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Objective: Sex steroid hormonesmay play a role in insulin resistance and glucose

dysregulation. However, evidence regarding associations between early-

pregnancy sex steroid hormones and hyperglycemia during pregnancy is

limited. The primary objective of this study was to assess the relationships

between first trimester sex steroid hormones and the subsequent

development of hyperglycemia during pregnancy; with secondary evaluation

of sex steroid hormones levels in mid-late pregnancy, concurrent with and

subsequent to diagnosis of gestational diabetes.

Methods: Retrospective analysis of a prospective pregnancy cohort study was

conducted. Medically low-risk participants with no known major endocrine

disorders were recruited in the first trimester of pregnancy (n=319). Sex steroid

hormones in each trimester, including total testosterone, free testosterone,

estrone, estradiol, and estriol, were assessed using high-performance liquid

chromatography and tandem mass spectrometry. Glucose levels of the 1-hour

oral glucose tolerance test and gestational diabetes diagnosis were abstracted

from medical records. Multivariable linear regression models were fitted to

assess the associations of individual first trimester sex steroids and glucose levels.

Results: In adjusted models, first trimester total testosterone (b=5.24, 95% CI:

0.01, 10.46, p=0.05) and free testosterone (b=5.98, 95% CI: 0.97, 10.98, p=0.02)

were positively associated with subsequent glucose concentrations and

gestational diabetes diagnosis (total testosterone: OR=3.63, 95% CI: 1.50, 8.78;

free testosterone: OR=3.69; 95% CI: 1.56, 8.73). First trimester estrone was also

positively associated with gestational diabetes (OR=3.66, 95% CI: 1.56, 8.55). In

mid-late pregnancy, pregnant people with gestational diabetes had lower total

testosterone levels (b=-0.19, 95% CI: -0.36, -0.02) after adjustment for first

trimester total testosterone.
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Conclusion: Early-pregnancy sex steroid hormones, including total

testosterone, free testosterone, and estrone, were positively associated with

glucose levels and gestational diabetes in mid-late pregnancy. These hormones

may serve as early predictors of gestational diabetes in combination with other

risk factors.
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Introduction

Hyperglycemia, mainly caused by gestational diabetes mellitus

(GDM), is a common metabolic complication during pregnancy (1,

2). GDM is associated with an increased risk of pregnancy related

and neonatal outcomes, such as cesarean delivery, macrosomia, and

neonatal hypoglycemia (1, 2). Furthermore, in the longer term,

people diagnosed with GDM have a higher risk of progression to

type 2 diabetes (T2DM), with around 19% of people with GDM

develop T2DM after 5 years or more from delivery (3, 4). Children

born to people with GDM have an increased risk of obesity,

metabolic diseases and neurodevelopmental disorders (5, 6).

Genetic predisposition, age, race/ethnicity, and obesity have been

identified as risk factors for GDM (1, 7–9). Yet, the pathogenesis of

GDM still is poorly understood.

GDM and T2DM are both characterized by insulin resistance

(1, 7). Evidence suggests that endogenous sex steroid hormones

(SSH), such as testosterone and estradiol, play important roles in

glucose intolerance, insulin resistance and the development of

T2DM in non-pregnant people (10–13). Additionally, people with

hyperandrogenic conditions, such as polycystic ovary syndrome

(PCOS) and congenital adrenal hyperplasia, have a higher risk of

insulin resistance and T2DM (14–16). Lowering androgen

production in PCOS patients leads improved insulin sensitivity

and reduces fasting insulin levels (17, 18). Postmenopausal

hormone therapy with estrogen/progestin reduces the incidence

of diabetes (19, 20). Therefore, through their impacts on insulin and

glucose metabolism, endogenous SSH may be involved in the

pathogenesis of T2DM.

Likewise, SSH may play a role in the development of GDM.

Nevertheless, pregnancy is a unique period given the rapid

hormonal changes and the substantially increased estrogen

concentrations (21), which may affect the relationship between

SSH and glucose regulation. Evidence from people with PCOS

substantiates the link between SSH and the risk of GDM during

pregnancy (22, 23). However, to date, very few prospective studies

have assessed the involvement of SSH, including testosterone and

estriol (E3), in the development of GDM in people without PCOS

(24–27). Yet, these previous studies have only examined total

testosterone (TT) rather than free testosterone (fT) which

represents the biologically active fraction of testosterone. Also,
02
these studies did not concurrently examine multiple estrogens as

well as testosterone despite their interrelatedness.

