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targets associated with
pyroptosis in type 2
diabetes mellitus
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1Department of Endocrinology, School of Medicine, Zhongda Hospital, Institute of Diabetes,
Southeast University, Nanjing, Jiangsu, China, 2Department of Endocrinology, First Affiliated Hospital
of Baotou Medical Collage, Baotou, China
Introduction: Research has shown that pyroptosis contributes greatly to the

progression of diabetes and its complications. However, the exact relationship

between this particular cell death process and the pathology of type 2 diabetes

mellitus (T2DM) remains unclear. In this study, we used bioinformatic tools to

identify the pyroptosis-related genes (PRGs) associated with T2DM and to

analyze their roles in the disease pathology.

Methods: Two microarray datasets, GSE7014 and GSE25724, were obtained

from the GEO database and assessed for differentially expressed genes (DEGs).

The T2DM-associated DEGs that overlapped with differentially expressed PRGs

were noted as T2DM-PRGs. Subsequently, 25 T2DM-PRGs were validated and

subjected to functional enrichment analysis through Gene Ontology annotation

analysis, Kyoto Encyclopedia of Genes and Genomes pathway analysis, and gene

set enrichment analysis (GSEA). The diagnostic and predictive value of the T2DM-

PRGs was evaluated using receiver operating characteristic curves (ROC).

Additionally, a single-sample GSEA algorithm was applied to study immune

infiltration in T2DM and assess immune infiltration levels.

Results: We identified 25 T2DM-PRGs that were significantly enriched in the

nuclear factor-kappa B signaling and prostate cancer pathways. The top five

differentially expressed prognostic T2DM-PRGs targeted by miRNAs were PTEN,

BRD4, HSP90AB1, VIM, and PKN2. The top five differentially expressed T2DM-

PRGs associated with transcription factors were HSP90AB1, VIM, PLCG1, SCAF11,

and PTEN. The genes PLCG1, PTEN, TP63, CHI3L1, SDHB, DPP8, BCL2,

SERPINB1, ACE2, DRD2, DDX58, and BTK showed excellent diagnostic

performance. The immune infiltration analysis revealed notable differences in

immune cells between T2DM and normal tissues in both datasets. These findings
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suggest that T2DM-PRGs play a crucial role in the development and progression

of T2DM and could be used as potential diagnostic biomarkers and therapeutic

targets.

Discussion: Investigating the mechanisms and biomarkers associated with

pyroptosis may offer valuable insights into the pathophysiology of T2DM and

lead to novel therapeutic approaches to treat the disease.
KEYWORDS
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1 Introduction

Approximately 285 million people worldwide have either type 1

or type 2 diabetes mellitus (DM), which constitutes a severe global

health problem owing to the high morbidity and increasing clinical

impact caused by these diseases. The notable health and economic

consequences of DM warrant the search for effective treatment

options (1). Specifically, type 2 diabetes mellitus (T2DM) is a

complex metabol ic disorder that is characterized by

hyperglycemia caused by insulin resistance and deficiency (2).

However, the biomolecules and signaling pathways involved in

the pathogenesis of the disease remain poorly understood. Owing

to the multiple processes and variables contributing to DM, it is

imperative that key biomolecules are discovered to act as

prospective therapeutic targets and enhance treatment strategies.

Pyroptosis is a newly discovered type of cell death process

that is associated with inflammatory reactions. Its mechanism of

action differs from that of apoptosis and necrosis in several ways.

Some notable features of pyroptosis include the proteolytic

activity of caspase-1, -4, -5, or -11 as well as the secretion of

proinflammatory cytokines, such as interleukin (IL)-1 and IL-18,

which can lead to the accumulation of immune cells (3, 4).

During pyroptosis, many pores develop on the cell membrane,

resulting in membrane destabilization and the subsequent

swelling and lysis of the cell due to the entry of ions and water

(5). Therefore, pyroptosis poses a dilemma for the innate

immune system. Additionally, although pyroptosis prevents

bacterial infiltration in multicellular organisms, excessive

activation of this cell death process may result in chronic

inflammation (6). This apparent contradiction can be

explained by the differences in the aggressive strategies utilized

and the specific cells affected by different pathogens (3). Further
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studies on pyroptosis may aid the discovery of novel therapies

for immunological disorders and other diseases.

Research has shown that pyroptosis contributes greatly to the

progression of DM and its complications (7–9). One study revealed

that hyperglycemia could increase the inflammatory response and

cellular pyroptosis in a mouse model of diabetes, thereby inducing

significant muscle cell loss and tissue remodeling (10). However, the

exact relationship between pyroptosis and the pathology of T2DM

remains to be fully elucidated.

Bioinformatics is an important computational tool for

evaluating gene expression data and identifying the target genes

and molecular mechanisms involved in various illnesses. With the

advancement and increasing utilization of high-throughput

technologies in the biomedical research fields, integrative

bioinformatics has become a promising approach for investigating

the mechanisms underlying T2DM and biomolecular targets for

its treatment.

