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Excessive daytime napping
independently associated with
decreased insulin sensitivity in
cross-sectional study – Hyogo
Sleep Cardio-Autonomic
Atherosclerosis cohort study

Miki Kakutani-Hatayama, Manabu Kadoya*, Akiko Morimoto,
Akio Miyoshi, Kae Kosaka-Hamamoto, Akinori Kanzaki ,
Kosuke Konishi , Yoshiki Kusunoki, Takuhito Syoji
and Hidenori Koyama

Department of Diabetes, Endocrinology and Clinical Immunology, School of Medicine, Hyogo
Medical University, Nishinomiya, Hyogo, Japan
Background: Although excessive daytime napping has been shown to be

involved in diabetes occurrence, its impact on insulin secretion and sensitivity

has not been elucidated. It is speculated that excessive napping disrupts the

sleep-wake rhythm and increases sympathetic nerve activity during the day,

resulting in decreased insulin sensitivity, which may be a mechanism leading to

development of diabetes. We previously conducted a cross-sectional study that

showed an association of autonomic dysfunction with decreased insulin

sensitivity, though involvement of autonomic function in the association

between napping and insulin sensitivity remained unclear. Furthermore, the

effects of napping used to supplement to short nighttime sleep on insulin

secretion and sensitivity are also unknown. In the present cross-sectional

study, we examined the relationships of daytime nap duration and autonomic

function with insulin secretion and sensitivity in 436 subjects enrolled in the

Hyogo Sleep Cardio-Autonomic Atherosclerosis (HSCAA) Cohort Study who

underwent a 75-g oral glucose tolerance test (75-g OGTT), after excluding

those already diagnosed with diabetes.

Methods: Daytime nap duration was objectively measured using actigraphy, with

the subjects divided into the short (≤1 hour) and long (>1 hour) nap groups. Insulin

secretion and sensitivity were determined using 75-g OGTT findings. Standard

deviation of normal to normal R-R interval (SDNN), a measure of autonomic

function, was also determined based on heart rate variability. Subgroup analysis

was performed for the associations of napping with insulin secretion and

sensitivity, with the results stratified by nighttime sleep duration of less or

greater than six hours.

Results: Subjects in the long nap group exhibited lower insulin sensitivity

parameters (QUICKI: b=-0.135, p<0.01; Matsuda index: b=-0.119, p<0.05)

independent of other clinical factors. In contrast, no associations with insulin
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secretion were found in either group. Furthermore, the association of long nap

duration with insulin sensitivity was not confounded by SDNN. Specific

subgroup analyses revealed more prominent associations of long nap habit

with lower insulin sensitivity in subjects with a short nighttime sleep time (b=-
0.137, p<0.05).

Conclusion: Long daytime nap duration may be a potential risk factor for

decreased insulin sensitivity.
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Introduction

Diabetes mellitus is a multifactorial disease caused by multiple

genetic factors leading to decreased insulin secretion and sensitivity,

in addition to lifestyle factors such as overeating and lack of exercise

(1, 2). In recent years, attention has focused on the central nervous

system, including the hypothalamus, brainstem, and dopamine

reward system, which are involved in sleep and the autonomic

nervous system, and have effects on insulin secretion and

cardiovascular function shown in pancreatic b cells (3–7).

Clinically, heart rate variability coefficient, an indicator of

autonomic function, is a predictive factor for development of

diabetes (8), while sleep duration and sleep quality, assessed by

questionnaire, were also found to be associated with its

development (9–11). Although nighttime sleep duration is

associated with obesity, there are reports that fragmented sleep

due to excessive daytime napping is more associated with obesity

(12), drawing attention to the health effects of napping as well as

nighttime sleep.