Additionally, the association between SSH and GDM may be

bidirectional, operating through adipose tissue and insulin

regulation (28, 29). Insulin induces androgen biosynthesis in

cultured human ovarian theca and stromal cells (30), which

suggests that GDM could in turn alter androgen production.

Several small case-control studies have assessed differences in SSH

in late pregnancy, subsequent to GDM diagnosis, with inconsistent

findings (31–33). Moreover, the previous studies did not consider

the potential confounding effect of early-pregnancy SSH on the

relationship between GDM and SSH in late pregnancy.

Here, we leverage data and biospecimens from a pregnancy

cohort that was medically not greater than normal risk at baseline

with no known preexisting hormonal conditions to assess

testosterone (fT and TT) and estrogens (estrone, estradiol, E3) in

early pregnancy in relation to glucose concentrations and GDM

diagnosis assessed in mid-late pregnancy. Secondarily, we evaluated

associations between GDM diagnosis and the same set of SSH

assessed later in pregnancy with and without adjusting for early-

pregnancy SSH levels.
Materials and methods

Study overview

The current study is a retrospective analysis of a prospective

pregnancy cohort, the Understanding Pregnancy Signals and Infant

Development (UPSIDE) study that is a part of the Environmental

Influences on Child Health Outcomes (ECHO) program (34). From

2015 to 2019, the UPSIDE study recruited pregnant people (n=326)

in their first trimester receiving prenatal care through the University

of Rochester Medical Center affiliated obstetric clinics (35). Briefly,

the inclusion criteria for the UPSIDE study were (1) <14 weeks of

gestation, (2) age 18 or older, (3) a singleton pregnancy, (4) able to

communicate in English, (5) no known substance abuse problems

or history of psychotic illness, and (6) no greater than normal

medical risk. Additionally, women with diagnosed PCOS and

T2DM were excluded from the cohort. The study was approved

by the institutional review boards at the University of Rochester and
frontiersin.org
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Rutgers University. All participants provided written informed

consent prior to participation. The current analysis included

participants with SSH measured during pregnancy and a 1-hour

oral glucose tolerance test (OGTT) or GDM diagnosis

(n=319; Figure 1).
Sex steroid hormone assays

Blood samples were collected in each trimester (1st trimester: 12.2 ±

1.3 weeks; 2nd trimester: 21.2 ± 1.8 weeks; 3rd trimester: 31.4 ± 2 weeks)

and after processing, serum was stored in a -80°C freezer until

overnight shipment to the Endocrine and Metabolic Research

Laboratory at Harbor-UCLA Medical Center. SSH, including TT, fT,

estrone(E1), estradiol(E2), and E3, were quantified using validated

liquid chromatography with tandem mass spectrometry (LC-MS/MS)

methods (36). Briefly, LC–MS/MS was used to assess testosterone

concentrations using a Shimadzu HPLC system (Columbia, MD) and

an Applied Biosystems API5500 LC–MS/MS (Foster City, CA)

equipped with a Turbo-Ion-Spray source that used positive mode.

Quality control was performed on each assay run using spiked samples.

The limit of quantification (LOQ) for TT was 2 ng/dL. Equilibrium

dialysis using labeled testosterone was used to measure fT% which is

used to calculate fT levels (fT=TT x fT%). fT% was not detected in one

sample collected in the 1st trimester. The Shimadzu HPLC system

(Columbia, MD) and a triple quadrupole mass spectrometer (API5000

LC–MS/MS, Foster City, CA) were used to measure estrogen

concentrations. The LOQ was 2 pg/mL for E1 and E2, and 50 pg/

mL for E3. E3 was not detected in 32 samples collected in the 1st

trimester LOQ=
ffiffiffi

2
p

was used to replace missing E3 values (n=32) and

E3 values less than LOQ=
ffiffiffi

2
p

. We additionally calculated the ratio of

TT to E2 as a measure of hormone balance.
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Glucose measures

As part of routine obstetric care, participants were screened for

GDM with 1-hour 50g OGTT at an average gestational age of 27.7

weeks ( ± 2.9 weeks). Participants with a 1-hour OGTT value of

more than 135 mg/dL underwent a further diagnostic test with 3-

hour 100g OGTT. Per clinical protocols, GDM was diagnosed

according to the National Diabetes Data Group (NDDG) criteria:

if the 3-hour OGTT values met more than two of the following

values: fasting, 105 mg/dL; 1 hour, 190 mg/dL; 2 hours, 165 mg/dL;

and 3 hours, 145 mg/dL. Several participants (n=5) were diagnosed

with GDM without completing the 3-hour OGTT by either (1) 1-

hour OGTT >200 mg/dL, (2) fasting glucose levels >125 mg/dL, or

(3) by paneled blood glucose levels due to inability to complete 3-

hour OGTT because of intolerance or history of gastric bypass

surgery. OGTT values and GDM diagnosis were abstracted from

electronic medical records by trained study staff.

