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Endre Károly Kristóf,
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Molecular and cellular regulation
of thermogenic fat
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1GMU-GIBH Joint School of Life Sciences, The Guangdong-Hong Kong-Macau Joint Laboratory for
Cell Fate Regulation and Diseases, Guangzhou Laboratory, Guangzhou Medical University,
Guangzhou, China, 2Zhongshan School of Medicine, Sun Yat-Sen University, Guangdong, China
Thermogenic fat, consisting of brown and beige adipocytes, dissipates energy in

the form of heat, in contrast to the characteristics of white adipocytes that store

energy. Increasing energy expenditure by activating brown adipocytes or

inducing beige adipocytes is a potential therapeutic strategy for treating

obesity and type 2 diabetes. Thus, a better understanding of the underlying

mechanisms of thermogenesis provides novel therapeutic interventions for

metabolic diseases. In this review, we summarize the recent advances in the

molecular regulation of thermogenesis, focusing on transcription factors,

epigenetic regulators, metabolites, and non-coding RNAs. We further discuss

the intercellular and inter-organ crosstalk that regulate thermogenesis,

considering the heterogeneity and complex tissue microenvironment of

thermogenic fat.
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Introduction

Obesity is a chronic and complex condition resulting from an imbalance of excessive

energy intake and insufficient energy expenditure, and it is tightly associated with type 2

diabetes, cardiovascular disease, nonalcoholic fatty liver disease (NAFLD), and other

metabolic diseases (1). Adipose tissue is a metabolically active organ with significant

roles in regulating whole-body energy homeostasis, whose dysfunction causes obesity and

related metabolic disorders. Mammals have been shown to possess two classes of fat cells—

white and thermogenic adipocytes. White adipocyte contains a large lipid droplet and a few

mitochondria and plays an essential role in energy storage in triglycerides. In contrast,

thermogenic adipocytes possess multilocular lipid droplets and higher amounts of

mitochondria and dissipate energy in the form of heat.

Thermogenic adipocytes consist of brown adipocytes and beige adipocytes. Brown

adipocytes are characterized by marker gene uncoupling protein 1 (Ucp1), which uncouples

oxidative respiration from ATP synthesis, resulting in energy dissipation as heat (2). The

brown adipose tissue (BAT) is predominantly located in the interscapular region of infants

and rodents. UCP1-positive multilocular adipocytes were also found in cervical and

supraclavicular regions in human adults using positron-emission tomography and
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computed tomography (PET/CT) imaging (3, 4). Importantly, BAT

activity is inversely correlated with body mass index (BMI) and age

in humans (5, 6). Moreover, Ucp1-deficient mice gain more weight

than wild-type mice under thermoneutral conditions (7, 8), while

transplantation of mouse BAT or CRISPR-enhanced human or

mouse brown-like adipocytes improves glucose tolerance and

insulin sensitivity in recipient mice (9, 10). These data suggest the

importance of BAT in regulating energy metabolism and

homeostasis both in mice and humans. In regard to beige

adipocytes, they are predominantly spread in inguinal white

adipose tissue (iWAT), and induced in response to cold

environment, exercise training or activation of b-adrenergic
receptors (b-AR) in mice (11). Intriguingly, the gene profile of

mouse beige adipocyte is very similar to that of human BAT in the

supraclavicular region during cold exposure (12). Induction of

browning in iWAT by transgenic expression of PR domain-

containing 16 (Prdm16) increases Ucp1 mRNA level and protects

the mice from diet-induced obesity (13). Therefore, inducing the

formation of beige adipocytes may serve as an alternative

therapeutic strategy for combating obesity and metabolic diseases.