Previous studies have shown that an appropriate daytime

napping habit improves work performance and mental health

(13–15). On the other hand, excessive napping increased health

risks such as the mental effects and cardiovascular disease have also

been reported (16–20). As for the relationship with glucose

metabolism, excessive daytime napping has been implicated in

development of diabetes in a number of reported cases. A meta-

analysis of 10 studies (four cross-sectional and six longitudinal

cohort studies) found that napping for longer than one hour per day

was associated with both the prevalence and incidence of diabetes,

with a 31% increased risk of developing diabetes during the follow-

up period. In contrast, no such association was found for those who

took short naps of less than one hour (21). A cohort study of 2,620

subjects aged 60 years and older also found that those who took

longer daytime naps (more than one hour per day) had a higher risk

of developing diabetes compared with those who did not nap (22). It

is speculated that excessive napping disrupts the sleep-wake rhythm

(23) and increases sympathetic nerve activity during the day,

resulting in decreased insulin sensitivity, which may be a

mechanism leading to development of diabetes (10, 24). However,

though some studies have noted that naps of 30 minutes or more
02
significantly increase insulin resistance as compared to individuals

who do not nap (25), others have found no clinically significant

differences (26), thus the effects of daytime naps on insulin secretion

and sensitivity remain unclear.

Autonomic dysfunction has been shown to occur even in the

pre-diabetic stage (27–29), suggesting its possible contribution to

development of diabetes. Furthermore, we previously reported

findings of a cross-sectional study indicating that autonomic

dysfunction is associated with decreased insulin sensitivity (30).

For determining cardiac modulation, heart rate variability (HRV)

is commonly used as a non-invasive procedure, as it is known to be

a versatile marker of autonomic function (31, 32) and has been

shown to be lower in patients with diabetes (8). Nevertheless, the

mutual impact of nap duration and autonomic nervous function

on insulin secretion and sensitivity in the pre-diabetic phase

remains unresolved.

The Hyogo Sleep Cardio-Autonomic Atherosclerosis (HSCAA)

cohort study was initiated in October 2010 with the aim to analyze

quantitative changes in sleep duration, sleep quality, and apnea,

including daytime napping, and their impact on autonomic

function on metabolism and atherosclerosis. Based on

quantitative assessments of nap time and autonomic function in

436 subjects who agreed to undergo a 75-g oral glucose tolerance

test (75-g OGTT), and examinations of their interrelationship with

insulin secretion and sensitivity, the present study aimed to explore

the possibility that nap time and autonomic function are related to

diabetes onset, whether napping as a supplement to short nighttime

sleep is associated with insulin secretion and sensitivity, thus

providing important information to help with early intervention

for its prevention.
Materials and methods

Study population

All subjects gave written informed consent to participate in the

study according to a protocol approved by the Ethics Committee of

Hyogo College of Medicine (approval no. 2351). The HSCAA study

enrolled patients under treatment at the Department of Diabetes,
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Hospital (Hyogo, Japan) who had at least one cardiovascular risk

factor, such as diabetes, hypertension, dyslipidemia, chronic kidney

disease, history of cardiovascular events, obesity, or smoking habit,

as well as sleep or autonomic nervous system function, or glucose

metabolism disturbance (33, 34). The present cohort study aimed to

investigate the relationship of sleep with autonomic function and

glucose metabolism, metabolic syndrome, and atherosclerosis. This

cross-sectional study was conducted as part of the HSCAA study

and did not include patients taking sleeping pills. There were 1155

patients between the ages of 20 and 90 years enrolled in the HSCAA

Study from October 2010 to December 2021. Those diagnosed with

and treated for diabetes mellitus or HbA1c >6.5%, malignant

neoplasms, overt endocrine disease, or renal failure were

excluded, while there were also 154 missing baseline data,

including monitor malfunctions. Thus, 436 patients able to

undergo actigraph, active tracer, and 75-g OGTT examinations

were included in this study (Figure 1).
Assessment of classic cardiovascular
risk factors

