
Frontiers in Endocrinology

OPEN ACCESS

EDITED BY

Alok Raghav,
Gachon University, Republic of Korea

REVIEWED BY

Carol Huang,
University of Calgary, Canada
Aleksandra Jotic,
University of Belgrade, Serbia

*CORRESPONDENCE

Matej Orešič

matej.oresic@utu.fi

RECEIVED 26 April 2023
ACCEPTED 18 August 2023

PUBLISHED 06 September 2023

CITATION

Lamichhane S, Sen P, Dickens AM,
Kråkström M, Ilonen J, Lempainen J,
Hyöty H, Lahesmaa R, Veijola R, Toppari J,
Hyötyläinen T, Knip M and Orešič M (2023)
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Aims/hypothesis: Appearance of multiple islet cell autoantibodies in early life is

indicative of future progression to overt type 1 diabetes, however, at varying

rates. Here, we aimed to study whether distinct metabolic patterns could be

identified in rapid progressors (RP, disease manifestation within 18 months after

the initial seroconversion to autoantibody positivity) vs. slow progressors (SP,

disease manifestation at 60 months or later from the appearance of the first

autoantibody).

Methods: Longitudinal samples were collected from RP (n=25) and SP (n=41)

groups at the ages of 3, 6, 12, 18, 24, or ≥ 36 months. We performed a

comprehensive metabolomics study, analyzing both polar metabolites and

lipids. The sample series included a total of 239 samples for lipidomics and 213

for polar metabolites.

Results: We observed that metabolites mediated by gut microbiome, such as

those involved in tryptophan metabolism, were the main discriminators between

RP and SP. The study identified specific circulating molecules and pathways,

including amino acid (threonine), sugar derivatives (hexose), and quinic acid that

may define rapid vs. slow progression to type 1 diabetes. However, the circulating

lipidome did not appear to play a major role in differentiating between RP and SP.
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Conclusion/interpretation: Our study suggests that a distinct metabolic profile

is linked with the type 1 diabetes progression. The identification of specific

metabolites and pathways that differentiate RP from SP may have implications

for early intervention strategies to delay the development of type 1 diabetes.
KEYWORDS

birth cohort, l ipidomics, metabolomics, type 1 diabetes mell itus, gut
microbial metabolites
Introduction

Type 1 diabetes is an autoimmune disease that arises due to the

destruction of the insulin-producing beta cells in the islets of

the pancreas (1). Many exogenous factors have been associated

with the development of type 1 diabetes, including viral infections,

diet, exposure to toxins and chemicals, and gut microbiota (2–4).

The preclinical period of type 1 diabetes is characterized by serum

islet autoantibodies. Children who develop multiple (≥2)

autoantibodies increase the likelihood of clinical type 1 diabetes

later in life (5–7), but at varying rate (8). Age at the time of

seroconversion and high titers of insulin autoantibodies (IAA)

influence the progression rate (9, 10).

Metabolomics studies focusing on a possible link between type 1

diabetes and the circulating metabolome suggest that metabolic

dysregulation precedes the clinical presentation of diabetes, prior to

an asymptomatic pre-diabetes period (11–13). However,

metabolomes of rapid vs. slow progressors to type 1 diabetes

following the seroconversion have not yet been investigated. Here

we analyzed circulating polar metabolites (‘metabolomics’) and

molecular lipids (‘lipidomics’) from serum samples obtained from

children recruited into the Finnish Type 1 Diabetes Prediction and

Prevention study (DIPP), divided into two study groups: children

who progressed slowly to overt disease (SP, duration from initial

seroconversion to clinical disease ≥ 60 months and children who

progressed rapidly (RP) to type 1 diabetes (time from

seroconversion to clinical disease ≤ 18 months).
Methods

These methods are adapted versions of descriptions in our

related work (14).
Study design and protocol

In this study, the samples were obtained from the Finnish Type

1 Diabetes Prevention and Prediction Study (DIPP) (15), an

observational birth cohort study following the participants from

the age of 3 months to 15 years of age or to the diagnosis of type 1

diabetes. The DIPP study was initiated in 1994 and is currently
02
running in three university hospitals in Finland (Oulu, Tampere,

and Turku). The participants involved in the current study were

chosen from the subset of DIPP children who were born in Turku

University Hospital since sequential unthawed serum samples,

collected between 1998 and 2012 and stored at -80°C were

available from these participants. The study protocol was

approved by the ethics committee of the Hospital District of

Southwest Finland. The study was conducted according to the

guidelines in the Declaration of Helsinki. All families provided

written, informed consent for participation in the study. For each

child, longitudinal samples for metabolomics analysis were

obtained at the age of 3, 6, 12, 18, 24 or ≥ 36 months (Figure 1).