Previous studies have used bioinformatics to identify potential

genes involved in the pathogenesis of T2DM (11–13). In this study,

we investigated the relationship between pyroptosis-related genes

(PRGs) and T2DM using various computational tools. We

identified 25 PRGs associated with T2DM (hereinafter T2DM-

PRGs) from the Gene Expression Omnibus (GEO) and PubMed

databases and conducted functional enrichment analysis of those

genes to further understand their roles in T2DM. The diagnostic

and predictive value of the T2DM-PRGs was evaluated using

receiver operating characteristic (ROC) curves, and their

association with immune infiltration in T2DM was analyzed. Our

exploration of pyroptosis in T2DM increases our understanding of

the pathogenesis of the disease and provides a new approach to

its treatment.
2 Materials and methods

2.1 Data preprocessing and differentially
expressed genes

The workflow for this study is presented in Figure 1. The

GEOquery package in R (14) was used to extract the gene

expression profile datasets GSE7014 (15) and GSE25724 (16) for
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T2DM from the GEO database (17). The 20 T2DM and six normal

(non-diabetic) tissue samples of the GSE7014 dataset were from

human (Homo sapiens) skeletal muscle biopsies, and their genomes

had been sequenced using the GPL570 [HG-U133_Plus_2]

Affymetrix Human Genome U133 Plus 2.0 Array platform. The

six T2DM and seven normal samples of the GSE25724 dataset were

human (Homo sapiens) pancreatic islet tissues, and the genes had

been sequenced using the GPL96 [HG-U133A] Affymetrix Human

Genome U133A Array platform. Both datasets had a common

sequencing type, sample grouping information, and species source,

with sufficient sample size and data quality. This was crucial for

our analysis.

The limma package in R (18) was used to perform a differential

analysis of the groupings on the basis of the gene expression levels

in the T2DM and normal tissues. This analysis allowed for the

identification of differentially expressed genes (DEGs) and their

effect on the development of T2DM. First, the samples were

normalized. We applied a set of filtering criteria to determine the

differentially expressed PRGs. Specifically, we defined upregulated

genes as those with a log fold change (FC) value of greater than 0.5
Frontiers in Endocrinology 03
and an adjusted p-value of less than 0.05. Conversely, genes with a

logFC of less than 0.5 and an adjusted p-value of less than 0.05 were

classified as downregulated genes.

Additionally, we conducted a comprehensive search for

pyroptosis-related studies on the PubMed database (19–33). The

retrieved data were then combined with information obtained from

the GeneCards database (34), AmiGO2 database (35), and

Molecular Signatures Database (MSigDB) (36). This helped us

identify a total of 356 PRGs (Supplementary Table 1).

Next, the genes related to T2DM were obtained by intersecting

the DEGs between the disease and normal groups in the two

datasets. Likewise, the T2DM-PRGs were identified by examining

the intersection of DEGs associated with both T2DM and PRGs.
2.2 Functional enrichment analysis

Functional and pathway enrichment analyses of the T2DM-

PRGs were conducted using Gene Ontology (GO) (37) and Kyoto

Encyclopedia of Genes and Genomes (KEGG) (38) database tools,
FIGURE 1

Diagram of the study workflow.
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respectively. GO analysis is a common method for studying the

function of genes, whereas KEGG provides information on

biological pathways, diseases, and drugs. The clusterProfiler

package in R (39) was used to analyze the data, with the

significance threshold set at a p-value of less than 0.05.
2.3 Gene set enrichment analysis

The gene set enrichment analysis (GSEA) method was used to

assess the distribution pattern of genes within a predetermined set

in the gene table. This was done by ranking the genes according to

their correlation with the genotype in order to determine their

impact on the phenotype (40). We acquired the gene sets

“c2.kegg.v7.2.symbols” and “c5.go.v7.2.symbols” from MSigDB

(39) and performed GSEA on them using the clusterProfiler

package in R (39), where a p-value of less than 0.05 was

considered statistically significant.
2.4 Construction of a protein–protein
interaction network

The STRING database (41) is used to search for known proteins

and protein–protein interactions (PPIs) and includes 2031 species,

1.38 million PPIs, and 9.6 million proteins. It contains outcomes

derived from experimental data, results compiled through text

mining of PubMed abstracts and other databases, and results

forecasted using bioinformatic techniques. Using the STRING

database, we constructed a PPI network for the DEGs associated

with T2DM-PRGs.
2.5 Construction of interaction networks
between T2DM-PRGs and related miRNAs,
transcription factors, and drugs

The NetworkAnalyst database (42) is a platform used for

visualizing gene expression profiles and meta-analytic data. It

supports various data types from 17 species, including single or

multiple gene or protein lists, single RNA sequencing or microarray

gene expression data tables, multiple gene expression tables,

network files, and other upload formats. In this study, we focused

on analyzing the control of gene expression by miRNAs and

transcription factors (TFs) at the post-transcriptional stage to

identify diseases associated with the target genes (43, 44). The

TarBase v8.0 (45) and ENCODE databases (46) were used to

identify miRNAs and TFs associated with the differentially

expressed T2DM-PRGs. We used the DrugBank v5.0 database

(47) to predict the correlation between the target genes and

drugs. The target DEG–miRNA, DEG–TF, and DEG–drug

networks of T2DM-PRGs were visualized using Cytoscape

software (48).
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2.6 Pyroptosis-related gene expression
analysis and ROC validation

We analyzed the expression levels of T2DM-PRGs in both the

disease and normal groups, using box plots to visualize the results.

ROC curves were used to evaluate the diagnostic and predictive

value of those genes, where an area under the ROC curve (AUC)

value of greater than 0.7 was deemed accurate for predictive

purpose. The AUC cutoff value of 0.7 is a commonly used

threshold for assessing the diagnostic accuracy of a test or model.

The AUC takes values from 0.5 to 1, where 0.5 indicates no

discriminatory ability and 1 indicates full discriminatory ability.