The medical history of each subject was obtained by interview

to determine self-reported smoking and drinking habits, and

history of cardiovascular events. Drinker was defined as

consumption of alcoholic drinks at least three times a week and

an individual with a current smoking habit as smoker. Body height

and weight were measured, and body mass index (BMI) was

calculated as weight (kilograms) divided by the square of height

(meters) (kg/m2). Hypertension was defined as medical treatment

for hypertension or systolic blood pressure ≥140 mmHg or diastolic

blood pressure ≥90 mmHg. Dyslipidemia was defined as currently

receiving treatment for dyslipidemia or elevated low-density

lipoprotein cholesterol (≥140 mg/dl), decreased high-density

lipoprotein cholesterol (<40 mg/dl), or elevated triglyceride (≥150

mg/dl) level (26). Blood samples were collected in the early morning

following an overnight fast and quickly centrifuged to obtain

plasma. Whole blood was used for hemoglobin A1c, EDTA

plasma for glucose and l ipids , and serum for other

biochemical measurements.
Frontiers in Endocrinology 03
Biochemical parameters, 75-g OGTT,
and calculation

For blood sample examinations, whole blood was used to

measure hemoglobin A1c, and in EDTA-plasma was used for

glucose (Glu) and insulin (IRI). Glucose was measured with a

glucose oxidase method and insulin a radio immunometric assay

(RIA-BEAD II; Dinabot, Tokyo, Japan). The patients fasted for at

least 12 hours after dinner the previous day, then plasma samples

for glucose (mmol/L) and insulin (pmol/L) measurements were

collected at 0, 30, 60, 90, and 120 minutes after glucose loading, and

75-g OGTT was performed. The results were used to classify

abnormal blood glucose levels [normal glucose tolerance (NGT),

impaired glucose tolerance (IGT), diabetic type], and assess insulin

secretion and sensitivity. Patients with fasting a plasma glucose

level ≤109 mg/dl or two-hour plasma glucose ≤139 mg/dl were

classified as NGT, fasting plasma glucose ≥110 mg/dl or two-hour

plasma glucose from 140 to 199 mg/dl as IGT, and two-hour plasma

glucose ≥200 mg/dl as DMtype. For estimation of insulin secretion

and sensitivity, the following indices were calculated. Secretion:

insulinogenic index = (IRI30 - IRI0)/(Glu30 - FPG) (35), corrected

insulin response (CIR) = [(100 × IRI30)/(Glu30) × (Glu30 - 3.89)],

disposition index = insulinogenic index × quantitative insulin

sensitivity check index (QUICKI). Sensitivity: QUICKI = 1/(log

IRI0 + log FPG) (36), BIGTT - sensitivity index (SI) = exp[4.9 -

(0.00402 × IRI0) - (0.000556 × IRI30) - (0.00127 × IRI120) - (0.152

× FPG) - (0.00871 × Glu30) - (0.0373 × Glu120) - (0.145 × gender) -

(0.0376 × BMI)] (37), Matsuda index = 10,000/[sqrt (FPG × IRI0 ×

mean PG × mean IRI)] (38).
Determination of sleep conditions

Based on recent advances in technology, actigraphy is

commonly used for diagnosis of sleep problems and findings

demonstrating its effectiveness have been presented (30). Because

a polysomnography device is complicated to fit and examinations

with it are difficult to perform with a large number of subjects, the

present study used findings for quantitative analyses of sleep

duration and sleep quality obtained with an actigraph device

(Ambulatory Monitoring, Inc., Ardley, NY, USA) (24, 32). The
FIGURE 1

Flow of subject selection. HSCAA, Hyogo Sleep Cardio-Autonomic Atherosclerosis.
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actigraph was attached to the wrist of the non-dominant arm and

