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Causal relationship between
circulating immune cells and the
risk of type 2 diabetes: a
Mendelian randomization study

Jin Li , Qingmin Niu, Aiwei Wu, Yuchu Zhang, Liquan Hong*

and Hu Wang*

Key Laboratory of Aging and Cancer Biology of Zhejiang Province, School of Basic Medical Sciences,
The Third People’s Hospital of Deqing, Deqing Hospital of Hangzhou Normal University, Hangzhou
Normal University, Hangzhou, China
Objectives: Though type 2 diabetes (T2D) has been known as a metabolic

disease caused by multiple factors, the etiology remains insufficiently

understood. Here, we aimed to figure out whether circulating immune cell

profiles causally impact T2D liability.

Methods: We applied one genome-wide association study (GWAS) summary

statistics of blood traits in 563,085 participants from the Blood Cell Consortium

and another GWAS of flow cytometric profile of lymphocyte subsets comprising

3,757 Sardinians to identify genetically predicted blood immune cells. We also

obtained GWAS summary statistics in 898,130 individuals from the DIAGRAM

Consortium to evaluate genetically predicted T2D. We primarily used inverse

variance weighted (IVW) and weighted median methods to perform Mendelian

randomization analyses and sensitivity analyses to evaluate heterogeneity and

pleiotropy.

Results: For circulating blood leukocyte and its subpopulations, the increase of

genetically predicted circulating monocyte count was causally correlated with a

higher risk of T2D [odds ratio (OR) = 1.06, 95% confidence interval (CI) = 1.02–

1.10, p = 0.0048]. For lymphocyte subsets, CD8+ T cell and CD4+ CD8dim T cell

count were identified with causal effect on T2D susceptibility (CD8+ T cell: OR =

1.09, 95% CI = 1.03–1.17, p = 0.0053; CD4+ CD8dim T cell: OR = 1.04, 95% CI =

1.01–1.08, p = 0.0070). No pleiotropy was determined.

Conclusions: These findings demonstrated that higher circulatingmonocyte and

T-lymphocyte subpopulation predicted increased T2D susceptibility, which

confirmed the immunity predisposition for T2D. Our results may have the

potential to provide new therapeutic targets for the diagnosis and treatment of

T2D.
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1 Introduction

Type 2 diabetes (T2D) is a major cause of disability and death

globally, with approximately half of these deaths occurring before

the age of 70 (WHO). T2D and its complications continue to pose a

growing burden worldwide (1). While T2D was traditionally

considered a metabolic disease resulting from insulin resistance

and insufficient insulin production, recent genetic, epidemiological,

and cytokine profiling studies have supported the idea that chronic

low-grade activation of the immune system may also play a role in

the development of T2D (2–7). Inflammatory immune cells can

infiltrate adipose tissue and release inflammatory cytokines,

contributing to systemic inflammation and worsening T2D (8).

Therefore, T2D has been suggested to be categorized into severe

insulin-deficient diabetes (SIDD), severe insulin-resistant diabetes

(SIRD), mild obesity-related diabetes (MOD), and mild age-related

diabetes (MARD) (9). Higher leukocyte count, including monocyte

and CD4+ T cell count, has been found in SIRD and MOD patients

compared to SIDD and MARD patients, suggesting that specific

dysregulation of immune cells may closely relate to insulin

resistance in these groups (10). However, much of the evidence to

date is based on observational studies that may be limited by

confounding factors and reverse causality. Few studies have

evaluated the causal relationship between circulating immune cell

count and T2D onset.

Mendelian randomization (MR) was initially developed to be an

alternative option for randomized controlled trials (RCTs),

providing reliable causal evidence between exposures and

outcomes through genetic variants (11). Since genetic variants are

randomly assigned at conception prior to disease onset, MR has

been an efficient tool to identify the causal relationship independent

of confounding factors and avoid reverse causality (12). Several

previous MR analyses have identified that risk factors such as

percentage of body fat, systolic blood pressure, and iron status

may predict T2D susceptibility (13, 14). In the present study, we

determined the pathophysiological role of the immune system in
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the development of T2D, specifically the subtypes of leukocyte,

using the recent large-scale genome-wide association study

(GWAS) summary statistics on blood traits (15) and another

GWAS including specific immune cell profiling of European

ancestry by flow cytometry (16). Our aim was to determine

whether there is a causal link between circulating immune cells

and T2D incidence. Understanding the risk factors associated with

T2D progression will aid in the development of novel therapies to

address this growing public health concern.
2 Materials and methods

2.1 Study design

We systematically determined the causal effects of peripheral

blood immune cells or lymphocyte subtypes on the risk of T2D

using a two-sample MR study. There are three fundamental

assumptions that should be followed in the MR study (17). First,

the genetic variants should be closely associated with exposure.