An AUC value of greater than 0.7 implies reasonable accuracy in

diagnosing a situation.
2.7 Analysis of the association
between immune infiltration and
pyroptosis-related genes

Most tumor microenvironments consist of a combination of

immune and inflammatory cells, tumor-associated fibroblasts,

interstitial tissue, and various cytokines and chemokines that

surround the tumor tissue. An essential part of disease research

and therapy prognosis prediction is the examination of immune cell

infiltration in the affected tissues.

As an extension of the GSEA method, single-sample GSEA

provides the degree of enrichment of the gene set in each sample

from the input data by defining the enrichment score (49). In this

study, the single-sample GSEA method was used to compare

immune infiltration between the diseased and normal tissues, to

examine the relative increase or decrease in the occurrence of two

diseases compared with the general population, and to assess the

relationship between T2DM-PRGs and immune cells. Pearson’s

correlation analysis was used to identify the association between the

T2DM-PRGs and the level of immune invasion.
2.8 Statistical analysis

We used R v4.1.2 software for all data processing and statistical

analyses. An independent Student’s t-test was applied to normally

distributed variables to compare two continuous variables, whereas

the Mann–Whitney U test (Wilcoxon rank sum) was used to assess

differences between non-normally distributed variables. The pROC

package in R was used to plot the ROC curve, and the AUC was

calculated to predict patient prognosis. Statistical significance was

defined as a p-value of less than 0.05.

Owing to the large number of statistical comparisons

performed, multiple hypothesis testing corrections were carried

out to control the probability of false discovery. Common

multiple testing correction methods include the Bonferroni and

Benjamini-Hochberg (also known as false discovery rate correction)
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procedures, which correct the original significance threshold on the

basis of the sample size and desired significance level to control the

overall probability of false discovery. In this study, the Bonferroni

method was used for multiple testing corrections. Cross-validation

and repeated experiments were used to assess the consistency and

stability of the statistical model across different datasets. These help

to determine whether the results are highly reliable and reduce the

likelihood of false positives. Setting the appropriate significance

level (e.g., 0.05 or 0.01) is an important factor in controlling the false

discovery rate. Tighter significance levels will reduce the likelihood

of false discoveries and lead to the omission of true differences.

Independent validation was performed for the important DEGs to

verify their expression or functional changes in different sample sets

using other experimental methods. Additionally, biological

functional analysis was conducted to further validate the

biological significance of the differences, to exclude false-

positive results.
3 Results

3.1 Differential expression analysis

First, normalization of the sample data in the two datasets was

performed, and box plots of the normalized data were constructed

(Figures 2A, B). To examine the impact of gene expression levels on

T2DM tissues relative to normal tissues, the differential analysis

package limma was used to generate DEGs for both datasets, which

were then visualized in volcano plots (Figures 3A, B). In the

GSE7014 dataset, 5684 DEGs were identified, 1807 of which were

upregulated and 3877 were downregulated. A classification

heatmap was generated (Figure 3C), where the DEGs were

classified into two groups: diabetic and non-diabetic. In the

GSE25724 dataset, 4560 DEGs were identified, 2373 of which

were upregulated and 2187 were downregulated. The heatmap of

the classified DEGs is shown in Figure 3D. By comparing the DEGs

from both datasets, we identified 1561 genes that are associated with

T2DM (Figure 4A). Moreover, by intersecting the PRGs with the

DEGs from both datasets, we identified 25 T2DM-associated DEGs

and PRGs in common (Figure 4B; Supplementary Table 1).
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3.2 Functional enrichment analysis of the
differentially expressed T2DM-PRGs

To examine the connections between the differentially

expressed T2DM-PRGs and various biological processes,

molecular functions, cellular components, biological pathways,

and diseases, GO functional enrichment analysis of those genes

was performed (Figure 5A). The differentially expressed T2DM-

PRGs were mainly involved in cytokine secretion, cell junction

assembly, regulation of innate immune response, positive regulation

of establishment of protein localization, cell junction organization,

stem cell population maintenance, calcium ion transport into the

cytosol, maintenance of cell number, viral life cycle, cytosolic

calcium ion transport, and other biological processes (Figure 5B).

They were enriched in cellular components such as the cell

projection membrane, COP9 signalosome, dendritic spine, neuron

spine, cell leading edge, myelin sheath, sperm part, brush border

membrane, sperm flagellum, and 9 + 2 motile cilium (Figure 5C).

With regard to molecular functions, they were in high abundance

for the GO terms binding to double-stranded RNA, glutamate

receptors, ubiquitin protein ligases, ubiquitin-like protein ligases,

and ionotropic glutamate receptors. They also showed affinity for

protein phosphatase 2A and p53 (Figure 5D). KEGG annotation of

the T2DM-PRGs revealed they were enriched in pathways related to

prostate cancer, nuclear factor-kappa B (NF-kB) signaling,

microRNAs in cancer, NOD-like receptor signaling, EGFR

tyrosine kinase inhibitor resistance, Epstein-Barr virus infection,

AGE-RAGE signaling in diabetic complications, Parkinson’s

disease, thyroid hormone signaling, and autophagy. These

pathways suggest the potential involvement of the T2DM-PRGs

in a diverse range of diseases, including cancer, inflammation, viral

infections, diabetic complications, and neurological disorders

(Figure 5E). Specifically, the T2DM-PRGs were highly enriched in

the prostate cancer (hsa05215) pathway (Figure 5F).
3.3 Gene set enrichment analysis