used twice for 24 consecutive hours. An actigraph converts signals

generated by an accelerometer and collects them with frequency

noted in hertz, then sums the values according to a user-specified

time sampling interval termed an epoch and records them as

activity counts. The approximate cutoff values for activity count

are 0 to 1.5 for sedentary, 1.5 to 3 for light physical activity, 3 to 6 for

moderate physical activity, and 6 or more for vigorous physical

activity (39). Nap time was calculated as the sum of sleep time

during waking hours. Wake-up time was set as the time when

continuous activity was shown to be initiated on the actigraph. As

used in several previous studies, we set a threshold of 1 hour for nap

time, which has been shown to be associated with the risk of

developing diabetes (21, 22, 40, 41), napping time was used to

divide the patients into two groups; short (≤1 hour) and long (>1

hour). The activity mean is the average of the activity counts

detected by the accelerometer during one minute, and the activity

index is the percentage of the number of epochs where the activity

count is greater than zero over the length of the measurement time

period. Nocturnal activity index is a measure of sleep quality and

calculated as movement of the whole body during sleep hours, with

higher values indicating lower sleep quality (32, 33). Apnea-

hypopnea index (AHI) was determined using an apnomonitor

(SAS-2100, Teijin, Tokyo, Japan) (34).
Assessment of autonomic nervous function

For assessment of cardiac autonomic function, HRV was

measured using an active tracer device (AC-301A®, Arm

Electronics, Tokyo, Japan) and the MemCalc Chiram 3 system,

version 2.0 (Suwa Trust, Tokyo, Japan), with the standard deviation

of the NN (RR) interval (SDNN), noted in previous reports as a

noninvasive method (24, 25, 34–36), used as an index. Subjects wore

an actigraph twice for 24 consecutive hours.
Statistical analysis

Non-repeated t-tests and chi-square tests (categorical variables)

were utilized to compare variables, including insulin secretion and

sensitivity, between the short and long nap groups, as appropriate.

Multiple regression analysis was performed to determine whether

there was an independent relationship between the variables

considered. Associations of age (under and over 50 years),

gender, BMI (under and over 25 kg/m2), current smoker, alcohol

consumption, hypertension, dyslipidemia, and HbA1c (under and

over 5.8%) with disposition index, QUICKI, and Matsuda index

were analyzed. For multivariate linear regression analyses, the

covariates included age, gender, body mass index, current smoker,

alcohol consumption, hypertension, dyslipidemia, and HbA1c.

Multivariate linear regression analyses of factors associated with

disposition index were performed using QUICKI and Matsuda

index, with Model 1 including nap duration, Model 2 nocturnal

sleep duration, Model 3 SDNN, Model 4 nap duration and

nocturnal sleep duration, Model 5 nap duration and SDNN, and
Frontiers in Endocrinology 04
Model 6 nap duration, nocturnal sleep duration, and SDNN, in

addition to the other covariates previously noted. Naptime and

daytime physical activity were not included in the covariates, as

simultaneous entry was deemed difficult due to multicollinearity.

The present patients were divided into two groups, those whose

sleeping time was less than and more than six hours (22, 24), with

subgroup analysis conducted to examine the relationship between

Matsuda index, a measure of insulin sensitivity, and nap time. For

multivariate linear regression analysis of factors associated with

Matsuda index of patients with short and long nocturnal sleep

duration, Model 1 included nap duration, Model 2 SDNN, and

Model 3 nap duration and SDNN, in addition to the other

covariates previously noted. Daytime nap time, nocturnal sleep

time, insulin secretion/sensitivity index, and SDNN were natural

log transformed (ln) to normalize the skewed distribution. All

statistical analyses were performed using JMP® Pro, version

15.2.0 (SAS Institute, Cary, NC, USA). The reported p values are

two-tailed and were considered to be statistically significant

at <0.05.
Results

Comparisons of baseline characteristics for the subjects

categorized by daytime napping duration are shown in Table 1.

Those in the long nap group exhibited higher BMI and prevalence

for alcohol consumption. In contrast, age, gender, BMI, HbA1c,

AHI, and diabetes type shown by 75-g OGTT findings were not

different between the groups. There are differences in clinical

characteristics between people included in this analysis compared

to those excluded (Supplementary Table).

