK-binding kinase 1 kinase (TBK1), leading to

NF-kB activation and the production of inflammatory cytokines

and type 1 interferons (23). The CCF-cGAS-STING pathway

couples DNA damage sensing to the innate immune response to

promote the SASP response (24). SASP modulates the tissue

microenvironment and enforces senescence through autocrine

and paracrine signaling. The contents of SASP vary based on the

cellular context and stress signal (25). This can involve the release of

extracellular-vesicles (EVs) which contain nucleic acids such as

CCFs along with the pro-inflammatory proteins, to produce long-

range effects which can impact distant tissues (26).
2.4 Senescence versus cell-death – a cell-
fate choice

Cells can respond to high levels of stress by triggering

senescence or cell-death depending on the specific stressor and

cell type, often by repurposing the same pathways (27). Both p53/

p21 and Rb/p16 pathways serve pleiotropic roles in this context, and

the level and duration of their induction can determine the cell fate

choice between apoptosis and senescence. Low levels of p16 induce

transient cell-cycle arrest, while high levels trigger senescence (28,

29). Similarly, low levels of p53 promote cell-cycle arrest and

senescence, while chronically high p53 levels block pro-

senescence signals and promote a pro-apoptotic transcriptional
Frontiers in Endocrinology 03
response (30, 31). In contrast to apoptosis, senescence offers

cellular viability and paracrine communication to neighboring

cells through SASP and thus facilitates adaptation to stress (28).
3 Senescence in pancreatic beta-cells
– in health and disease

Senescence has traditionally been defined as a permanent loss of

replicative capacity and therefore studied predominantly in replication-

competent cells. However, senescence is also a multifaceted stress and

damage response that initiates as an adaptive process and can turn

maladaptive upon prolonged stress (3, 32). Activation of many facets of

senescence has been reported in a variety of postmitotic cells including

beta-cells (6, 9–11, 33–36), suggesting that senescence in such cells

begins as a stress-response (36, 37), temporally separated from

permanent replicative arrest. Terminally differentiated cells can enter

a senescence-like state from the quiescent G0 phase in response to

DNA damage or telomere attrition, a phenomenon termed postmitotic

cellular senescence (PoMiCS) or ‘amitosenescence’ (34, 38). In some

instances, unscheduled re-entry of postmitotic cells into cell-cycle in

the context of stress may cause abnormal DNA content and DDR,

triggering a senescence like-response labeled as “pseudo-

mitosenescence” (38).
3.1 Beta-cell senescence – distinct from
quiescence

Pancreatic beta-cells transition from a wave of replication

dependent expansion in the neonatal growth phase to a

functionally mature, postmitotic state in postnatal life marked by

a form of cell-cycle exit termed “quiescence”. Quiescence is different

from senescence; while quiescence occurs in the G0 phase of cell-

cycle, senescence primarily occurs in the G1 and sometimes the G2

phases (12, 39, 40). Furthermore, quiescent cells retain the capacity

to re-enter cell-cycle in response to mitogens, unlike senescent cells.

The quiescent, postmitotic nature of beta-cells presents a unique

scenario in response to stress; it demands robust stress- and pro

survival-responses to protect existing cells, while the ability to re-

enter cell-cycle offers a way to regenerate beta-cell mass through

replication. These two potential responses can create a conflicting

choice for beta-cells; to either attempt replication under conditions

of stress or activate pro-survival stress-responses. Depending on the

severity and duration of the stressor, this may foster successful

adaptation, trigger senescence, or induce apoptosis in the most

extreme case (3, 32). Table 1 provides a summary of the unique

markers of beta-cell senescence in various contexts.
3.2 Replicative senescence in beta-cells –
implications for function and regeneration

Adult beta-cells can expand by replication to adapt to increased

insulin demand due to injury or insulin resistance. However, their

expansion capacity declines with age due to replicative senescence
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accompanied by the epigenetically controlled, gradual accumulation

of p16 (6–8, 42, 43). In young beta-cells, Polycomb proteins Ezh2

and Bmi1 repress the p16 locus. The levels of Ezh2 gradually decline

with aging, resulting in reduced binding of both polycomb proteins

and concomitant reduction of repressive chromatin modifications

(7, 8). This is accompanied by an age-related increase in binding of

the Trithorax complex containing Mll1 and JmjD3 which mark the

chromatin with activating histone modifications, leading to p16

accumulation (44). The epigenetic control of p16 is driven by age-

related changes in growth-factor signaling pathways (45). Platelet-

derived Growth Factor (PDGF) signaling, which is essential for

Ezh2 expression, declines with aging (46). On the other hand, age-

related increase in Transforming Growth Factor-beta (TGFb)

signaling promote Trithorax complex recruitment to the Ink4a/

Arf locus, thus contributing to the onset of replicative senescence

(47) (Figure 2A).