For the purpose of this study, we additionally considered the

Carpenter-Coustan (CC) criteria which may identify more GDM

cases (37, 38). CC criteria use lower threshold values: if the 3-hour

OGTT values met more than two of the following values: fasting, 95

mg/dL; 1 hour, 180 mg/dL; 2 hours, 155 mg/dL; and 3 hours, 140

mg/dL. Six additional participants were classified as having GDM

based on the CC criteria.
Body weight measures and
other covariates

Adipose tissue may be involved in the metabolism of SSH (39–

41) and glucose dysregulation (28, 42, 43). We, therefore, included

early-pregnancy body mass index (BMI) as a key confounder in the
FIGURE 1

Flow chart displaying inclusion and exclusion of this study. GDM, gestational diabetes.
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analyses. Early-pregnancy BMI, used as a proxy for pre-pregnancy

BMI, was calculated based on weight and height abstracted from

medical records from the first clinical visit prior to 14 weeks

gestation and the formula BMI = Weight(kg)
Height(m)2

(44).

SSH have been linked to adiposity (45) and early excess

gestational weight gain (GWG) has been associated with GDM

(46). Therefore, early GWG through the end of 2nd trimester was

explored as a potential mediator between the associations of first

trimester SSH and GDM. GWG through the end of 2nd trimester

was calculated as weight at the end of the 2nd trimester minus early-

pregnancy weight. Additionally, GWG through the end of 2nd

trimester and total GWG until delivery were included as

confounders in our secondary analyses of associations between

GDM diagnosis and SSH assessed in mid-late pregnancy.

Age, race/ethnicity, parity, gestational age at the time of blood

sample collection, fertility treatment, and infant sex, have been

associated with SSH levels during pregnancy and in some cases,

GDM as well, and were thus included as covariates (8, 47). Race/

ethnicity was categorized as non-Hispanic White, non-Hispanic

Black, Hispanic, and others. Parity was characterized as nulliparous

and parous. Gestational dating was based on crown-rump length at

the earliest available ultrasound and last menstrual period was used

when an early ultrasound was not available (7%). Fertility treatment

(any/none) was classified based on participant self-report. Although

participants diagnosed with PCOS were excluded from the UPSIDE

study, to address the possibility of undiagnosed cases, participants

were evaluated with several questions to address relevant

symptoms, including regularity of periods, hirsutism and acne

(see Supplementary Materials) (48). Participants (n=13)

categorized as potentially undiagnosed PCOS cases and were

excluded in the sensitivity analyses. Additionally, four participants

reported having a history of GDM in previous pregnancies and were

excluded in the sensitivity analyses.
Statistical analysis

Descriptive statistics were calculated for all variables of interest.

SSH were not normally distributed and were thus log-transformed.

Early-pregnancy BMI was right skewed and was inverse-

transformed. In the primary analyses, a multivariable linear

regression model was fitted to assess the association of each first

trimester SSH and glucose levels (continuous variable) based on

routine 1-hour OGTT. A logistic regression model was fitted to

assess the association of each first trimester SSH and GDM

diagnosis. Age, race/ethnicity, parity, gestational age at the time

of blood sample collection, fertility treatment, early-pregnancy

BMI, and infant sex were included as covariates. Fertility

treatment was not included in logistic regression models as no

positive GDM cases were diagnosed in people reporting fertility

treatment for the current pregnancy. GWG through the end of 2nd

trimester was further assessed as a potential mediator of the

associations between first trimester SSH and GDM diagnosis

(Supplementary Figure 1) with bootstrap to estimate bias-

corrected confidence intervals (CI). In secondary analyses, linear

mixed effects models were fitted to assess the associations of GDM
Frontiers in Endocrinology 04
diagnosis and individual SSH in the 2nd and 3rd trimesters. Age,