Comparisons of insulin secretion (insulinogenic index, CIR,

disposition index) and sensitivity (QUICKI, BIGTT- SI, Matsuda

index), calculated using a 75-g OGTT, between the groups are

presented in Figure 2. Insulin sensitivity values, such as QUICKI

(p<0.01), BIGTT- SI (p<0.05), and Matsuda index (p<0.05), for the

long nap group were lower, while parameters for insulin secretion

were not different. For autonomic function, SDNN for the long nap

group was lower (p<0.01), while LF/HF and HF were not different

(Figure 3). Additionally, sleep duration was shorter (p<0.01) and

daytime activity lower (p<0.05) for the long nap group, while

nocturnal activity index was not different (Figure 4).

Next, the relationships of disposition index for insulin secretion,

and QUICKI and Matsuda index for insulin sensitivity with other

clinical factors were examined (Table 2). Disposition index values

were lower for subjects with advanced age (>50 years), alcohol

consumption, hypertension, and high HbA1c, while QUICKI values

were lower for subjects with advanced age, high BMI, current

smoking habit, dyslipidemia, and high HbA1c. On the other

hand, Matsuda index values were higher for subjects with

advanced age, high BMI, current smoking habit, and dyslipidemia.

Multiple linear regression analysis was performed to further

examine whether the associations of nap time, sleep duration, and

SDNN with body mass index, QUICKI, and Matsuda index were

independent of potential clinical confounders (Table 3). The

adjusted R2 for models 1-6 were all between 0.13 and 0.26, which
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were considered reasonable as goodness of fit. Those results showed

that long nap duration remained inversely associated with QUICKI

(b=-0.135, p<0.01) and Matsuda index (b=-0.119, p<0.05) (Model

1), while SDNN showed a positive association with QUICKI

(b=0.118, p<0.05) (Model 3). Furthermore, even after addition of

sleep duration (Model 4), SDNN (Model 5), as well as both (Model

6) to Model 1, long nap duration remained inversely associated with

QUICKI (b=-0.127, p<0.05) and Matsuda index (b=-0.123, p<0.05).
On the other hand, nap duration was not associated with insulin

secretion or sensitivity (Model 2).

Finally, specific subgroup analyses showed more prominent

associations of long nap duration with lower Matsuda index value in

subjects with a short sleep duration (≤6 hours) (b=-0.137, p<0.05,
adjusted R2=0.23), while that was not a factor in those with a long sleep

duration (>6 hours) (b=-0.156, p=0.06, adjusted R2=0.27) (Table 4).
Discussion
Results obtained in the present study showed that a nap time of

greater than one hour was independently associated with decreased

insulin sensitivity related to autonomic dysfunction. Moreover,

specific subgroup analyses revealed a more prominent association

of long nap time with lower insulin sensitivity in individuals with a

nighttime sleep duration of six hours or less.

A previous report noted that shorter (six hours) and longer (eight

hours) sleep durations were associated with incident diabetes mellitus

(22). Additionally, recent studies have shown that excessive napping for

more than one hour increases the risk for development of diabetes, in

contrast to a shorter nap duration (21, 22, 40, 41). Previously reported

ORs for diabetes onset were 1.2395% (CI 1.18 .1.29) for individuals

who nap for one hour or less and 1.55 (95%CI 1.45.1.66) for those who

nap for more than one hour, as compared to those who do not nap

(40). This is considered to be due to decreased sleep duration and

quality caused by a longer nap duration (42–44).
FIGURE 2

Comparisons of indices for insulin secretion and sensitivity between short and long nap groups. Parameters for insulin secretion [insulinogenic index,
corrected insulin response (CIR), disposition index] and insulin sensitivity (QUICKI, BIGTT- SI, Matsuda index) were calculated based on plasma
glucose and insulin levels determined at 0, 30, 60, 90, 120 minutes with a 75-g oral glucose tolerance test. These parameters were natural logarithm
transformed to achieve a normal distribution. Each column shows the mean ± standard error. P values were determined using Student’s t-test.
TABLE 1 Comparisons of clinical characteristics categorized by daytime
napping duration.