The induction of p16 in adult beta-cells is first observed around

2.5 months of age in mice (8), and appears to occur as a part of their

normal functional maturation (48). In agreement, ectopic

expression of p16 in beta-cells of juvenile mice not only induces

replicative senescence but also enhances GSIS (48). This agrees with

data in murine islets showing the epigenetic activation of

transcriptional programs underlying insulin secretion with age,

while the genes related to beta-cell replication are epigenetically

repressed (49). In contrast, plenty of evidence suggests that basal

insulin secretion increases with aging, accompanied by either

unaltered or increased stimulated insulin secretion (50). It is

possible that p16 represents only a part of the replicative

senescence program, and other mechanisms are maybe involved

in the age-related changes in glucose responsiveness and insulin

secretion. The presence of p16 in beta-cells of young mice points to

that (8, 48), and suggests that p16 expression alone may not indicate

replicative senescence. Alternatively, the levels and duration of p16

expression may account for these age-related differences in beta-cell

phenotype. In agreement, many key hallmarks of senescence, such

as SA-b-gal only appear in islets of really old mice (51).

Furthermore, a transcriptomic comparison of SA-b-gal+ and SA-

b-gal- beta-cells showed impaired glucose-sensing machinery in the

senescent cells (11). Replicative senescence prevents the replication

of cells that have accumulated damage with age, while the

concomitant hypersecretory phenotype could allow beta-cells to

compensate for an acute and modest increased insulin demand.

However, this may not suffice for chronically high insulin

requirement and can cause impaired glucose homeostasis, as has

been observed in old mice in many contexts that warrant beta-cell

expansion (42, 43, 52).
3.3 Stress-induced senescence in beta-
cells – relevance for diabetes

Beta-cell fragility is a shared underlying feature of both type 1-

and type 2- diabetes (T1D and T2D), with the activation of

unfolded protein response (UPR) and DDR preceding beta-cell

failure (53–57). In addition, the immune-mediated islet

inflammation is a well-established stress trigger in T1D and is
Frontiers in Endocrinology 04
now also recognized to contribute to beta-cell failure in T2D (58,

59). One of the key sequalae of beta-cell stress in both T1D and T2D

is the activation of premature senescence involving both p16 and

p21, DDR, and SASP, along with the induction of Bcl-2 as a pro-

survival mechanism (9, 11). The beta-cell SASP secretome in

diabetes not only harbors inflammatory cytokines and

chemokines, but also includes extracellular matrix modulators

such as Mmp2, Serpine1, Igfbp3, and FilaminB (9). The SASP

response displays non-cell-autonomous activities, such as paracrine

senescence and promoting the chemotaxis of immune cells (60, 61).

Besides the immune and metabolic factors as triggers for beta-

cell stress (57, 62, 63), the contribution of beta-cell intrinsic changes

is becoming increasingly evident (64). For instance, genetic

vulnerability due to mutations in DNA repair genes can trigger

beta-cell failure independent of immune defects (53). Beta-cells can

accumulate oxidative-stress induced DNA damage and somatic

mutations, which could predispose to senescence (65). More

recently, a missense mutation in the beta-cell transcription factor

MafA associated with a form of maturity onset diabetes of the

young (MODY) was shown to induce premature senescence and

SASP (10). These data reiterate the involvement of beta-cell

intrinsic triggers for SASP in diabetes. Given the role of MafA in

mature beta-cell identity, this also suggests a link between impaired

beta-cell identity and senescence. In agreement, beta-cells harboring

SASP signatures in T1D display reduced levels of the maturity

marker Ucn3 (9). Similarly, senescent beta-cells in the context of

insulin resistance display a loss of the mature beta-cell identity (11).

Thus, beta-cell intrinsic factors such as loss of mature identity and

impaired stress-response may be critical in initiating senescence.

Whether a beta-cell adapts or fails in response to stress depends

on the severity and duration of the stressor, as well as its intrinsic

capacity to handle stress (Figure 2B). Different beta-cell subtypes

display differential stress-responsiveness and predisposition to

senescence (11, 51, 66–68). Stress-induced changes in beta-cell

identity and heterogeneity (69–73) can therefore impair the

collective stress responsiveness of the beta-cell pool and induce

senescence. Indeed, increased UPR and DDR precede senescence

and have an additive effect towards inducing senescence (74–76).