To investigate the impact of gene expression levels on T2DM,

GSEA was performed on the two GEO datasets to identify the

correlations between gene expression and the relevant biological
BA

FIGURE 2

Normalized box plots of the GSE7014 and GSE25724 dataset samples. (A, B) Blue represents the normal group, and pink represents the disease
group. The abscissa in the figure represents the sample number, and the ordinate represents the chip signal intensity. The signal intensity of each
sample in the two datasets was approximately at the median level, indicating a good degree of sample normalization.
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processes, cellular components, and molecular functions. The results

showed that in the GSE7014 dataset, the genes mainly affected

adhesion molecule binding, actin cytoskeletons, muscle system

processes, actin binding, ATPase activity, the regulation of actin

filament-based processes, muscle tissue development, muscle organ

development, muscle cell differentiation, muscle contraction, and other

biological functions (Figure 6A). The genes in the GSE25724 dataset

primarily impacted critical biological functions, such as transitions

between cell cycle phases, cell division, breakdown of cellular nitrogen

compounds, establishment of protein localization within organelles and

the mitochondrial envelope, breakdown of modification-dependent

macromolecules, restraining of the cell cycle, metabolism of

nucleobase-containing small molecules, breakdown of organic cyclic

compounds, and biosynthesis of organophosphates (Figure 6B).
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With regard to the biological pathways affected by gene

expression in both datasets, our findings indicated that the genes

in the GSE7014 dataset primarily influenced biologically pertinent

ones, including those related to focal adhesion; dilated

cardiomyopathy; hypertrophic cardiomyopathy; valine, leucine,

and isoleucine degradation; the citrate cycle; the TCA cycle;

calcium signaling; extracellular matrix (ECM)–receptor

interaction; viral myocarditis; fatty acid metabolism; and tight

junctions (Figures 6C–E). The biological pathways that were

mainly controlled by genes in the GSE25724 dataset were those

related to Huntington’s disease, Alzheimer’s disease, the cell cycle,

the spliceosome, ubiquitin-mediated proteolysis, oxidative

phosphorylation, Parkinson’s disease, the proteasome, the citrate

cycle, the TCA cycle, and protein export (Figures 6F–H).
B

C D

A

FIGURE 3

Differentially expressed genes (DEGs). (A, B) Volcano plot of T2DM-related DEGs in the GSE7014 and GSE25724 datasets. The abscissa is the log2
fold change, the ordinate is –log10 (adjusted p-value), red nodes represent upregulated DEGs, blue nodes represent downregulated DEGs, and grey
nodes represent genes that are not significantly differentially expressed. (C, D) Heatmaps of T2DM-related DEGs in the GSE7014 and GSE25724
datasets. The horizontal axis indicates the patient ID, the vertical axis indicates the respective DEGs, red represents high gene expression, blue
represents low gene expression, pink bars indicate normal tissue, and blue bars indicate T2DM tissue.
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3.4 Construction of the protein–protein
interaction network

In this study, the T2DM-PRGs in the STRING database were

used to construct a PPI network of the differentially expressed

T2DM-PRGs, using the igraph and ggraph packages in R

(Figures 7A, B). Cytoscape software was used for visualization of

the network. There were 30 T2DM-PRG-associated DEGs and 29

PPI pairs in the generated PPI network, among which DEGs related

to other T2DM-PRGs interacted with one another. The five genes

with the strongest cooperative relationships were PTEN, PLCG1,

SIRT1, HSP90AB1, and TP63.
3.5 Network analysis of T2DM-PRGs and
related miRNAs, transcription factors,
and drugs

We constructed a T2DM-PRG–miRNA interaction network

comprising 25 genes and 512 miRNAs (Figure 8A). The top five

differentially expressed T2DM-PRGs related to prognosis were

PTEN (targeted by 128 miRNAs), BRD4 (targeted by 118

miRNAs), HSP90AB1 (targeted by 103 miRNAs), VIM (targeted

by 96 miRNAs), and PKN2 (targeted by 91 miRNAs).

The T2DM-PRG–TF interaction network comprised 21 genes

and 274 TFs (Figure 8B). The top five differentially expressed

T2DM-PRGs were HSP90AB1 (regulated by 151 TFs), VIM

(regulated by 75 TFs), PLCG1 and SCAF11 (regulated by 54 TFs

each), and PTEN (regulated by 44 TFs). The T2DM-PRG–drug

interaction network included seven networks and seven genes, of

which the first three networks had 92, 44, and 15 drug effects,

respectively (Figures 9A–C).
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3.6 T2DM-PRG expression analysis and
ROC validation

Box plots of the expression levels of the T2DM-PRGs in the

GSE7014 and GSE25724 datasets were constructed (Figures 10A,

B). In the GSE7014 dataset, the expression levels of BCL2, CHI3L1,

DDX58, DP8, PKN2, PRF1, PLCG1, PTEN, SCAF11, SDHB,

SERPINB1, TP63, UBR2, and BTK were significantly different (p <

0.05). In the GSE25724 dataset, the genes with a statistically

significant difference in expression level were EACE2, BRD4, BTK,

CHI3L1, DRD2, DDX58, DPP8, ELAVL1, HSP90AB1, METTL3,

PRF1, PLCG1, PTEN, SDHB, SEPRINB1, TP63, VIM, NLRP1, and

PRKACA (p < 0.05).