Second, they should be independent of potential confounders. Last

but not least, these genetic instruments should affect the outcome

only by exposure. The overall design is shown in Figure 1.
2.2 Data sources for exposure
and outcome

For the exposure instrument, we used the summary statistics

from the recent large-scale GWAS on blood cell traits from Blood

Cell Consortium (BCX), which includes 563,085 European ancestry

participants (15). Genetic variants associated with the level of

circulating white blood cell, lymphocyte, monocyte, neutrophil,

eosinophil, and basophil count were obtained from this GWAS.

Flow cytometric profile of lymphocyte subsets including HLA DR+

natural killer (NK) cells, NKT cells, CD4 regulatory T cells (Tregs),
FIGURE 1

Overview of the overall MR design. Assumption 1, instrument variables are robustly related to exposure; Assumption 2, instrument variables are not
related to confounders; Assumption 3, instrument variables are related to outcome only through exposure. SNPs, single-nucleotide polymorphisms;
LD, linkage disequilibrium; IVW, inverse variance weighted; LOO, leave-one-out; MR, Mendelian randomization.
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CD4+ CD8dim T cells, CD8+ T cells, and B cells were derived from the

recent GWAS summary statistics including 3,757 Sardinians (16).

Outcome data for T2D were taken from large-scale case–control

GWAS statistics from the DIAGRAM Consortium involving 74,124

T2D cases and 824,006 controls of European ancestry (18). The

average age of individuals in this study was 55 years, with 51.8% being

male. The Haplotype Reference Consortium (HRC) reference panel

was applied during imputation. The data are publicly available at the

website: http://diagram-consortium.org. Detailed information is

shown in Supplementary Table 1.
2.3 Instrument selection

Considering the large number of single-nucleotide

polymorphisms (SNPs) achieving genome-wide significance (p < 5

× 10−8) for the blood cell traits from BCX, we used a more stringent

association threshold (p < 5 × 10−9) to select genetic instrumental

variables (IVs) (19). To obtain independent IVs, we performed

clumping (R2 < 0.001 within a 1,000-kb distance) based on the

linkage disequilibrium (LD) reference panel of the 1000 Genomes

Project. Referring to the relatively modest-scale GWAS regarding

lymphocyte subpopulations, we applied a p-value cutoff of 5 × 10−8

and a more relaxed clumping threshold (R2 < 0.1 within a 500-kb

distance) (20). Additionally, to avoid bias brought by weak

instruments, we considered IVs with F statistics >10 as strong

instruments and reserved them for the following analysis. We then

extracted IVs from outcome T2D summary statistics and removed

those harboring potential pleiotropic effects on T2D (p < 10−5) as

previously reported (21). We harmonized the exposure and outcome

SNPs to ensure that effect estimates were aligned for the same effect

allele. Palindromic SNPs with intermediate effect allele frequencies

(EAFs > 0.42) or SNPs with incompatible alleles were discarded (20).
2.4 Statistical analysis

As our primary analysis, we used the random-effects inverse

variance weighted (IVW) and weighted median (WM) methods,

providing an estimate of the effect of the exposure on the outcome

when MR assumptions are valid. For a single genetic variant

identified, we performed a Wald ratio estimate in our MR studies.

As a secondary sensitivity analysis, we applied Cochran’s Q test (p <

0.05) to estimate residual heterogeneity for the IVW model and the

MR-Egger intercept test (p < 0.05) to indicate potential pleiotropy on

causal estimates. We also performed a radial MR test to identify

pleiotropic outliers (22). We presented SNPs that contribute robustly

to heterogeneity. We then removed these outliers and reanalyzed

these data. Finally, we made a leave-one-out (LOO) analysis to find

out whether an SNP could drive the bias of causal estimate. Previous

MR analyses have confirmed 34 risk factors (body fat percentage,

systolic blood pressure, birthweight, total and HDL cholesterol, 25-

hydroxyvitamin D, resting heart rate, age at menarche, etc.) are

causally related to T2D (13). We searched the Phenoscanner V2

website (http://www.phenoscanner.medschl.cam.ac.uk/) to find out

SNPs showing suggestive association (p < 10−5) with those risk
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factors. Then, we repeated the IVW analysis after removing these

SNPs. Since there are multiple tests in this study, we adopted a

Bonferroni-corrected significant threshold of 0.05/6. Analyses were

implemented by the package TwoSampleMR (version 0.5.6) and

RadialMR (version 1.0) in R (version 3.4).
3 Results

3.1 Causal estimates between peripheral
immune cells and T2D

After the selection and harmonization of IVs, we utilized 361

SNPs for monocyte cell count, 327 SNPs for white blood cell (WBC)

count, 334 SNPs for lymphocyte cell count, 247 SNPs for neutrophil

cell count, 296 SNPs for eosinophil cell count, and 104 SNPs for

basophil cell count for MR analysis. All SNPs had F statistics above

10, demonstrating their suitability as strong instruments. The

harmonized data are presented in Supplementary Tables 2–7.