Daytime napping
duration

Short
(≤1 hr)

Long (>1 hr) P

Number of subjects 115 321

Age, years 58.4 58.1 0.86

Male gender, n (%) 54 (47.0) 147 (45.8) 0.83

Body mass index, kg/m2 22.9±0.5 24.4±0.3 <0.01

Current smoker, n (%) 26 (22.6) 86 (26.8) 0.38

Alcohol consumption, n (%) 51 (44.4) 106 (33.0) 0.03

Hypertension, n (%) 70 (60.9) 193 (60.1) 0.89

Dyslipidemia, n (%) 60 (52.2) 172 (53.6) 0.80

HbA1c, % 5.7±0.0 5.7±0.0 0.46

OGTT

NGT, n (%) 36 (38.7) 91 (36.3) 0.68

IGT, n (%) 40 (43.0) 114 (45.4) 0.69

DM Type, n (%) 17 (18.3) 46 (18.3) 0.99

Nap duration (min) 34.1±9.9 189.0±5.9 <0.01

Nocturnal sleep duration (min) 362.3±10.6 319.1±6.5 <0.01

Nocturnal activity index 34.52±1.61 33.18±0.97 0.48

Daytime activity mean 155.58±4.47 119.43±2.68 <0.01

AHI 8.6±1.0 9.4±0.6 0.46
Data are presented as the mean ± standard error (SE) for continuous variables, and number
(%) for dichotomous variables. P values are shown for comparisons of mean values for the
groups (unrepeated t-test) or percentages (chi-squared test). OGTT, oral glucose tolerance
test; NGT, normal glucose tolerance; IGT, impaired glucose tolerance; DM, diabetes mellitus;
AHI, apnea hypopnea index.
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FIGURE 4

Comparisons of indices for sleep duration and quality between short and long nap groups. Parameters for sleep duration, quality, and daytime
activity were determined. These parameters were natural logarithm transformed to achieve a normal distribution. Each column shows the mean ±
standard error. P values were determined using Student’s t-test.
FIGURE 3

Comparisons of indices for HRV between short and long nap groups. As parameters for HRV, SDNN [standard deviation of NN (RR)), LF/HF (low-
frequency domain/ high-frequency domain), and HF (high-frequency domain) were determined. These parameters were natural logarithm
transformed to achieve a normal distribution. Each column shows the mean ± standard error. P values were determined using Student’s t-test.
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Another report speculated that long naps during the day may

affect the sleep-wake cycle and noted that disruption of the

circadian rhythm is an environmental risk factor predisposing to

type 2 diabetes, as fragmented sleep induces sympathetic

stimulation during the day, a mechanism possibly related to

insulin sensitivity (24). Thus, misalignment of the circadian

rhythm results in reduced insulin sensitivity due to sympathetic

and other influences. Our previous study found that autonomic

function is associated with decreased insulin sensitivity (30).

Initially, we speculated that a prolonged nap duration would thus

be shown to be associated with decreased insulin sensitivity via

decreased autonomic function, and the present results showed that

autonomic function was lower in the long as compared with the

short group. However, multivariate analysis revealed that nap

duration was independently associated with decreased insulin

sensitivity. This may be because several factors other than
Frontiers in Endocrinology 07
autonomic function are involved in the association of long nap

duration with development of diabetes.

Excessive napping may also decrease daytime activity and

calorie consumption (45), leading to obesity (46), increased

insulin resistance, and increased risk of developing diabetes. The

present long nap group had lower daytime activity and higher BMI.