In the GSE7014 dataset, the genes that exhibited diagnostic

value were ACE2, BCL2, BTKCHI3L1, DDX58, DPP8, DRD2, PKN2,

PLCG1, PTEN, SCAF11, SDHB, SERPINB1, and TP63 (AUC > 0.7).

In the GSE25724 dataset, the genes with diagnostic value were

TP63, CHI3L1, SDHB, DPP8, BCL2, TRIM31,METTL3, SEPRINB1,

ACE2, DRD2, ELAVL1, UBR2, PRF1, PLCG1, PTEN, DDX58, VIM,

BTK, HSP90AB1, NLRP1, and PRKACA (AUC > 0.7) (Figure 11).
3.7 Immune infiltration analysis

The permeability of T2DM and normal tissues to immune cells

was compared using the single-sample GSEA method. In the

GSE7014 dataset, 28 distinct types of immune cells exhibited

significant differences between T2DM and normal tissue in

relation to their association with T2DM-PRGs. The genes and

their associated immune cells were ACE2 and gamma delta T

cells; BCL2 and effector memory CD4 T cells; BRD4 and activated

CD4 T cells; CHI3L1 and activated dendritic cells, central memory
BA

FIGURE 4

Venn diagrams of differentially expressed genes (DEGs). (A) The blue circle represents the DEGs of GSE7014, and the pink circle represents the DEGs
of GSE25724. The Venn diagram was constructed with a log fold change > 0.5 and p < 0.05 as the thresholds, and 1561 T2DM-related genes were
obtained in the overlapping region. (B) The blue circle indicates DEGs in GSE7014, the pink circle indicates DEGs in GSE25724, and the pistachio
circle indicates genes related to pyroptosis. Twenty-five T2DM-associated DEGs in common with pyroptosis-related genes were obtained: SCAF11,
PKN2, ELAVL1, BRD4, UBR2, PRF1, PLCG1, PTEN, TP63, CHI3L1, SDHB, DPP8, BCL2, TRIM31, METTL3, SERPINB1, ACE2, FOXO1, DRD2, DDX58, VIM,
BTK, HSP90AB1, NLRP1, and PRKACA.
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CD4 T cells, and central memory CD8 T cells; DPP8 and central

memory CD4 T cells; DDX58 and effector memory CD4 T cells and

effector memory CD8 T cells; ELAVL1 and central memory CD8 T

cells; FOXO1 and central memory CD8 T cells; HSP90AB1 and

central memory CD4 T cells, immature B cells, immature dendritic

cells, mast cells, and memory B cells; METTL3 and central memory

CD4 T cells, monocytes, natural killer cells, and neutrophils; PKN2
Frontiers in Endocrinology 08
and central memory CD4 T cells and plasmacytoid dendritic cells;

PLCG1 and activated dendritic cells; PRF1 and effector memory

CD4 T cells; PTEN and central memory CD4 T cells and regulatory

T cells; SCAF11 and natural killer cells; SERPINB1 and neutrophils;

SDHB and central memory CD4 T cells, type 1 T helper cells, and

type 2 T helper cells; TRIM31 and CD56 bright natural killer cells;

TP63 and effector memory CD4 T cells; VIM and activated CD4 T
B

C D

E F

A

FIGURE 5

GO and KEGG enrichment analyses. (A) GO enrichment analysis divides gene functions into three categories: biological processes (BP), cellular
components (CC), and molecular functions (MF). The ordinate indicates the –log(adjusted p-value), the abscissa represents GO terms (enriched
items), and the bar colors indicate the activation (red) or inhibition (blue) of GO terms. (B, C) The first 15 items of the BP and CC categories are
displayed. Blue nodes represent the items, red nodes represent the molecules, and lines represent the relationships between the items and
molecules. Lines indicate that the corresponding molecules have annotations for the corresponding items. The node size corresponds to the total
number of intersections of molecules within the ID entry for the molecules entered. (D) The seven items of the MF category are displayed; blue
nodes represent the items, red nodes represent the molecules, and lines represent the relationship between the items and molecules. Lines indicate
that the corresponding molecule has an annotation for the corresponding item. The node size corresponds to the total number of intersections of
molecules within the ID entry for the molecules entered. (E) KEGG pathway enrichment analysis. The abscissa indicates the gene ratio, the ordinate
indicates the pathway name, and the height of the column represents the size of the –log10(p-value); the higher the ID, the higher the reliability.
(F) Significantly enriched KEGG pathways.
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cells; and UBR2 and activated CD4 T cells and type 2 T helper cells

(r > 0.5, p < 0.01) (Figure 12A).

In the GSE7014 dataset, we observed 28 distinct types of

immune cells that exhibited significant differences between the

T2DM and normal tissues in relation to their association with
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T2DM-PRGs. The genes and immune cells that showed significant