In this review, we summarize the cell autonomous and non-cell

autonomous regulation of the biogenesis and function of

thermogenic fat, which will facilitate the development of new

therapies for metabolic diseases.
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Molecular regulations of
thermogenesis of brown
and beige adipocytes

Brown adipocyte and beige adipocyte share similar functions in

energy expenditure and thermogenesis, and various molecular

events involve in the cell fate determination of thermogenic fat

and thermogenesis, including transcriptional regulation, epigenetic

modulation, non-coding RNA regulation and metabolic

reprogramming (Figure 1).
Transcriptional regulation
of thermogenesis in brown
and beige adipocytes

The cell fate determination of thermogenic fat is regulated by

various adipocyte-specific lineage-determining transcription factors

and co-factors as shown in Table 1. There are three core regulators

in the regulation of thermogenesis of beige and brown adipocyte,

proliferator-activated receptor g(PPARg), PRDM16 and

peroxisome proliferator-activated receptor g coactivator 1 a
(PGC1a). PPARg was indispensable for the function of both
BA

FIGURE 1

Molecular regulation of thermogenesis of brown and beige adipocytes. (A). Beige pre-adipocyte and brown pre-adipocyte differentiate into beige
adipocyte and brown adipocyte respectively. In specific conditions, white adipocytes convert into beige adipocytes, a process called “browning”.
Under cold exposure or other signal induction, differentiated brown and beige adipocytes undergo thermogenesis, accompanied by higher glucose
and fatty acid uptake, UCP1 expression, and uncoupled respiration. (B). Regulatory mechanisms behind thermogenesis of brown and beige
adipocytes including the following 4 parts: 1. Transcriptional regulation; 2. Epigenetic modulation; 3. Non-coding RNA regulation; 4. Metabolic
reprogramming. UCP1 is one of the most critical thermogenic genes, and its expression is critical for uncoupled cellular respiration. There are three
core regulators in the thermogenesis program regulation: PPARg, PRDM16, and PGC1a, and most other regulators regulate thermogenesis through
them. Double-headed arrows indicate protein interaction and complex formation, while arrow-headed and bar-headed lines show inducing and
inhibiting effects.
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white and brown adipocytes. PPARg ligands induce the browning of
white adipocytes with the cooperation of PRDM16 (30). PRDM16 is

highly expressed in brown adipocyte cells, and overexpression of

PRDM16 leads to the browning of white adipocytes. Consistently,

knock down of PRDM16 causes to the loss of brown fat cell identity

(32). PGC1a also plays essential roles in energy metabolism and

homeostasis. Although mice without PGC1a underwent normal
Frontiers in Endocrinology 03
brown fat differentiation, it accompanied with decreased

thermogenic genes induction (25).

As will discussed in more details below, there are more than 30

transcriptional regulators identified to positively or negatively

regulate the formation and function of beige and brown adipocytes,

and most of them function through the above three core regulators.

CCAAT enhancer-binding protein beta (C/EBPb) forms a
TABLE 1 Transcription regulators behind thermogenesis of brown and beige adipocytes.

Factors Type Model system Function Ref.

ATF2 TF (+) Interscapular BAT (IBAT) Phosphorylated form promotes UCP1 expression (14)

C/EBPa TF (+) 3T3-L1 preadipocytes Inhibits the expression of white fat genes and promotes the expression of
brown-specific genes

(15)

C/EBPb TF (+) Skin fibroblasts from mouse and man Form complex with PRDM16 to switch myoblastic precursors to brown fat cells (16)

CtBP1/2 Coregulator
(+)

3T3-L1 adipocytes Interacts with C/EBPa to inhibit the expression of white adipocyte genes (15)

EBF2
(COE2)

TF (+) Primary brown and white preadipocytes Recruits PPARg to BAT specific genes (17)

FoxC2 TF (+) Transgenic mice with FoxC2 overexpression
in fat

Transcription activates UCP1 (18)

HES1 TF (-) Mouse model Binds promoters of Prdm16 and Ppargc1a to inhibit their expression (19)

IRF4 TF (+) Mouse model Interacts with PGC1a to drive Ucp1 expression (20)

IRX3,
IRX5

TF (-) Primary human adipose–derived progenitor
cell
cultures

Knockdown of IRX3 or IRX5 restore thermogenesis induced by risk allele (21,
22)