This study included samples (n=239 for lipidomics and n=213

for polar metabolites) from 66 children, divided into two groups,

being 25 RPs and 41 SPs. Selected characteristics of the participants

in this study are listed in Table 1. In this study, non-fasting blood

samples were collected, serum was prepared within 3 hours of

sample collection and stored at -80°C until analyzed.
HLA genotyping

Screening for HLA-conferred susceptibility to type 1 diabetes

was carried out using cord blood samples. The HLA-genotyping

was performed with a time-resolved, fluorometry-based assay for

four alleles using lanthanide chelate-labelled, sequence-specific

oligonucleotide probes detecting DQB1*02, DQB1*03:01,

DQB1*03:02, and DQB1*06:02/3 alleles (16). The carriers of

DQB1*02/DQB1*03:02 or DQB1*03:02/x genotypes (here

x≠ DQB1*03:01, DQB1*06:02, or DQB1*06:03 alleles) were

categorized as children with increased HLA susceptibility to type

1 diabetes and accordingly invited to the DIPP follow-up program.

The study participants underwent more extensive HLA

genotyping. This genotyping defined all common European HLA-

DR-DQ haplotypes at low resolution and at higher resolution

haplotypes where this was relevant for the assessment of the risk

for type 1 diabetes, e.g. HLA-DR4 subtypes in DR4-DQ8

haplotypes. In a series of 2,991 family trios from the Finnish

Pediatric Diabetes Register, the genotype risks were defined and

genotypes were combined into six groups from O (strongly

protective) to 5 (high risk) which did not overlap for 95%

confidence intervals of their OR values for type 1 diabetes (17).
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Detection of islet autoantibodies

The children with HLA-conferred genetic susceptibility were

prospectively observed for levels of diabetes-associated

autoantibodies [islet cell antibodies (ICA), insulin autoantibodies

(IAA), and glutamic acid decarboxylase antibodies (GADA) and

insulinoma-like antigen 2 antibodies (IA-2A)]. These

autoantibodies were analyzed from serum samples taken at each

follow-up visit as previously described (18). ICA levels were

determined using an approved, immunofluorescence assay with a

detection limit of 2.5 Juvenile Diabetes Foundation Units (JDFU)

(19). GADA and IAA levels were quantified using specific

radiobinding assays, the threshold of positivity being 5.36 and

3.48 relative units (RU) respectively (20, 21). Similarly, IA-2A

levels were measured with a radio-binding assay with a threshold

of 0.43 RU (22).
Analysis of molecular lipids

The samples were randomized and extracted using a modified

version of the previously-published Folch procedure (23). 10 µl of

serum was mixed with 10 µl 0.9% NaCl and extracted with 120 µl of

CHCl3: MeOH (2:1, v/v) solvent mixture containing internal

standard mixture (c = 2.5 µg/ml).; 1,2-diheptadecanoyl-sn-glycero-

3-phosphoethanolamine [PE(17:0/17:0)], N-heptadecanoyl-D-
Frontiers in Endocrinology 03
erythro-sphingosylphosphorylcholine [SM(d18:1/17:0)], N-

heptadecanoyl-D-erythro-sphingosine [Cer(d18:1/17:0)], 1,2-

diheptadecanoyl-sn-glycero-3-phosphocholine [PC(17:0/17:0)], 1-

heptadecanoyl-2-hydroxy-sn-glycero-3-phosphocholine [LPC(17:0)]

and 1-palmitoyl-d31-2-oleoyl-sn-glycero-3-phosphocholine [PC

(16:0/d31/18:1)], cholest-5-en-3ß-yl heptadecanoate [CE(17:0)] and,

triheptadecanoylglycerol [TG(17:0/17:0/17:0)].