positive correlations (r > 0.5, p < 0.01) were PKN2 and activated

CD4 T cells and central memory CD4 T cells; ELAVL1 and

immature dendritic cells; BRD4 and activated B cells, activated

dendritic cells, effector memory CD8 T cells, eosinophils,
B

C D E

F G H

A

FIGURE 6

GSEA–GO and –KEGG analyses of GSE7014 and GSE25724 data. (A, B) GSEA–GO analysis of GSE7014 (A) and GSE25724 (B) data. In the
distribution curves, the y-axis represents the gene set, the x-axis is the log fold change (FC) distribution of the core molecules in each gene set,
and the shape of the peak represents the logFC of the core molecules in the gene set. The curve peak height corresponds to the position where
the logFC of most molecules in this group is concentrated. If the normalized enrichment score (NES) of the corresponding gene set is negative,
the peak of the gene set is generally to the left of zero; if the NES of the corresponding gene set is positive, the peak of the gene set is generally
to the right of zero. (C–E) GSEA–KEGG analysis of GSE7014 data showing that the enriched pathways were for focal adhesion; calcium signaling;
dilated cardiomyopathy; ECM–receptor interaction; hypertrophic cardiomyopathy; viral myocarditis; valine, leucine, and isoleucine degradation;
fatty acid metabolism; citrate cycle; TCA cycle; and tight junctions. (F–H) GSEA-KEGG analysis of GSE25724 data showing that the enriched
pathways are those for Huntington’s disease, Alzheimer’s disease, the cell cycle, the spliceosome, ubiquitin-mediated proteolysis, oxidative
phosphorylation, and Parkinson’s disease.
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macrophages, myeloid-derived suppressor cells (MDSCs), T

follicular helper cells, type 1 T helper cells, and type 2 T helper

cells; UBR2 and effector memory CD4 T cells, gamma delta T cells,

and immature dendritic cells; PRF1 and activated CD8 T cells,

CD56 dim natural killer cells, eosinophils, and MDSCs; PTEN and

activated CD4 T cells; CHI3L1 and effector memory CD4 T cells,

immature dendritic cells, plasmacytoid dendritic cells, and

regulatory T cells; DPP8 and effector memory CD4 T cells and

immature dendritic cells; TRIM31 and activated B cells, activated

dendritic cells, CD56 dim natural killer cells, eosinophils, mast cells,

MDSCs, natural killer T cells, T follicular helper cells, and type 1 T

helper cells; SERPINB1 and activated CD4 T cells; ACE2 and

eosinophils; DRD2 and activated B cells, CD56 dim natural killer

cells, eosinophils, macrophages, MDSCs, and T follicular helper

cells; DDX58 and activated B cells, activated dendritic cells,

macrophages, MDSCs, and neutrophils; BTK and activated B

cells, eosinophils, and neutrophils; HSP90AB1 and plasmacytoid

dendritic cells; NLRP1 and effector memory CD4 T cells and
Frontiers in Endocrinology 10
gamma delta T cel l s ; and PRKACA and act ivated B

cells (Figure 12B).
4 Discussion

DM, a chronic disease that affects the ability of the body to

control blood sugar levels and results in a range of micro- and

macrovascular complications, has reached epidemic levels

worldwide (50). Pyroptosis, a type of programmed cell death, is a

critical process in the pathophysiology of DM and its related

complications. Although the activation mechanism is unclear, our

findings suggest that molecules involved in the pyroptosis and

inflammasome pathways could be key in treating DM and its

complications by virtue of them being targets of future drugs

developed to inhibit these pathways. Necrosis is responsible for

the death of most pathophysiologically important cells, whereas

apoptosis maintains regular metabolism, contributing to host
BA

FIGURE 7

Protein–protein interaction (PPI) network. (A) PPI network of T2DM-associated pyroptosis-related genes (T2DM-PRGs), constructed using the
STRING database. Each network node represents a protein, and the lines represent protein–protein associations. (B) R software-generated diagram
of the PPI network of the protein interactions of T2DM-PRGs from the table provided by the STRING database. The 14 genes with the highest
number of interactions are shown.
BA

FIGURE 8

Correlations between T2DM-associated pyroptosis-related genes (T2DM-PRGs) and miRNAs and transcription factors (TFs). (A) T2DM-PRG–miRNA
network. The blue nodes represent miRNAs, and the pink nodes represent T2DM-PRGs. (B) T2DM-PRG–TF network. The green nodes represent TFs
and the purple nodes represent T2DM-PRGs.
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survival and growth as part of the body’s defense against

microbial diseases (51–54). Necrosis is caused by rupture of the

plasma membrane, which leads to the release of damage-

associated molecular patterns and the subsequent activation of

necroinflammation. Controlled necrosis includes necroptosis,

pyroptosis, and ferroptosis. In this study, we focused on the

pyroptosis pathway and its relationship with T2DM.

The pyroptosis signaling pathways are classified into classical

and non-classical types (55). In the classical signaling pathway,

inflammasomes composed of nucleotide-binding oligomerization

domain, leucine rich repeat and pyrin domain containing (NLRP) 1,

NLRP3, NLR family CARD domain containing 4 (NLRC4), absent

in melanoma 2 (AIM2), and other proteins activate pyroptosis via

membrane receptors that recognize pathogen- or damage-

associated molecular patterns. The inflammasome complex

controls the activation of caspase-1, thereby promoting the latter’s

proteolytic cleavage of gasdermin D (GSDMD). Upon its cleavage,

the activated GSDMD molecules release their N-terminal domains,

the aggregation of which creates pores in the cell membrane, leading

to pyroptotic cell death. The non-classical signaling pathway

involves the cleavage of GSDMD by caspase-4, -5, or -11 (56).

Initially, it was believed that T cell-mediated adaptive immunity was
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involved in the development of T1DM. However, recent studies

have shown that the innate immune system, which is controlled by

Toll-like receptors, is integral to the onset and pathogenesis of

T1DM (57). However, despite the data obtained from mouse

models demonstrating the significance of pyroptosis in innate

immunity, there is a lack of research on whether pyroptosis

plays a role in the etiology and progression of DM and its

associated complications.