The causal effect estimates of peripheral immune cell count on

T2D susceptibility are summarized in Figure 2. Notably, our results

demonstrated a strong causal association between a higher liability

of T2D and an increased level of circulating monocyte cell count

using IVW analysis [odds ratio (OR) = 1.06, 95% confidence

interval (CI) = 1.02–1.10, p = 0.0048], which remained significant

even after Bonferroni correction. Similar positive trends with

weighted median (OR = 1.04, 95% CI = 0.98–1.10, p = 0.1695)

methods were observed. WBC count might have a positive causal

relationship with the risk of T2D using either IVW (OR = 1.08, 95%

CI = 1.02–1.14, p = 0.0174) or WM (OR = 1.08, 95% CI = 1.01–1.16,

p = 0.0269) methods. However, no obvious association was

observed between lymphocyte, neutrophil, eosinophil, or basophil

cell count and T2D susceptibility.
FIGURE 2

Forest plot for the causal effect of circulating immune cells on the
risk of T2D derived from inverse variance weighted (IVW), weighted
median, and IVW radial. OR, odds ratio; CI, confidence interval; T2D,
type 2 diabetes.
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The results of sensitivity analyses are summarized in

Supplementary Table 8. Although heterogeneity was observed

with a Cochran’s Q-derived p-value <0.05, the causal estimate

was acceptable when using the random-effects IVW method (23).

The p-value for the MR-Egger intercept was above 0.05, indicating

that no obvious pleiotropy was found (Supplementary Table 8).

Radial MR identified some pleiotropic outliers, and similar causal

estimates for T2D risk were obtained following the outliers’ removal

(Figure 2). LOO analysis further revealed that no SNP introduced

pleiotropic bias in our causal estimates (Supplementary Figure 1).

A recent summary-level MR study verified 34 causal risk factors

for T2D, including 25-hydroxyvitamin D, age at menarche systolic

BP, resting heart rate, body fat percentage, birthweight, HDL, and

total cholesterol (13). To exclude potential SNPs associated with

these traits, we searched the Phenoscanner manually and finally

found 25 SNPs for monocyte and 28 SNPs for WBC possibly

associated with these risk factors (Supplementary Table 9). After

we removed these SNPs, the causality remained significant in

monocyte cell count (OR = 1.06, 95% CI = 1.01–1.10, p = 0.0094)

and WBC count (OR = 1.07, 95% CI = 1.01–1.13, p = 0.0166).
3.2 Causal estimates between circulating
lymphocyte subtypes and T2D

To test whether lymphocyte subtypes are causally associated

with T2D risk, we further carried out MR analysis between T2D and

absolute count of lymphocyte subpopulations, comprising HLA

DR+ NK cells, NKT cells, CD4 Tregs, CD4+ CD8dim T cells, CD8+ T

cells, and B cells. Our results are summarized in Figure 3, and the

harmonized data are presented in Supplementary Table 10. Briefly,

genetic liability to higher levels of CD8+ T cell count (OR = 1.09,

95% CI = 1.03–1.17, p = 0.0053) and CD4+ CD8dim T cell count (OR
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= 1.04, 95% CI = 1.01–1.08, p = 0.0070) predicted a higher risk of

T2D, while genetic liability to lower levels of HLA DR+ NK cell

count (OR = 0.98, 95% CI = 0.97–1.00, p = 0.0428) may predict a

higher risk of T2D. However, no significant association was found

between T2D risk and the absolute count of other cell subtypes,

such as NKT cells, CD4 Tregs, or B cells. No pleiotropy and

heterogeneity were identified in the MR-Egger intercept test and

Cochran’s Q test (Supplementary Table 8). LOO analysis revealed

that none of the SNPs could individually affect the causal estimate

(Supplementary Figure 2).
4 Discussion

The MR analysis has been commonly applied to elucidate the

potential causal relationship between risk factors and diseases. In

this study, we provide evidence to present the inverse causal

association between monocyte count and T2D from a genetic

perspective using MR analysis. This is in line with previous

results from the INTERCEPT-T2D EU-supported project (10).

However, there are also reports that the number and distribution

of peripheral blood monocytes, including classical, non-classical,

and intermediate types, do not differ between diabetic patients and

healthy individuals, except for a significant change in the ratio of

pro-inflammatory M1 to anti-inflammatory M2 (24). These

controversial results may relate to methodological flaws, such as

controlling for confounding factors. The MR analysis method we

used here can obtain clear causal relationships between peripheral

blood monocyte count and T2D risk by controlling residual

confounding factors and reverse causality analysis. We applied

several sensitivity tests to evaluate the robustness of the results

and minimize potential bias derived from pleiotropic effects. In

recent years, this method has identified various T2D risk factors

with clear causal relationships, including blood iron level, percent of

body fat, and systolic BP (13, 14). Furthermore, we found a weak

positive causal relationship between total peripheral blood

leukocyte count and T2D liability, which is consistent with the

increase in leukocyte count in T2D patients (6, 10).