The samples were vortex mixed and incubated on ice for 30 min

after which they were centrifuged at 7800 × g for 5 min. Finally, 60

µL from the lower layer of each sample was collected and mixed

with 60 µL of ice-cold CHCl3: MeOH (2:1, v/v) in an LC vial.

The Ultra-high performance liquid chromatography-

quadrupole time-of-flight mass spectrometry (UHPLC-QTOFMS)

analyses were carried out in a similar manner to that described

earlier, with some modifications (24, 25). The UHPLC-QTOFMS

system was from Agilent Technologies (Santa Clara, CA, USA)

combining a 1290 Infinity LC system and 6545 QTOFMS,

interfaced with a dual jet stream electrospray (dual ESI) ion

source. MassHunter B.06.01 software (Agilent Technologies,

Santa Clara, CA, USA) was used for all data acquisition and

MZmine 2.53 was used for data processing as described below

(26). Identification of lipids was based on in house laboratory LC-

MS/MS data on retention time and mass spectra.

Chromatographic separation was performed using an Acquity

UPLC BEH C18 column (100 mm × 2.1 mm i.d., 1.7 µm particle

size) and a C18 precolumn, both from Waters Corporation
FIGURE 1

An overview of the study design. The study cohort comprised children rapidly progressing to overt type 1 diabetes (RP) and children slowly
progressing to clinical disease (SP) during the follow-up until the age of 15 years. For each child, longitudinal serum samples were drawn,
corresponding to the age of 3, 6, 12, 18, 24 or ≥36 months. Moreover, the age at diagnosis of type 1 diabetes is shown in the participating children.
TABLE 1 Demographic characteristics of study population.

RP (n= 25) SP (n=41)

Gender (girls, boys) (12, 13) (19, 22)

Age at time of diagnosis (mean ± SD) 2.88 ± 2.34 11.84 ± 2.80

Age at time of first seroconversion (mean ± SD) 2.81 ± 2.28 1.99 ± 1.19

Interval from seroconversion to type1 diabetes (mean ± SD) 0.70 ± 0.37 9.86 ± 2.53
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(Wexford, Ireland). The mobile phases were water (phase A) and

acetonitrile:2-propanol (1:1, v/v) (phase B), both containing 1% 1M

ammonium acetate and 0.1% (v/v) formic acid ammonium acetate

as ionization agents. The LC pump was programmed at a flow rate

of 0.4 mL min–1 and the elution gradient was as follows: from min

0–2, the percentage of phase B was modified from 35% to 80%, from

min 2-7, the percentage of phase B was modified from 80% to 100%

and then, the final percentage was held for 7 min. A post-time of

7 min was used to regain the initial conditions for the next analysis.

Thus, the total analysis time per sample was 21 min (including post

processing). The settings of the dual ESI ionization source were as

follows: capillary voltage 3.6 kV, nozzle voltage 1500 V, N2 pressure

in the nebulizer 21 psi, N2 flow rate and temperature as sheath gas

11 L min–1 and 379°C, respectively. Accurate mass spectra in the

MS scan were acquired in the m/z range 100–1700 in positive

ion mode.

The peak area obtained for each lipid was normalized with

lipid-class-specific internal standards. A (semi)quantitation was

performed using lipid-class-specific calibration curves. Pooled

samples were used for quality control, in addition to NIST CR-

1950 serum and in-house plasma QC serum. The RSD of the

concentrations of the identified lipids in QC samples and pooled

extracts was on average 6.3% and 16.2%, respectively.
Analysis of polar metabolites