race/ethnicity, parity, gestational age at the time of blood sample

collection, fertility treatment, infant sex, early-pregnancy BMI and

GWG were included as covariates. First trimester SSH was

additionally included as a key confounder. All analyses were

conducted using STATA 17.0 (College Station, TX: StataCorp LLC).
Results

Characteristics of the study cohort

The majority of participants (n=319) were non-Hispanic White

(55.5%), had at least one prior birth (65.2%), had a college

education or more (62.0%), and were overweight or obese in early

pregnancy (57.6%). Twenty-two participants (6.9%) were classified

as having GDM in this study. The characteristics of the participants

grouped by GDM diagnosis are described in Table 1. Participants

with GDM were slightly older that those without GDM (30.95 ±

0.71 vs 28.66 ± 0.27 years, p=0.005). SSH varied significantly across

trimesters except for fT (Supplementary Table 1). Trend tests

indicated that E1, E2, and E3 levels increased and TT/E2 ratios

decreased across pregnancy (p<0.001). The correlations among first

trimester SSH were weak to moderate (r=0.17-0.35) except for the

high correlations between TT and fT (r=0.91) and between E1 and

E2 (r=0.81). The correlation between TT and E3 was not significant

(Supplementary Table 2).
Associations of first trimester sex steroid
hormones with mid-late pregnancy
glucose levels and GDM diagnosis

In the primary multivariable regression models, first trimester

TT and fT were positively associated with glucose levels measured

in mid-late pregnancy after adjusting for maternal age, race/

ethnicity, parity, gestational age of blood draw, early-pregnancy

BMI, fertility treatment, and infant sex (Table 2). One natural-log

unit increases in TT and fT were associated with 5.24 mg/dL (TT:

95% CI: 0.01, 10.46, p=0.05) and 5.98 mg/dL (fT: 95% CI: 0.97,

10.98, p=0.02) higher glucose levels, respectively. Associations

between first trimester estrogens and glucose levels were also

positive but slightly weaker. Higher first trimester TT and fT was

also associated with increased odds of GDM diagnosis (TT:

OR=3.63, 95% CI: 1.50, 8.78, p=0.004, Figure 2A; fT: OR=3.69,

95% CI: 1.56, 8.73, p=0.003, Figure 2B). Higher first trimester E1

(OR=3.66, 95% CI: 1.56, 8.55, p=0.003, Figure 2C) and E2

(OR=2.92, 95% CI: 1.00, 8.55, p=0.05), but not E3, were also

associated with higher odds of GDM diagnosis. Exclusion of

potentially undiagnosed PCOS cases in sensitivity analyses

slightly strengthened associations between testosterone and E1

concentrations and glucose levels/GDM diagnosis (Supplementary

Table 3). Exclusion of participants with a history of GDM during

previous pregnancies had similar results on the associations of fT

and E1 with glucose levels and GDM diagnosis (Supplementary

Table 4). Associations of TT, fT, and E1 with clinical GDM
frontiersin.org
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diagnosis (solely by clinical criteria, not CC criteria) remained

significant (Supplementary Table 5). Given the relatively weak

correlations between testosterone and estrogens, we explored

models including both fT and E1 simultaneously, fT and E1 were

still associated with higher odds of GDM diagnosis (fT: OR=3.33,

95% CI: 1.35, 8.23, p=0.009; E1: OR=3.32, 95% CI: 1.38, 8.03

p=0.008); associations with glucose levels were positive but

attenuated compared to models assessing the hormones

individually (fT: b =5.12, 95% CI: -0.02, 10.26, p=0.05; E1:

b =3.31, 95% CI: -1.35, 7.97, p=0.16).
Evaluation of confounding and mediation
by adiposity

Early-pregnancy BMI was a key confounding variable in the

associations between sex steroids and glucose levels. Early-
Frontiers in Endocrinology 05
pregnancy BMI was positively associated with glucose levels

(b=0.65, 95% CI: 0.21, 1.08, p=0.004) and first trimester fT and

TT/E2 ratio, but was negatively associated with E1 and E2

(Supplementary Table 6). Regression models including early-

pregnancy BMI as a covariate (Table 2) showed similar but

slightly weakened significant positive associations between

testosterone and glucose levels/GDM compared to regression

models excluding early-pregnancy BMI (Supplementary Table 7).