Although nap time was associated with drinkers in this study,

the results of multiple regression analysis with alcohol consumption

as a covariate, which showed that excessive napping was

independently associated with insulin sensitivity, did not mean

that napping was associated with reduced insulin sensitivity via

alcohol consumption. Although napping as a complement to short

nighttime sleep may be refreshing, naps should total no more than

one hour each day. Many previous reports have used self-reported

questionnaires (Pittsburgh Sleep Quality Index) to assess sleep and

nap duration (40, 47–49), while objectively obtained quantitative
TABLE 2 Analyses of factors associated with disposition index, QUICKI, and Matsuda index.

Variables
Disposition index QUICKI Matsuda index

Mean ± SE P Mean ± SE P Mean ± SE P

Age

≤50 years (n=132) -2.20±0.09 -1.82±0.02 1.61±0.08

>50 years (n=304) -2.69±0.06 <0.01 -1.77±0.01 <0.05 1.92±0.05 <0.01

Gender

male (n=201) -2.63±0.07 -1.80±0.01 1.76±0.06

female (n=235) -2.45±0.07 0.06 -1.76±0.01 0.06 1.89±0.06 0.12

Body mass index

<25 kg/m2 (n=284) -2.56±0.06 -1.74±0.01 2.04±0.05

≥25 kg/m2 (n=152) -2.49±0.08 0.49 -1.86±0.01 <0.01 1.45±0.07 <0.01

Current smoker

yes (n=112) -2.62±0.10 -1.82±0.02 1.67±0.08

no (n=324) -2.50±0.06 0.31 -1.77±0.01 <0.05 1.88±0.05 <0.05

Alcohol consumption

yes (n=157) -2.75±0.08 -1.77±0.02 1.89±0.07

no (n=279) -2.42±0.06 <0.01 -1.79±0.01 0.43 1.79±0.06 0.30

Hypertension

yes (n=263) -2.70±0.06 -1.79±0.01 1.84±0.06

no (n=173) -2.30±0.08 <0.01 -1.78±0.01 0.63 1.81±0.07 0.81

Dyslipidemia

yes (n=232) -2.52±0.07 -1.82±0.01 1.66±0.06

no (n=204) -2.56±0.07 0.69 -1.74±0.01 <0.01 2.00±0.06 <0.01

HbA1c

<5.8% (n=274) 2.32±0.07 -1.77±0.01 1.89±0.06

≥5.8% (n=162) -2.81±0.07 <0.01 -1.80±0.01 <0.01 1.75±0.07 0.11
frontier
Student’s t-test was used for categorical variables and the obtained data are presented as mean ± standard error (SE). SDNN, standard deviation of NN(RR) interval.
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data based on actigraph results were used in the present

investigation. Thus, the results may be different as compared to

self-reported and polysomnographic assessments. It is conceivable

that use of self-reported questionnaires indicate shorter nap

durations, thus leading to underestimation. In a study in which

polysomnography and actigraph were simultaneously used to assess

nap duration, that determined by actigraph findings was correlated

with polysomnography results (50). Thus, use of an actigraph to

determine actual nap duration is considered to be reasonable.

Napping may mitigate adverse health effects in individuals who

sleep for a short time at night. In the present study, excessive

napping was associated with decreased insulin sensitivity only in

subjects with less than six nighttime sleep hours, suggesting that a

nap of one hour or more may contribute to increased risk of

diabetes development, even when naps are used to compensate

for short nightt ime sleep. Another study found that

daytime napping is a symptom of obstructive sleep apnea (51),

which induces oxygen deprivation, and also causes elevated

catecholamines and cortisol, resulting in increased insulin

resistance and contributing to impaired glucose tolerance (40, 52).

However, the present study found no difference in AHI between the

long and short groups. This may be due to the fact that few of the

subjects were affected by moderate or severe sleep apnea.