It has been known that the pathological characteristics of T2D

are due to impaired insulin secretion and sensitivity caused by

oxidative stress, endoplasmic reticulum stress, and ectopic lipid

deposition in the muscle, liver, and pancreas (25). All these

dysfunctions may recruit inflammatory macrophages from

circulating monocytes, whereas these infiltrated inflammatory

macrophages may release plenty of inflammatory factors, causing

chronic low-grade inflammation and finally exacerbating the

dysfunction of these tissues. It is worth noting that, with the

rapid development of high-throughput single-cell transcriptomics

technology, we have learned that there seemed to be several

subpopulations of peripheral tissue-resident macrophages with

diverse functions except for pro-inflammatory effects. Lyve1+

macrophage populations can control adipose tissue metabolism

plasticity by regulating vascular structure (26); Trem2+CD9+

macrophage populations are related to lipid uptake and are

significantly increased in obese populations with increased fat in
FIGURE 3

Forest plot for the causal effect of lymphocyte subtypes on the risk
of T2D derived from inverse variance weighted (IVW), weighted
median, and Wald ratio. AC, absolute count; OR, odds ratio; CI,
confidence interval; T2D, type 2 diabetes.
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adipose tissue (27). In T2D-related fatty liver, metabolic Kupffer cell

subtypes are related to dietary fat intake and mediate liver

inflammation (28). In summary, robust functional studies have

shown that monocytes/macrophages are involved in the

development of T2D, and our MR analysis further supports the

immune pathogenesis of T2D.

T2D is a chronic disease caused by multiple factors. Despite

robust studies on the pathogenesis of T2D, the etiology remains

unknown. Notably, recent studies have highlighted the significant

impact of immunity on T2D incidence, progression, and risk (6),

particularly in patients with SIRD and MOD, as evidenced by

increased levels of inflammatory markers in their circulation,

such as interleukin-6, caspase-8, and S100 calcium-binding

protein A12 (EN-RAGE), as well as an increase in WBC count,

monocyte count, and CD4+ T cell count (10). However, these

observational studies only confirmed the involvement of immune

cells and inflammation in the development of T2D but cannot

provide reliable evidence of causality. Thanks to recent large-scale

GWASs on blood traits and T2D, we can use two-sample MR

studies to systematically evaluate the causal relationship between

peripheral blood immune cells and T2D, with the aim of providing

an immune-based perspective for the clinical diagnosis and

intervention of T2D. Unfortunately, we can only access GWAS

data for T2D compared to healthy individuals, and we cannot find

GWAS summary statistics for T2D classified according to SIDD,

SIRD, MOD, and MARD subtypes. Further MR analysis of the

causal relationship between circulating immune cells and T2D

subtypes will provide more evidence-based guidance for

clinical practice.

Recent studies have shown that T cells isolated from the

peripheral blood and adipose tissue of T2D patients tend to have

a pro-inflammatory phenotype, which can promote the

development of insulin resistance (29). Compared with healthy

individuals, the number of NK cells in the peripheral blood of T2D

patients is significantly reduced (30); however, the number of IL-

6Ra+ NK cells is significantly increased in the peripheral blood of

obese patients (31). While CD4 Tregs and B cells are believed to be

involved in the pathological process of type 1 diabetes (32, 33), their

role in T2D is still under investigation. In this study, we analyzed

the causal relationship between lymphocyte subtypes, including

CD4+CD8dim T cell, CD8+ T cell, NKT, CD4 Treg, NK, and B cell

count, and T2D based on recently published GWAS data using MR

analysis. The results showed that the absolute count of

CD4+CD8dim and CD8+ T cells may contribute to increased T2D

risk, which is consistent with previous reports (10, 34). Functional

studies have revealed that increased infiltration of both CD4+ and

CD8+ T cells could facilitate insulin resistance development,

probably through modulating vascular regeneration (34, 35).

However, due to the relatively small sample size of the second

GWAS, there are fewer identified instrumental variables that meet

the criteria, necessitating further validation with larger-scale GWAS

summary statistics.
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Overall, our findings suggest that an increased level of circulating

monocyte cell count may contribute to T2D development. While

circulating lymphocyte cell count was not causally associated with

T2D susceptibility, lymphocyte subtypes including CD4+CD8dim T

cell and CD8+ T cell count may predict the risk of T2D. The findings

suggest that certain immune cell types and genetic susceptibilities

could be used as biomarkers for T2D risk, which could lead to earlier

diagnosis and more effective treatment options.
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