The relationships among early-pregnancy fT, early-pregnancy BMI

and GDM are also illustrated in Supplementary Figure 2. The

association between E1 and GDM was attenuated (OR=2.95, 95%

CI: 1.31, 6.64, p=0.01) by excluding early-pregnancy BMI in the

models (Supplementary Table 7).

GWG might mediate the effect of sex steroids on glucose levels.

But GWG through the end of the 2nd trimester was not significantly

associated with GDM diagnosis (OR=0.96, p=0.15) and only

showed a borderline association with first trimester TT (b=1.61,
TABLE 2 Associations of Log-transformed First Trimester Sex Steroid Hormones with Glucose Levels and Gestational Diabetes Diagnosis in Mid-late Pregnancy.

Sex Steroid Hormones Glucose Levels (mg/dL) (n=284) GDM Diagnosis (n=308)

Coefficient 95% CI P OR 95% CI P

TT (ng/dL) 5.24 0.01, 10.46 0.05 3.63 1.50, 8.78 0.004

fT (ng/dL) 5.98 0.97, 10.98 0.02 3.69 1.56, 8.73 0.003

E1 (pg/mL) 4.39 -0.15, 8.94 0.06 3.66 1.56, 8.55 0.003

E2 (pg/mL) 5.65 -1.02, 12.31 0.10 2.92 1.00, 8.55 0.05

E3 (pg/mL) 2.99 -0.17, 6.14 0.06 1.06 0.66, 1.71 0.82

TT/E2 1.68 -3.46, 6.83 0.52 1.62 0.77, 3.44 0.21
front
Maternal age, race/ethnicity, parity, gestational age of blood draw, early-pregnancy BMI, and infant sex were adjusted in all models. Fertility treatment was adjusted in the models with glucose
levels as the outcome. All sex steroids were log-transformed. GDM, gestational diabetes; TT, total testosterone; fT, free testosterone; E1, estrone; E2, estradiol; E3, estriol.
TABLE 1 Characteristics of UPSIDE Participants (n=319).

Variablea All Participants (n=319)b Participants with GDM (n=22) Participants without GDM (n=297)c

Age (years) 28.82 ± 4.68 30.95 ± 3.33 28.66 ± 4.73

Race/Ethnicity

White, Non-Hispanic 177 (55.5%) 14 (63.6%) 163 (54.9%)

Black, Non-Hispanic 82 (25.7%) 3 (13.6%) 79 (26.6%)

Hispanic 34 (10.7%) 3 (13.6%) 31 (10.4%)

Others 26 (8.2%) 2 (9.1%) 24 (8.1%)

Nulliparous 110 (34.8%) 10 (45.5%) 100 (34%)

Education

High school or less 120 (38.0%) 8 (36.4%) 112 (38.1%)

Fetal sex_male 158 (50.5%) 10 (45.5%) 148 (50.9%)

Early-pregnancy BMI (kg/m2) 28.27 ± 7.04 30.65 ± 8.34 28.09 ± 6.92

Glucose levelsd (mg/dL) 113.66 ± 26.32 157.82 ± 16.58 110.13 ± 23.63
aContinuous variables are summarized using mean and standard deviation; Categorical variables are summarized using count and percentage. bSample size for parity, education and early-
pregnancy BMI is 316; sample size for infant sex is 313; sample size for glucose levels is 297. cSample size for parity, education and early-pregnancy body mass index (BMI) is 294; sample size for
infant sex is 291; sample size for glucose level is 275. dGlucose levels were derived from 1-hour glucose tolerance test results.
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95% CI: -0.08, 3.30, p=0.06). The mediation effect of GWG on the

relationship between TT and GDM was not significant (indirect

effect: b=-0.05, 95% CIbootstrap: -0.22, 0.03).
Associations of GDM diagnosis with
sex steroid hormones in the 2nd

and 3rd trimesters

GDM diagnosis was positively associated with E1 levels (b=0.29,
95% CI: 0.02, 0.56, p=0.03) in the 2nd and 3rd trimesters

(Supplementary Table 8). Further adjusting for E1 levels in the 1st

trimester, the association between GDM and E1 levels in the 2nd and

3rd trimesters was not significant (b=0.01, 95% CI: -0.18, 0.19,

p=0.95). However, GDM diagnosis was inversely associated with

TT in the 2nd and 3rd trimesters (b=-0.19, 95% CI: -0.36, -0.02,

p=0.03), after adjustment for first trimester TT. But no associations

between GDM and fT in the 2nd and 3rd trimesters were observed.
Discussion

In this prospective pregnancy cohort including pregnant people

who were medically not greater than normal risk at enrollment, first

trimester TT, fT, and E1 were positively associated with glucose

levels and GDM diagnosis in mid-late pregnancy, with similar

trends observed for E2. fT and E1 were independently associated

with increased odds of subsequent GDM diagnosis, when both were

included in the same model. Results were robust to the exclusion of

participants with potentially undiagnosed PCOS. GDM diagnosis
Frontiers in Endocrinology 06
was associated with lower TT but not fT levels in the 2nd and 3rd

trimesters, when first trimester SSH was adjusted, respectively.