To a 10 µL aliquot of plasma, 225 µL of ice-cold MeOH (LC-

grade, Honeywell) containing the following internal standards (all

from Sigma Aldrich): Heptadecanoic acid (5 ppm), DL-valine-d8 (1

ppm), and succinic acid-d4 (1 ppm) was added. The samples were

then sonicated in an ice bath for 30 s prior to centrifugation (5500 g,

5 min). 250 µL of the supernatant was transferred to a 2 mL glass

auto sampler vial. The pellet was stored at –20°C for protein

analysis. The protein content was measured by the Bradford

method. The supernatant was dried under a stream of nitrogen at

45°C. Prior to the mass spectrometry measurements, the samples

were derivatized using a two-step procedure. Initially the samples

were methoximated by incubating the samples with methoxyamine

hydrochloride (25 µL, 20mg/mL in pyridine, Sigma Aldrich) at 45°C

for 1 h. N-Methyl-N-trimethylsilyltrifluoroacetamide (25 µL, Sigma

Aldrich) was then added and the samples were incubated for a

further 60 min. A retention index standard containing straight

chain, even alkanes (n 10-40, 10 µL, Sigma Aldrich) was added. All

this sample prep was performed on a Gerstel robot and timed to the

injection into the GC-MS. The derivatized samples were analyzed

using gas chromatography (Agilent 7890B) coupled to a time of

flight mass spectrometer (Pegasus BT LECO). The metabolites were

separated using a 30 m × 0.25 mm (ID) with a film thickness of 0.25

µm HP-5 (Agilent). A guard column (10 m) with an ID of 0.25 mm

was used. 1 µL of the sample was injected in split less mode with an

inert glass liner (Agilent) held at a temperature of 240°C. The GC

was set to constant flow mode (1.2 mL/min) using helium (Aga) as

the carrier gas. The GC oven was programed as follows: 50°C

(isothermal for 0.2 min), then 7°C/min until 240°C, then 20°C/min

until 300°C (isothermal for 5 min). The transfer line was held at
Frontiers in Endocrinology 04
230°C for the whole run. The ion source was set to electron

ionization mode and held at 250°C. The MS was scanning from

50 – 650 Da with an extraction rate of 30 kHz and a scan rate of 16

per second.
Data preprocessing

Lipidomics data processing was performed using open source

software MZmine 2.53 (26). The following steps were applied in

the processing: 1) Crop filtering with a m/z range of 350 – 1700 m/

z and a RT range of 2.0 to 12 min, 2) Mass detection with a noise

level of 1200, 3) Chromatogram builder with a minimum time

span of 0.08 min, minimum height of 1000 and a m/z tolerance of

0.006 m/z or 10.0 ppm, 4) Chromatogram deconvolution using the

local minimum search algorithm with a 70% chromatographic

threshold, 0.05 min minimum retention time (RT) range, 5%

minimum relative height, 1200 minimum absolute height, a

minimum ratio of peak top/edge of 1 and a peak duration range

of 0.08 - 5.0, 5) Isotopic peak grouper with a m/z tolerance of 5.0

ppm, RT tolerance of 0.05 min, maximum charge of 2 and with the

most intense isotope set as the representative isotope, 6) Join

aligner with a m/z tolerance of 0.008 or 10.0 ppm and a weight for

of 2, a RT tolerance of 0.1 min and a weight of 1 and with no

requirement of charge state or ID and no comparison of isotope

pattern, 7) Peak list row filter with a minimum of 12 peaks in a row

(= 10% of the samples), 8) Gap filling using the same RT and m/z

range gap filler algorithm with an m/z tolerance of 0.006 m/z or

10.0 ppm, 9) Identification of lipids using a custom database

search with an m/z tolerance of 0.006 m/z or 10.0 ppm and a RT

tolerance of 0.1 min, 10) Normalization using lipid-class-specific

internal standards and (semi) quantitation with lipid-class-

specific calibration curves, 11) Normalization with total protein

amount 12) Data imputation of missing values were done with

half of the row’s minimum.

The GC-QMS data was processed in ChromaTOF (v5.51,

LECO) using the peak find algorithm. The peak intensities were

normalized to heptadecanoic acid. The peaks were manually

checked and corrected if needed for correct integration.

Metabolites which had a coefficient of variation greater than 30%

in the pooled quality control sample or fell below the limit of

quantification were excluded from subsequent analysis.
Statistical methods

The metabolites and lipids data values were log transformed

prior to analysis. The difference in the lipidome and metabolome

between the studies groups were compared using a multivariate

linear model. For longitudinal samples, linear mixed effects model

were regressed with fixed effect (~ sex +case + age) and random

effect ~ (1 | Subject). For age wise comparisons the lipids/

metabolites were regressed with various factors such as sex, and

disease conditions (e.g. RP vs. SP) using MaAsLin2 package in R

(lipids ~ sex +case). To subsequently visualize metabolite level,

violin plots from the ggplot2 R package were used.
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Pathway analysis of the significant metabolites (p-value < 0.05)

was performed in MetaboAnalyst 5.0 (27). The compounds

unmatched during compound name matching were excluded

from the subsequent pathway analysis. We implemented global

test hypergeometric testing for the functional enrichment analysis.