UPR initiates as an adaptive response and allows cells to cope with a

high demand for protein synthesis and processing, while DDR

protects against genomic instability due to replication stress and

oxidative stress (77, 78). The link between UPR, DDR, and

senescence is especially relevant for beta-cells that produce and

process a large amount of protein load, rely on replication for

adaptive expansion, and are highly susceptible to oxidative damage

(79–81) (Figure 2C). While the initial induction of these stress-

sensing adaptive mechanisms in response to stress facilitates cellular

repair and adaptation, persistent activation of these mechanisms

leads to tissue maladaptation, senescence, and even death (53–57).

Recent data show that p21 is a temporal stress-sensor that shapes

the cellular response by placing cells under immunosurveillance,

which either disengages or eliminates damaged cells depending on

the duration of p21 persistence (82). This suggests that the duration

of such responses can dictate whether cells undergo repair, become

senescent, or undergo cell death, effectively determining the choice

between adaptation vs maladaptation.
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3.4 Senescence in beta-cell development
– making “fit” beta-cells

Senescence is also known to occur during embryonic

development and is essential for growth and patterning. Such

developmentally programmed senescence relies on p21 activation

and SASP, which induces macrophage mediated clearance of

senescent cells and contributes to tissue remodeling (83–86).

Macrophage infiltration is observed in both mice and humans

during pancreas development (87–90), and regulates pancreatic

progenitor migration, cell cycle progression, and beta-cell

expansion (91, 92). Macrophages likely also assist the clearance

of damaged cells that may accumulate due to the extensive cell

turnover during pancreas development (93–96). While prior

work on developmental senescence showed that p21 induction
Frontiers in Endocrinology 05
did not involve DNA damage and p53 activation (85, 86), the

scenario in the maturing pancreas might be different (Figure 2D).

High rates of beta-cell replication during postnatal growth appear

to increase vulnerability to DNA damage (Figure 2E). Beta-cells

with extensive DNA damage could then initiate a SASP response

towards their clearance by macrophages, allowing only “fit” beta-

cells to mature and establish a healthy beta-cell pool.

Alternatively, as a recent lineage tracing study suggests, some

senescent cells may resolve senescence to re-enter cell-cycle

during development, and progress to maturation (97, 98).

Impaired clearance or aberrant cell-cycle entry of damaged

beta-cells during development due to any genetic or epigenetic

causes could therefore predispose to impaired beta-cell mass and

future disease vulnerability (99). Indeed, peak incidence of the

development of islet autoimmunity in T1D occurs during the
D

A B

EC

FIGURE 2

Senescence in pancreatic beta-cell health and disease: (A) Aging induces p16 accumulation and leads to replicative senescence, which limits beta-
cell self-renewal. Age associated transcriptional changes may also alter basal insulin secretion without any accompanying changes in glucose
stimulated insulin secretion (GSIS). With aging, reduced Platelet Derived Growth Factor signaling (PDGF sig.) and increased Transforming Growth
Factor-beta signaling (TGFb sig.) leads to alleviation of Polycomb (PcG)- mediated repression of p16 locus and drives Trithorax (TrxG)-mediated
activation of p16 locus. (B) The duration or intensity of exposure to cellular-stress stimuli dictates the beta-cell response; either facilitating
adaptation or causing maladaptation. Exposure to transient stress initiates DDR and unfolded protein response (UPR) and facilitates cellular repair
and adaptation. However, prolonged stress exposure aggravates both DDR and UPR and induces SASP, leading to premature senescence. This can
cause beta-cell dysfunction and maladaptation, and pre-dispose to diabetes. (C) Both intrinsic and extrinsic stress stimuli can induce DNA damage in
beta-cells through a myriad of triggers such as replicative stress, ROS, and ER-stress, and result in beta-cell dysfunction and/or death. (D) We
propose that unresolved DNA damage in the developing postnatal pancreas may trigger a p21 response and SASP to mediate the macrophage-
mediated clearance of damaged beta-cells during this phase, allowing only health and fit beta-cells to mature. Our data shown in (E) imply that
indeed the early postnatal beta-cell expansion phase is vulnerable to DNA damage accumulation. Top panel shows representative images of wild-
type mouse pancreatic sections at postnatal day 7 (p7) and I month (1m), immuno-stained for the DNA damage marker gH2AX (red) along with
Insulin (green) and DAPI (blue), while the lower panel show a quantification of % gH2AX+ beta-cells in the two stages, pointing to high DNA damage
vulnerability in early postnatal beta-cells. Error-bars show SEM. ****P<0.001, determined by using a two-tailed Student’s t-test . Scale bar: 50 mm.
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growth phase (100–102). Recent evidence shows that maternal

diabetes induces premature senescence in the neuroepithelium,

leading to neural tube defects (103). Similar events may occur

during beta-cell differentiation and result in impaired beta-cell

mass. Investigating senescence during islet morphogenesis is

therefore important to identify the triggering events underlying

beta-cell pathologies.
3.5 Targeting senescence – beta
cell therapies

Administration of senolytic agents has been shown to improve

glucose homeostasis in mouse models T2D and T1D (9, 11, 104, 105).