In females, androgens are mainly produced by the ovaries,

adrenal glands, and adipose tissue (49). The placenta may also

contribute to androgen synthesis during pregnancy (50). Prior

studies that assessed associations between first trimester androgen

levels and subsequent GDM diagnosis are limited. Two studies

found a positive relationship between total testosterone levels in

early pregnancy and GDM diagnosis in White pregnant people (25,

26), consistent with the results of this study. However, Gözükara,

et al. (2015) and Mustaniemi, et al. (2023) measured TT levels using

immunoassays and did not directly measure fT, the biologically

active form of testosterone (25, 26). Improving upon the limitations

of immunoassays, this study used LC-MS/MS, a gold standard

method with greater sensitivity and specificity for steroid

measurement (51). Similar to TT, first trimester fT showed

positive and slightly stronger associations with glucose levels and

GDM diagnosis.

Although evidence of the associations of first trimester TT and

fT with GDM diagnosis is scarce, in prospective studies of non-

pregnant people, TT and/or fT have been positively associated with

development of T2DM in pre- and post-menopausal people (10, 12,

52, 53); but other studies have observed either no or attenuated

associations after adjusting for adiposity (54–56). Generally,

concentrations of TT and fT are higher in pregnant people

compared to non-pregnant people (49), so to the extent that

androgens play a causal role in glucose dysregulation, pregnancy

may be a period of particular vulnerability.

We observed little evidence that adiposity was a confounder or

mediator of the relationship between early-pregnancy testosterone
B

C

A

FIGURE 2

Distribution of first trimester log-transformed sex steroid hormones by gestational diabetes diagnosis. (A) distribution of total testosterone (TT)
(B) distribution of free testosterone (FT) (C) distribution of estrone (E1). * indicates significant differences between participants with and without
gestational diabetes (GDM) diagnosis.
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and the development of GDM. Gözükara, et al. (2015) and

Mustaniemi, et al. (2023) also identified that early pregnancy TT

levels were higher among participants who subsequently developed

GDM after adjusting for BMI (25, 26), which was consistent with

our findings. However, evidence suggests that androgens exert

direct and indirect effects on insulin sensitivity in adipose tissue

and skeletal muscle (28, 42, 43). In female animal models,

testosterone administration increased insulin resistance with or

without western diet (57, 58). In subcutaneous adipocytes

harvested from healthy non-pregnant people, testosterone

treatment induced insulin resistance in vitro and inhibited

insulin-stimulated glucose uptake (59). Administration of

testosterone to oophorectomized female rodents impaired whole-

body insulin-mediated glucose uptake potentially by lessening

glycogen synthase expression and GLUT4 transporter expression

in skeletal muscle (60–62). Also, anti-androgen treatments

improved glucose tolerance in pregnant rat models (63). Given

the findings in this study and the research in animal models and

human adipocytes, it is postulated that androgens may contribute to

the development of GDM by inducing insulin resistance not only in

adipose tissue but also in other tissues, such as skeletal muscle.

In pregnant people, estrogens are mainly produced by the

ovaries and placenta, with smaller contributions from other

tissues, such as adipose tissue and adrenal glands (24). In this

study, first trimester E1 levels were positively associated with

subsequent GDM diagnosis. Although excessive testosterone

could be converted into E1 in adipose tissue (43), in this study E1

was found to be a predictor of GDM independent of fT. We know of

no other study that has addressed this association previously, but in

a study of non-pregnant premenopausal people, estrone sulfate

levels were positively correlated with postprandial glucose levels

(56). In non-pregnant premenopausal people with PCOS, higher

E1/E2 ratio was associated with increased fasting and postprandial

glucose levels and insulin resistance (64). Therefore, E1 is

potentially involved in glucose intolerance and GDM.