The pathway topological analysis was based on the relative

betweenness measures of a metabolite in a given metabolic

network and for calculating the pathway impact score. Based on

the impact values from the pathway topology analysis, the impact

value threshold was set to >0.10.
Results

Global metabolome and lipidome in rapid
vs. slow progressors to type 1 diabetes

We performed untargeted metabolomics and lipidomics

analysis in a longitudinal setting among two study groups: 25

rapid progressors who progressed to type 1 diabetes within 18

months after the appearance of the first autoantibody (RP) and 41

slow progressors, who presented with clinical disease after a period

of at least 60 month from the initial seroconversion to clinical

disease (SP). For each child, samples were analyzed from up to six

time points, corresponding to the ages of 3, 6, 12, 18, 24, or ≥36

months (Figure 1). The lipidomics dataset (n = 239) included the

identified lipids from the following lipid classes: cholesterol

es t ers (CE) , ceramides (Cer) , d iacy lg lycero l s (DG) ,

lysophosphatidylcholines (LPC), phosphatidylcholines (PC),

phosphatidylethanolamines (PE), sphingomyelins (SM), and

triacylglycerols (TG). Metabolomic dataset (n = 213) included the
Frontiers in Endocrinology 05
metabol i tes from chemical c lasses , inc luding amino

acids, carboxylic acids, phenolic compounds, sugars, and

sugar derivatives.

To identify the sources of variation in the lipidomics and

metabolomics datasets, multivariable linear model was performed.

The concentrations of lipids/metabolites were regressed on factors

including age, sex, and case-related phenotypes (e.g., SP vs. RP).

Among these factors, age showed the strongest effect on the

circulating lipidomics and metabolomics profiles. A total of 44

polar metabolites and 106 lipids were related to age (p-value < 0.05,

Supplementary Material SM Tables 1, 2). A total of 35 out of 175

lipids differed between male and female in the longitudinal setting

(p-value < 0.05, SM Table 3). However, no sex differences were

observed in the metabolomics dataset.

A total of 21 polar metabolites differed between the study

groups (SP vs. RP; p-value < 0.05, Figure 2, SM Table 4). The

tryptophan-derived microbial catabolite 3-indole acetic acid was

downregulated in the SP group (Figures 2A, B, p-value <0.05).

While most of the sugar derivatives were upregulated in the RP

compared to the SP group, quinic acid remained upregulated in the

SP group (Figure 2C). Figures 2A-C shows the local polynomial

regression fitting (LOESS) plot of selected metabolite class with time

for the case-related phenotypes.

Considering that age is a confounding factor in the

metabolomics analysis, we also performed age-matched

comparisons between SP and RP (Figure 2D). We found that the

main metabolic differences between these two groups were after the

median age of seroconversion (i.e., around 24-36 months of age).

The result showed that at the age of 3, 6, 12, 18, 24 and ≥36 months,

a total of 12, 3, 2, 14, 17 and 23, metabolic features were altered,

respectively, between the study groups (Figure 2D).
B C

D

A

FIGURE 2

Polar metabolite profiles in serum during the follow-up. (A-D) Local polynomial regression fitting (LOESS) curve plot of metabolite concentration
over time for the two study groups. Blue, Slow Progressors, SP; red, Rapid Progressors. Solid line, mean value; shaded area, 95% CI. e) Age matched
comparison of polar metabolite between SP and RP. The plot shows the most discriminating metabolites between the two study groups compared
using multivariable linear model (metabolite ~ sex +case), where case indicate (SP vs. RP). Red and blue colors signify linear correlation coefficient
up-, down-regulation SP vs. RP.
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Next, the changes in plasma lipid concentration between the

study groups in the longitudinal series sample collection were

examined. We found that lipid-related differences were less

pronounced as compared to polar metabolites. Levels of two

lipids, PE (34:0) and TG (18:2/18:1/18:1), were different between

SP and RP (p-value < 0.05). With the exception of lipid PE (34:0),

there was no consistent lipid related trend between the study

groups. The age-wise comparison showed that at the age of 3, 6,

12, 18, 24 or ≥36 months, a total of 1, 1, 1, 13, 3 and 10 lipids were

different between the SP and RP groups, respectively (ESM

Figure S1).