Inhibitors of the pro-survival Bcl2, such as ABT-199 or ABT-737, can

induce apoptosis of senescent beta-cells in the prediabetic Non-obese

diabetic (NOD) mice, and reduce the expression of SASP markers in

vivo (9). Similarly, Bcl2 targeting using ABT-263 has also been shown

to partially restore beta-cell mature phenotype and reverse metabolic

defects in both acute and chronic insulin resistance (11). The

bromodomain extra-terminal (BET) domain proteins, key inducers

of SASP in T1D, are another emerging target whose inhibition using

iBET-762 prevents SASP and autoimmune diabetes in the NOD mice

(104). Transcriptomic profiling of senescent beta-cells in the context

of insulin resistance shows potential of targeting the HIF1a pathway

using desatinib and quercetin (D+Q) (11), a senolytic strategy that is

in phase-I trials for other diseases (106). While senolytics are highly

promising, they may have off-target effects (107). Moreover, the

heterogeneous frequency of senescent beta-cells in pre-diabetes

precludes the identification of patients who would benefit the most

from senolytics (9). Development of beta-cell targeting approaches

and serum biomarkers for SASP would facilitate the optimization of

senolytics for clinical translation.
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4 Summary and emerging directions

Beta-cells undergo profound phenotypic changes in diabetes,

recapitulating several features of the functionally immature fetal and

neonatal beta-cells. These changes likely initiate as an adaptation to

stress, to protect cells from damage and promote repair and

regeneration. With chronic stress, attempted regeneration

and increased functional workload can aggravate genotoxic and

proteotoxic stress, and result in senescence and maladaptation.

Moreover, any defects in stress-response during beta-cell growth in

early life can set the stage for future beta-cell failure. Therefore, it is

essential to identify mechanisms that define the mature beta-cell

phenotype, protect beta-cell genomic stability, and are altered in

response to genotoxic and metabolic stress as beta-cells adapt or fail.

These may include critical growth signals and epigenetic mechanisms

that program the mature beta-cell transcriptional landscape. Stress-

responsive modulators of chromatin 3D architecture such as the

cohesin complex and the CCCTC binding factor (CTCF) that are

essential for genomic stability and transcriptional control may be

suitable candidates for such studies (108–111). Another critical

question is the link between senescence and the islet-immune

interaction during development and diabetes. It would also be

pertinent to compare the beta-cell SASP in aging, T1D, and T2D to

determine its context specificity. Understanding the mechanisms that

safeguard beta-cell genomic stability and stress-response and their

impact on replicative and stress-induced senescence programs will be

key to identifying the molecular triggers of beta-cell failure in diabetes.
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TABLE 1 Features of beta-cell senescence in different contexts, highlighting the SASP markers unique to beta-cells in each context. M indicated data
from mouse models, while Hu indicates data from human samples.

T1D T2D/IR MODY Aging

Cell cycle inhibitors Cdkn1a, Cdkn2a (M)
CDKN1A, CDKN2A (Hu)

Cdkn1a, Cdkn2a (M)
CDKN2A (Hu)

Cdkn1a (M) Cdkn1a, Cdkn2a (M)

Unique SASP markers
(mRNA/protein)

IL-6, Igfbp3, Serpine1, Mmp2,
Flnb (M)
IL-6, SERPINE1 (Hu)

Gstp1, Gdf15, Hsp90aa1 (M)
CCL4, IL6 (Hu)

Serpine 1, Cxcl1, Cxcl2, Il6, Tnf
(M)

Il6, Tnf and Cxcl1 (M)
Dusp3, Gdf15, Ing1, and
Kpnb1 (M)

DDR g-H2Ax (M) 53BP1 (Hu) g-H2Ax, 53BP1(M) 53BP1 (M)

Loss of mature beta cell
identity

Yes (M) Yes (M) Yes (M) Yes (M)

SA b-gal positivity Yes (M) ND Yes (M) Yes (M)

Antiapoptotic
phenotype

Yes (M) Yes (Hu) Yes (M) Yes (M)

Other features N/A IGF1R
activation

Sex-linked effect of the MODY
MAFA S64F mutation, observed
in males, Loss of nuclear
LaminB1

Sensitive to Cdkn2a targeting

References (9) (11, 41) (10) (11, 41)
IR, insulin resistance; T2D, Type 2 Diabetes; T1D, Type 1 Diabetes.
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