The T2DM-PRGs identified in the PPI network have similar

features function and exhibit high clinical diagnostic value. The top

five genes (PTEN, PLCG1, SIRT1, HSP90AB1, and TP63) may be

considered essential target genes and can be linked to the

pathogenesis of T2DM; future studies should focus on confirming

this. The five most prominent differentially expressed prognostic

T2DM-PRGs targeted by miRNAs were BRD4, HSP90AB1, PTEN,

PKN2, and VIM. The top five differentially expressed T2DM-PRGs

regulated by TFs were HSP90AB1, VIM, PLCG1, SCAF11, and

PTEN. Phosphatase and tensin homolog (PTEN) activates the

protein kinase B/mammalian target of rapamycin (AKT/mTOR)

pathway to induce autophagy, which plays a crucial role in

regulating cellular energy balance. It has been previously revealed

that a decrease in circulating miRNAs indicates an increase in the
B

C

A

FIGURE 9

Correlation between T2DM-associated pyroptosis-related genes (T2DM-PRGs) and drugs. (A–C) The top three networks with the highest effect of
drugs on T2DM-PRGs are displayed. The blue nodes represent drugs, and the pink nodes represent T2DM-PRGs.
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transcript expression of their target genes, such as PTEN, which in

turn can inhibit cell growth pathways, activate cell survival

pathways, and promote healthy aging (58).

A previous study revealed significant differences in HSP90AB1

mRNA expression levels between squamous cell carcinomas and

healthy control tissue (59). The T2DM-PRGs–drug interaction

network indicated that targeting of the dopamine receptor D2

(DRD2) gene could inhibit tumors, but the effect on T2DM is

unknown. Adrenocortical adenomas that cause Cushing’s

syndrome develop as a result of mutations in PRKACA, the gene

encoding protein kinase cAMP-activated catalytic subunit alpha

(PKA C-alpha) (60). A few studies have reported PRKACA-related

drug targets that were not previously associated with

hypoglycemic drugs.

Our KEGG analysis identified NF-kB signaling pathways as

being significant in prostate cancer. We created a map of the KEGG

prostate cancer pathway (entry hsa05215) and identified controlled

prote ins , finding drugs that could potent ia l ly affect

phosphatidylinositol 3-kinase (PI3K; insulin sensitivity), glycogen

synthase kinase-3 (GSK3; glycogenesis), and AKT (insulin

sensitivity). Those drugs may address DM caused by insulin

resistance, as shown by earlier research on PI3K, GSK3, and AKT

(KEGG insulin resistance pathway; entry hsa04931) (61). In long-

term DM, insulin-like growth factor 1 receptor (IGF-1R) is reduced,

and elevated IGF-1 levels correlate with increased prostate cancer

risk (62–64). A wide variety of human cancers have been linked to

the overexpression of insulin receptors and IGF-1R resulting from
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transcriptional dysregulation (65–68). A previous study has

demonstrated that the NF-kB, PI3K–AKT, and mTOR signaling

pathways are overrepresented in DM-induced erectile dysfunction

(69). Through our investigation of the T2DM-related genes using

GSEA, we discovered active pathways in T2DM, including those of

focal adhesion, calcium signaling, the citrate cycle, axon guidance,

and fatty acid metabolism. Previous research indicates that DM and

diabetic peripheral neuropathy might be highly influenced by

immune, inflammatory, and focal adhesion pathways, and DM

could also be greatly affected by cancer, ECM–receptor interaction,

and immune-related pathways (70). In one study, circular RNAs in

peripheral blood mononuclear cells of patients with diabetic

retinopathy were found to be enriched in ECM–receptor

interaction and focal adhesion pathways, significantly

contributing to the migration of retinal vascular endothelial cells

(71). This is consistent with other studies showing that

mitochondrial oxidative phosphorylation is associated with

peripheral nerve lesions in patients with DM.

Through functional enrichment and immune infiltration

analyses, we found that the differentially expressed T2DM-PRGs

were mainly enriched in biological processes and pathways related

to inflammation, the immune response, and cell signal

transduction. This not only emphasizes the close relationship

between cell death and the immune system but also provides new

clues for studying the immune mechanism of T2DM. Additionally,

it has been demonstrated that pyroptosis is related to the

immunological activation of the tumor microenvironment (72).
B

A

FIGURE 10

Expression of T2DM-associated pyroptosis-related genes (T2DM-PRGs). (A) Expression levels of the 25 T2DM-PRGs in the GSE7014 dataset. Red represents
the normal group, blue represents the disease group, the abscissa represents the T2DM-PRGs, and the ordinate represents the gene expression value (p >
0.05). (B) Expression levels of the 25 T2DM-PRGs in the GSE25724 dataset. Red represents the normal group, blue represents the disease group, the abscissa
represents the T2DM-PRGs, and the ordinate represents the gene expression value (p < 0.05; *, p<0.05; **, p<0.01; ***, p<0.001; ns, not significant).
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In another study, a notable difference in the number of immature

dendritic cells was found between diabetic and normal mice, a

finding that may be due to the induction and maintenance of

allogeneic tolerance by dendritic cells, which are the key regulators

of the immune system. Previous research suggests that immature

dendritic cells can be modified to prevent islet xenograft rejection

(73). In stable dendritic cells, CD4+ memory T cell responses are

suppressed (74) via the blocking of co-stimulatory molecules (75).