As progression of type 1 diabetes is associated with distinct islet

autoantibody trajectories, we compared differences in metabolite

changes in crelation to the development of specific islet

autoantibodies (IAA vs. others). With the exceptions of a

carboxylic acid derivative, no other differences (p-value <0.05)

between the IAA vs. other autoantibodies were observed, which

may be due to the small sample size per autoantibody grouping.
Metabolic pathways discriminating fast vs.
slow progressors to type 1 diabetes

We then examined the differences between the SP and RP

groups at the metabolic pathway level. The selected metabolites/

lipids that differed between the case-related phenotypes (SP vs. RP)

were subjected to metabolic pathway analysis in MetaboAnalyst 5,

integrating enrichment-based analysis and pathway topology

analysis. Using pathway impact estimates, we found that mainly

amino acid -related metabolic processes including phenylalanine,

tyrosine and tryptophan biosynthesis, ascorbate and aldarate
Frontiers in Endocrinology 06
metabolism, and tyrosine metabolism, pentose and glucuronate

interconversions were different between SP and RP (SM Figure

S2, impact value threshold was set to >0.10).
Metabolic alterations before and after
the first appearance of islet autoantibodies
in rapid and slow progressors to
type 1 diabetes

We also studied the metabolic changes between the SP and RP

groups (1) prior to the appearance of islet autoantibodies and (2)

after the first appearance of islet autoantibodies. We identified

differences in polar metabolite profiles after the appearance of the

first islet autoantibody when comparing rapid and slow progressors

to type 1 diabetes. Altogether, 13 metabolites remained upregulated

in rapid progressors as compared to slow progressors

(p-value <0.05, SM Figure S3). These metabolites can be divided

into major chemical classes including sugars, amino acids, and a

microbiota-derived metabolite indole-3-acetic acid (i.e., tryptophan

catabolite). Among these 13 metabolites, comparative profiles of

indole-3-acetic, threonine, beta-tocopherol and hexose are shown in

Figure 3 (p-value <0.05, ESM Table 5). We also analyzed metabolite

concentration differences between rapid progressors and slow

progressors prior to the appearance of islet autoantibodies. Quinic

acid and an unknown metabolite were downregulated in rapid

progressors when compared to slow progressors before

seroconversion (p-value <0.05).

Next, we studied whether lipidomic patterns were related to the

development of islet autoantibodies. For that, we analyzed the lipid

concentration differences between rapid and slow progressors
B

C D

A

FIGURE 3

Polar metabolite profiles in serum before and after the first appearance of islet autoantibodies comparing rapid (RP) and slow progressors (SP) to
type 1 diabetes. (A-D) Violin plot showing the selected discriminating metabolites between the SP and RP. Here, RP and SP is analyzed after the
appearance of the first islet autoantibody.
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before and after the emergence of the first islet autoantibody. The

results revealed weak differences in lipid levels between the slow and

rapid progressors, after or before seroconversion to islet

autoantibody positivity. We found two lipid species [PE (O-16:0/

22:6) and Cer (d18:1/24:0)] downregulated in slow progressors after

the appearance of first islet autoantibodies, when compared to rapid

progressors (p-value <0.05). Likewise, there were two lipids [PC (O-

38:6) and PE (34:0)] that differed between rapid and slow

progressors before the appearance of the first islet autoantibodies

(p-value <0.05).
Discussion

Our study identified specific associations between the metabolic

profiles and rate of progression to type 1 diabetes. We observed that

specific sugar derivatives and microbial metabolites differed

between rapid and slow progressors. While our findings are in

line with previous studies showing that metabolic dysregulation

precedes islet autoimmunity and type 1 diabetes (11–14), here we

showed that after seroconversion to islet autoantibody positivity,

slow and rapid progression to clinical diabetes are metabolically

different. In agreement with earlier findings (13, 28), we also

observed that age was the major confounder in the metabolomics/

lipidomics studies.