Research on the mechanisms linking estrogens to glucose

regulation has primarily focused on E2 and evidence on E1 is

sparse (65). In this study, while all estrogens showed positive

associations with glucose levels and GDM, associations were

strongest for E1. Borthwick et al. (2001) found that estrone

sulfate could normalize hyperglycemia in obese-diabetic mice

(both male and female) via the reduction of hepatic glucose-6-

phosphatase (66). Although this finding conflicts with our results

and findings in premenopausal women (56, 64), it is consistent with

findings on E2, which may protect pancreatic b cell functions (67–

69), reduce adipocyte hypertrophy and insulin resistance (68, 70),

and improve hepatic glucose utilization (71). On the other hand,

high concentrations of endogenous E2, particularly seen during

pregnancy (21), may reduce insulin sensitivity (72) via decreased

GLUT4 transporter expression in skeletal muscle (73) and interfere

with insulin binding to insulin receptors (74). Therefore, the effect

of endogenous estrogens on glucose regulation may vary in a non-

linear manner and high concentrations of E1, similar to E2,

potentially induce insulin resistance during pregnancy.

Because GDMmay affect the production of SSH via insulin (30,

75), we further assessed the associations of GDM with SSH in mid-
Frontiers in Endocrinology 07
late pregnancy. When first-trimester SSH was not considered, the

associations between GDM and SSH levels in mid-late pregnancy

were consistent with the directions of associations between early-

pregnancy SSH and GDM. These results were also similar to

previous findings (31–33). When first-trimester estrogen was

considered, the associations between GDM and estrogen were

greatly attenuated, which indicates that the positive associations

in mid-late pregnancy could be accounted by or driven by early-

pregnancy estrogen levels. When first-trimester testosterone was

considered, the directions of associations between GDM and

testosterone were reversed, although the association between

GDM and fT was not significant. These findings indicate that

other factors changing during mid-late pregnancy, such as insulin

levels which may be affected by GDM treatment, sex hormone

binding globulin (SHBG) levels which is bound to fT to form TT,

placental aromatase, and increasing gestational weight, may affect

mid-late pregnancy testosterone levels and thus the relationship

between GDM and mid-late pregnancy testosterone levels (30,

75–77).

A strength of this study is the measurement of SSH using the

gold standard LC-MS/MS method, which is an advance over prior

studies in this field. Furthermore, the prospective design of the

study cohort established the temporal relationships between SSH in

the 1st trimester and glucose levels and GDM inmid-late pregnancy.

In addition, repeat measures of SSH throughout pregnancy enabled

us to assess hormone levels both prior to and after GDM diagnosis,

while taking early-pregnancy SSH levels into consideration. Several

limitations should be considered when interpreting the results of

the current analyses. We did not assess insulin resistance or visceral

adiposity in our cohort, which are potential key mechanisms linking

SSH to GDM (1, 7, 24, 42). Further investigations of the relationship

among SSH, adiposity, and insulin resistance during pregnancy are

warranted. Also, future studies could assess the effect of insulin and

SHGB levels during mid-late pregnancy on the relationship between

GDM and mid-late pregnancy testosterone levels. Another

limitation is that the limited GDM cases in this study could not

provide reliable estimations of the cutoff values offirst trimester TT,

fT or E1 to predict GDM. Additionally, we did not assess SHBG,

which was negatively associated with GDM in a recent meta-

analysis (78). SHBG binds both testosterone and E2 during

pregnancy (42, 79) and thus, low SHBG levels indicate high

serum concentrations of fT and free E2. Therefore, the previous

findings of the negative association between SHBG and GDM are

consistent with the positive associations between fT and GDM

found in this study (78). We assessed the potential undiagnosed

PCOS cases by self report using a two-question response to

oligomenorrhoea and hirsutism. This self-report approach has

been found in longitudinal studies to be associated with clinical

biomarkers and measures (48, 80), although additional assessments

could confirm the diagnosis.
Conclusion

In this prospective study of pregnant people, higher levels of

first-trimester TT, fT and estrone were positively associated with
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glucose levels and GDM diagnosis in mid-late pregnancy. Our

findings suggest that the early-pregnancy hormonal milieu may

contribute to and/or predict gestational hyperglycemia. Studies

such as the current study that identify early-pregnancy

biomarkers may inform future targeted screening and

interventions (lifestyle modifications, etc.) aimed at preventing

GDM in pregnant people who are at risk.
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