KLF11 TF (+) hMADS-3 cells were differentiated into
mature adipocytes

Cooperates with PPARg to activate and maintain brite selective gene program (23)

MRTFA TF (-) White adipose tissue from MRTFA(-/-) mice Under the control of BMP7-ROCK signaling axis and inhibits brown-selective
genes’ expression in white adipose tissue

(24)

PGC1a Coregulator
(+)

Immortal preadipocyte lines from mice
lacking PGC1a

Plays essential roles in brown fat thermogenesis (25–
28)

PLAC8 Coregulator
(+)

Brown preadipocyte lines Induces the expression of C/EBPb and Prdm16 (29)

PPARg TF* (+) White adipocytes and mouse model Acts collaboratively with PRDM16 to induce brown fat gene program (30,
31)

PRDM16 Coregulator
(+)

Brown fat precursors, white fat cell
progenitors and white fat depots

Activates expression of PGC1a, UCP1 and Dio2 (30–
33)

PRDM3 Coregulator
(+)

Mouse model with PRDM16/PRDM3 double-
knockout

Reduces BAT specific genes’ expression in the knockout mice (34)

Rb and
p107

TF (-) p107-/- mice and adult primary preadipocytes Repress the expression of PGC1a and UCP1 (35)

RIP140 Coregulator
(-)

3T3-L1 adipocytes, RIP140-null mice Suppresses adipocyte oxidative metabolism and mitochondrial biogenesis (36–
38)

SIRT1 Coregulator
(+)

3T3-L1 cells and mouse model Catalyzes deacetylation of PPAR g Lys268 and Lys293, and recruits PRDM16 to
Pparg, to induce BAT genes

(31)

SMAD3 TF (-) Smad3-deficient mice Represses PGC1a expression (39)

SRC1 TF (+) SRC-1-/- mice Reduces energy expenditure (40)

TBX15 TF (+) Adipose tissue in 129/Sv mouse pups Induces expression of brown phenotypic marker genes (41)

TFAM mitochondrial
TF (+)

TFAM floxed (TFAMf/f) mice Knocking down TFAM decreases mtDNA copy number and Complex I activity (42)

(Continued)
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transcriptional complex with PRDM16 to induce brown fat cell

determination and differentiation (16). In contrast, CCAAT

enhancer-binding protein alpha (C/EBPa) acts collaboratively with

other corepressors C-terminal-binding protein 1/2 (CtBP1/2) to

repress the expression of white fat genes (15). Early B-cell factor 2

(EBF2), a selective marker of brown and beige precursors (50),

regulates the cell fate determination of brown fat precursor cells

and the expression of thermogenic genes (17). Brown adipocytes

isolated from mice with Ebf2 deficiency exhibit diminished

mitochondrial density and larger lipid droplets (51). Interferon

regulatory factor 4 (IRF4), which is induced by cold and cAMP,

interacts with PGC1a to promote the expression of PRDM16 and

then drive the expression of thermogenic genes (20). Claussnitzer

et al. found that rs1421085 T-to-C single-nucleotide variant disrupts

the function of AT-rich interative domain-containing protein 5B

(ARID5B) that repress the expression of Iroquois homeobox protein

3 (IRX3) and Iroquois homeobox protein 5 (IRX5), which further

result in a shift from beige adipocytes to white adipocytes (21). Loft

et al. reported that kruepple-like factor 11 (KLF11), which is induced

by PPARg agonists, acts in cooperation with PPARg to activate beige-
selective gene program (23). Zinc finger transcription factors also play

important roles in thermogenesis. Gupta et al. reported that zinc

finger protein 423 (Zfp423) expression is enriched in white

adipocytes compared to brown adipocytes and is repressed upon

cold exposure (46). Zfp423 inhibits the activity of EBF2 and suppress

PRDM16 activation to maintain white adipocyte identity, and loss of

adipocyte Zfp423 induces an EBF2 NuRD-to-BAF coregulator switch

and promotes thermogenic genes (47). Dempersmier et al. stated that

zinc finger protein 516 (Zfp516) directly binds to the proximal region

of the Ucp1 promoter and activates its expression to induce white fat

cell browning and the development of brown fat cells (49). Taken

together, the formation and function of thermogenic fat greatly rely

on a complex transcriptional network coordinated by a set of core

transcriptional factors.
Epigenetic modulation behind
thermogenesis of brown
and beige adipocytes