Diabetic and healthy cells show considerable differences in effector

memory CD4+ T cells, with a higher percentage observed in T2DM

patients without cardiovascular disease (76). Immune infiltration

analysis further supported this finding, showing a notable difference

in the infiltration of various immune cells in T2DM tissue, which

was related to T2DM-PRGs. For example, the infiltration of natural

killer cells into T2DM tissue was significantly increased. This may
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be related to immunoregulation and inflammatory reactions

associated with T2DM. The numbers of central memory CD4+ T

cells and effector memory CD4+ T cells were substantially increased

in diabetic tissue, suggesting that T cells play an important role in

the immune response against T2DM. Activated dendritic cells and

plasmacytoid dendritic cells were also significantly increased in the

diabetic tissue, which may be related to the activation of immune

system and inflammation.

Furthermore, NLRP1 and PRKACA showed substantial

differences in their expression levels and diagnostic value. Notably,

PLCG1 and DPP8 showed excellent discriminative abilities in the

prediction of diabetes. The precise relationship between 1-

phosphatidylinositol 4,5-bisphosphate phosphodiesterase gamma-1

(PLCG1) and dipeptidyl peptidase 8 (DPP8) and the underlying

mechanisms of action in the development of T2DM have yet to be
B C

D E F

G

A

FIGURE 11

Receiver operating characteristic (ROC) curve prediction of T2DM-associated pyroptosis-related genes (T2DM-PRGs) in the GSE7014 and
GSE25724 datasets. (A–C) ROC curves for T2DM-PRGs in the GSE7014 dataset (AUC > 0.7). (D–G) ROC curves for T2DM-PRGs in the GSE25724
dataset (AUC > 0.7).
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explored. However, according to the results of our study, low PLCG1

and high DPP8 expression levels were associated with worse survival

outcomes, which could be due to increased pyroptotic activity.

PLCG1 is a member of the phosphatidylinositol-specific

phospholipase C family, a group of membrane-associated enzymes

that cleave phosphatidylinositol 4,5-bisphosphate into diacylglycerol

and inositol 1,4,5-trisphosphate and can cause cell death and

inflammatory responses by releasing intracellular calcium reserves

(77). PLCG1 is involved in signal transduction pathways triggered by
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receptor tyrosine kinases, regulating GSDMD activity and

promoting apoptosis. Low PLCG1 levels disrupt GSDMD-induced

pyroptosis (78), whereas high levels have been observed in diabetic

rats and high glucose-treated retinal endothelial cells (79). However,

one study suggested that DPP8, a cytosolic protease linked to cancer

biology and N-terminal dipeptidyl peptidases, is a potential

therapeutic target for T2DM, albeit information on its 3D

structure or binding mechanisms was lacking (80). Although the

physiological roles of these genes are not fully understood, we
B

A

FIGURE 12

Analysis of immune infiltration. (A) Differences in the enrichment abundance of 28 immune cells in the GSE7014 dataset. Blue indicates a negative
correlation with immune cells, red indicates a positive correlation with immune cells, the horizontal axis indicates T2DM-associated pyroptosis-
related genes (T2DM-PRGs), and the vertical axis indicates immune cells. (B) Differences in the enrichment abundance of 28 immune cells in the
GSE25724 dataset. Blue indicates a negative correlation with immune cells, red indicates a positive correlation with immune cells, the horizontal axis
indicates T2DM-PRGs, and the vertical axis indicates immune cells. *, p<0.05; **, p<0.01.
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speculate that they may be involved in the intricate cellular stress

process in T2DM. Considering the aforementioned factors, it is

possible that these genes have a significant impact on DM and can

serve as diagnostic biomarkers; further analyses are required to

assess their effects.

This study had some limitations. First, microarray samples

collected at various stages of T2DM are required to fully

understand the molecular mechanisms underlying the occurrence

and development of the disease. Additionally, the biomarkers and

metabolic pathways identified using bioinformatic methods need to

be confirmed with further experimental studies. Second, we used

the limma and clusterProfiler packages and GSEA for differential

expression analysis, functional enrichment analysis, and GSEA,

respectively. However, these methods have certain limitations. For

example, differential expression analysis can only provide

information regarding the differences in expression level of the

genes and cannot infer their specific functions and mechanisms. By

contrast, functional enrichment analysis can only provide the

biological function associations of the gene sets, and there may be

omissions and misinterpretations of the available information.

Third, the sample sources were limited to human skeletal muscle

biopsies and pancreatic islet tissue samples, which may not cover all

the tissues and cell types associated with T2DM. Subsequent

investigations are required to determine whether these findings

can be applied to other tissues. Fourth, we constructed PPI

networks and gene–miRNA, gene–TF, and gene–drug interaction

networks to explore the regulatory and molecular associations of

T2DM-PRGs. However, the results of these network analyses were

based only on known interactions, and there may be unknown

regulations and associations. Additionally, network analyses may

have errors and biases. Finally, the relationship between pyroptosis

and genetic characteristics requires further exploration. Therefore,

further independent studies are required to confirm and strengthen

the translation of our study findings to therapeutic applications.

In summary, our comprehensive bioinformatics analysis of

T2DM datasets (GSE7014 and GSE25724) identified 25

differentially expressed T2DM-PRGs and revealed a connection

between pyroptosis-related pathways and T2DM. Our findings

provide potential therapeutic targets and diagnostic biomarkers that

will help improve the management and treatment of T2DM patients.

Thus, our study has positive clinical significance and scientific value

in the field of T2DM. Additionally, our findings strengthen our

understanding of the relationship between pyroptosis and T2DM,

providing a new direction for future research.
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