This study has several limitations. First, the results may not be

generalizable for all patients with varying glycemic status. Second,
Frontiers in Endocrinology 08
due to the cross-sectional design, a causal relationship could not be

determined. To avoid loss of statistical power, subjects who were

first diagnosed as diabetic based on glucose tolerance testing were

not excluded. Third, data for subgroups based on different levels of

glucose intolerance (NGT, IGT, DM types) were not analyzed so as

to avoid statistical power loss. Fourth, sleep assessment with

actigraphy was performed during hospitalization, thus actual

sleep behavior during daily life could not be assessed. The results

during hospitalization may not be exactly the same as napping

habits in daily life, but we believe that daily habits may be reflected

in how patients spend their time during hospitalization. Fifth,

polysomnography, considered as the gold standard for evaluating

sleep, was not used in this study and the possibility that the results

may differ from those obtained with that method cannot be ruled

out. Finally, the present results did not reveal any potential

mechanisms involved in the association of excessive napping with

autonomic function or insulin sensitivity. Leptin is known to be

involved in both sleep and autonomic function, and considered as a

potential candidate factor for napping, autonomic function, and

insulin sensitivity. In clinical studies, plasma leptin levels have been

shown to be associated with insulin sensitivity in both healthy and

obese women, as well as patients with type 2 diabetes. Nevertheless,

the present study is the first to report an association of long nap

duration with increased insulin sensitivity. We believe that these

results provide important information to better understand the
TABLE 3 Multivariate linear regression analysis of factors associated with disposition index, QUICKI, and Matsuda index.

Variables
Disposition index QUICKI Matsuda index

b (SE) adjusted R2 b (SE) adjusted R2 b (SE) adjusted R2

Model 1 0.15 0.22 0.25

Nap duration (≤1 hr=0, >1 hr=1) 0.003 (0.05) -0.135 (0.01)** -0.119 (0.04)*

Model 2 0.15 0.20 0.24

Nocturnal sleep duration -0.009 (0.10) -0.020 (0.02) -0.043 (0.08)

Model 3 0.14 0.19 0.23

SDNN 0.001 (0.17) 0.118 (0.03)* 0.093 (0.14)

Model 4 0.15 0.21 0.26

Nap duration (≤1 hr=0, >1 hr=1) 0.001 (0.06) -0.141 (0.01)** -0.135 (0.05)*

Nocturnal sleep duration -0.009 (0.11) -0.049 (0.02) -0.072 (0.08)

Model 5 0.14 0.21 0.24

Nap duration (≤1 hr=0, >1 hr=1) 0.007 (0.06) -0.129 (0.01)* -0.116 (0.05)*

SDNN 0.002 (0.18) 0.098 (0.03) 0.075 (0.14)

Model 6 0.13 0.20 0.25

Nap duration (≤1 hr=0, >1 hr=1) 0.009 (0.06) -0.127 (0.01)* -0.123 (0.05)*

Nocturnal sleep duration 0.004 (0.11) -0.024 (0.02) -0.060 (0.09)

SDNN 0.008 (0.18) 0.112 (0.03)* 0.099 (0.14)
Standard beta coefficient and standard error (SE) values are shown. For multivariate linear regression analyses, the covariates included age, gender, body mass index, current smoker, alcohol
consumption, hypertension, dyslipidemia, and HbA1c. Model 1 includes Nap duration, Model 2 Nocturnal sleep duration, Model 3 SDNN, Model 4 Nap duration and Nocturnal sleep duration,
Model 5 Nap duration and SDNN, and Model 6 Nap duration, Nocturnal sleep duration and SDNN, in addition to other covariates already noted. SDNN, standard deviation of NN(RR) interval.
*p<0.05, **p<0.01.
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pathophysiological significance of napping as a factor related to

abnormal blood glucose levels.

In conclusion, in patients without apparent diabetes, napping

for a long period of time was found to be independently associated

with decreased insulin sensitivity from autonomic dysfunction.

Additionally, a prominent association of long nap duration with

lower insulin sensitivity was observed in patients with a short

nighttime sleep period.
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Model 3 0.26

Nap duration (≤1 hr=0, >1 hr=1) -0.157 (0.06)

SDNN 0.112 (0.23)
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regression analyses, the covariates included age, gender, body mass index, current smoker,
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