Adipogenesis is involved with complicated epigenetic

remodeling that mainly include histone modification and DNA
Frontiers in Endocrinology 04
methylation, the two fundamental processes that play crucial roles

in the regulation of gene expression and genome stability. In

general, Histone modifications modulate chromatin structure,

influencing gene accessibility and transcriptional activity, while

DNA methylation directly modifies the DNA sequence, leading to

gene silencing. A lot of studies have demonstrated the roles of

epigenetic modulators in regulating the formation and function of

thermogenic adipocytes (Table 2). In this review, we specifically

focused on the role of histone modification, including histone

acetylation, histone deacetylation, histone methylation, and

histone demethylation.

Epigenetic modulators catalyze the formation of active

epigenetic markers in the regulatory regions of corresponding

genes to positively regulate their expression. CREB binding

protein (CBP) and histone acetyltransferase p300 (P300), which

catalyze histone acetylation of H3K27, improve the expression of

PPARg and then promote adipocyte differentiation and white

adipocyte browning (52). General control of amino acid synthesis

5-like 2 (GCN5) and P300/CBP-associated factor (PCAF), which

acetylate histone H3K9, also facilitate brown adipogenesis through

positively regulating the expression of Ppargand Prdm16 (53).

In regard to histone deacetylation, epigenetic modulators erase

pre-settled active epigenetic marker at the regulatory regions of

thermogenic genes to negatively regulate their expression. Histone

deacetylases (HDAC1, HDAC2, HDAC3, HDAC9 and HDAC11)

exert their influences on thermogenesis through deacetylation of

H3K27ac (79). HDAC1 and HDAC2 negatively regulate brown

adipocyte thermogenic program through decreasing acetylation of

histone H3 lysine 27, an active epigenetic marker, on the promoter

regions of Ucp1 and Pgc1a to inhibit their expression (54). Ferrari

et al. showed HDAC3 deletion induce WAT browning through

increased H3K27ac modification at the enhancer region of Pparg
and Ucp1 (55). However, other study revealed that HDAC3 primes

Ucp1 and the thermogenic transcriptional program to maintain the

brown adipose tissue identity through deacetylation of PGC1a by

HDAC3 (80). Bagchi et al. reported that HDAC11 suppresses WAT

browning through physical association with bromodomain-

containing protein 2 (BRD2) (57). Other histone deacetylases,

including NAD-dependent protein deacetylases-SIRT1, SIRT2,

SIRT3, SIRT5, SIRT6, and SIRT7, catalyze the deacetylation of

H3K9ac, and/or H4K16ac (58, 81, 82). Shi et al. found that SIRT3

positively correlated with the expression of Pgc1a and Ucp1, and
TABLE 1 Continued

Factors Type Model system Function Ref.

TIF2 TF (-) TIF2-/- mice Enhances adaptive thermogenesis in the KO mice (40)

TLE3 TF (-) Brown Preadipocytes, mice lacking TLE3 Disrupts interaction between Prdm16 and PPARg, and suppresses brown-
selective genes

(43)

TWIST1 TF (-) Mouse model Interacts with PGC1a to suppress brown thermogenesis gene (44)

USF1 TF (-) Mice lacking Usf1 Increases BAT-facilitated thermogenesis in the Usf1 knockout mice (45)

ZFP423 TF (+) 3T3-L1, 3T3 and Zfp423 knockout mice Activates Pparg expression and increases adipocyte differentiation (46–
48)