Recent literature suggests that the gut microbiota is associated

with the pathogenesis of type 1 diabetes, however, mechanisms by

which gut microbes contribute to the initiation and progression of

this disease remain to be identified (29–32). We found that the

microbiota-derived metabolite 3-indole-acetic acid was upregulated

in children who rapidly progressed to type 1 diabetes following the

seroconversion to autoantibody positivity. Previous studies have

shown that dysregulated microbial metabolites were associated with

the manifestation of type 1 diabetes (33, 34). The microbiota-

derived indole metabolites promote intestinal homeostasis and are

known for their immunomodulatory signaling activity (34–36). 3-

indole-acetic acid is a tryptophan-derived metabolite known to be

produced by multiple gut bacterial species, including Bacteroides,

Bifidobacterium, Clostridium and Eubacterium (37). Tryptophan,

an essential amino acid, is obtained from dietary protein sources.

Increase in tryptophan catabolites (i.e., 3-indole-acetic acid) in

circulation suggests a shift from saccharolytic to proteolytic

fermentation in the gut among the rapid progressors (38). In line

with this, Vatanen et al. showed that microbiota of children who

progressed to type 1 diabetes contained less genes that were related

to saccharolytic fermentation (29). Thus, the most plausible

explanation for the observed elevated 3-indole-acetic acid in the

rapid progressors is that the shift in microbial fermentative energy

sources dysregulates microbial tryptophan catabolism, which, in

turn, exacerbated the pathogenic processes contributing to type

1 diabetes.

Our findings suggest that increasing levels of sugar derivatives

in the peripheral circulation (e.g., hexose) contribute to the

accelerated progression to type 1 diabetes. The levels of these
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metabolites were increased in rapid progressors (vs. slow) only

after the initial appearance of islet autoantibodies. An increased

level of sugars in circulation demands higher insulin secretion,

leading to beta-cell stress that could contribute to rapid progression

to symptomatic type 1 diabetes (39). Recently, in the TRIGR study,

Ludvigsson et al. showed that the first appearance of islet cell

autoantibody may be related to the increased glucose

concentration in blood, corroborating the beta-cell stress

hypothesis (40). Intriguingly, Helminen et al. also showed that

random plasma glucose predicted the progression to clinical type 1

diabetes in high-risk children (41). We hypothesize that increased

insulin demand due to upregulated sugar molecules in the

circulation is one of the non-exclusive triggers contributing to the

rapid manifestation of type 1 diabetes. Additionally, differences in

autoantibody and HLA profiles between RP and SP could affect the

individual’s metabolic profile (42). However, we observed minor

metabolic dissimilarities linked to the autoantibody profile,

particularly between those with IAA presence and those with

other autoantibodies. These variances might be due to the small

sample size within each autoantibody subgroup.

Growing evidence suggests abnormal lipid metabolism

preceding seroconversion to autoantibody positivity and clinical

type 1 diabetes (43–46). We also observed changes, albeit subtle, in

the levels of phospholipid species in the group of rapid progressors

as compared to slow progressors, particularly before

seroconversion. However, the earlier studies compared healthy

individuals with children en route to overt type 1 diabetes, not

the rate of progression among the latter subjects.

We acknowledge limitations of this study, one of them being the

relatively small sample size in our longitudinal setting. However, to

the best of our knowledge, this study presents a novel association of

microbiota-derived metabolites, which served as the main

discriminators between RP and SP. Next, data on the intestinal

microbiome and diet are not available from the study participants.

Since microbiota-derived metabolites are crucial in mediating

health impacts of the intestinal microbiome, future work could

assess the impact of diet–microbe interactions in the progression of

type 1 diabetes. Notwithstanding this, our study generates novel

hypotheses; however, the causal relationship still remains unknown.

With further validation, these findings could advance future

research on the disease process leading to clinical type 1 diabetes.

Taken together, our study suggests that a distinct metabolic

profile is associated with the rate of progression to type 1 diabetes.

The identification of specific metabolites and pathways that

differentiate RP from SP may have implications for early

intervention strategies to delay or prevent the development of

type 1 diabetes.
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