ZFP516 TF (+) Zfp516 knockout embryos Activates UCP1 and PGC1a, to promote a BAT program (49)
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SIRT3 activates mitochondria functions and adaptive

thermogenesis in brown adipose (61). Shuai et al. found SIRT5

promoted the browning of subcutaneous white adipose tissue

through regulating H3K9me2 and H3K9me3 modification at the

promoter regions of Pparg and Prdm16 (62). Moreover, ten-eleven

translocation (TET) proteins, oxidize 5-methylcytosines and

promote specific DNA demethylation (83), were found to inhibit

b3-AR dependent thermogenic genes’ expression and white fat

browning through indirectly recruiting histone deacetylases to the

promoter regions of concerning genes (63).

Histone methylation exerts essential roles in regulating

chromatin functional states and usually includes two types of

amino acids modification, lysine methyl-transferation and

arginine methyl-transferation. Several studies have linked histone

methylation with thermogenesis (79). Euchromatic histone

methyltransferase 1 (EHMT1), which could catalyze methylation

of histone 3 lysine 9 (H3K9me2 and me3), promotes adaptive

thermogenesis through stabilizing PRDM16 protein (67). Lysine
Frontiers in Endocrinology 05
methyltransferase 5C (KMT5C), a H4K20 methyltransferase,

positively regulates thermogenesis through regulating the

expression of transformation related protein 53 (Trp53), a

repressor of thermogenic program (69). DOT1-like (DOT1L), a

lysine 79 of histone H3 (H3K79) methyltransferase, inhibits

thermogenic adipocyte differentiation and function through

repressing the expression of brown adipocyte tissue-selective

genes (70).

Histone demethylases catalyze histone demethylation that

usually correlates with enhanced adipogenesis and white

adipocyte browning. LSD1, lysine-specific demethylase 1,

increases the content of beige adipocytes in aging inguinal white

adipose tissue through activating the expression of proliferator-

activated receptor alpha (Ppara) (71). Similarly, lysine-specific

demethylase 2 (LSD2) plays its vital roles primarily at the early

stage of brown adipocyte differentiation, and its deletion in vivo was

accompanied with compromised expression of thermogenic genes

(72). Tateishi et al. demonstrated lysine-specific demethylase 3A
TABLE 2 Epigenetic regulators behind thermogenesis of brown and beige adipocytes.

Histone modifi-
cation

Epigenetic regu-
lators

Influenced gene Roles Ref.

Histone acetylation CBP and P300 Pparg Promotes adipocyte differentiation (52)

GCN5 and PCAF Pparg and Prdm16 Facilitates brown adipogenesis (53)

Histone deacetylation HDAC1 and HDAC2 Ucp1 and Pgc1a Negatively regulates thermogenic program in brown adipocytes (54)

HDAC3 Pparg, Ucp1 and Ppara Inhibits WAT browning (55)

HDAC9 C/EBPa Negative regulates adipogenic differentiation (56)

HDAC11 Brd2 Suppresses brown adipocyte differentiation (57)

SIRT1 Pparg, sFRP1, sFRP2, and Dact1 Induces browning of WAT and enhances BAT function (31, 58,
59)

SIRT2 Foxo1 and Pparg Suppresses adipocyte differentiation (60)

SIRT3 CREB and PGC1a Activates mitochondria functions and adaptive thermogenesis in
brown adipose

(61)

SIRT5 Pparg and Prdm16 Promotes subcutaneous white adipose tissue browning (62)

TET Ucp1 and Pgc1a Inhibits thermogenic genes’ expression (63)

Histone
Methylation

MLL3 aP2 Promotes brown and white adipocytes differentiation (64)

MLL4 C/EBPs and Pparg Promotes brown and white adipocytes differentiation (65, 66)

EHMT1 Prdm16 Promotes BAT-mediated adaptive thermogenesis (67)

G9A Pparg Inhibits brown and white adipocytes differentiation (68)

KMT5c Trp53 Activates thermogenic program in adipocytes (69)

DOT1L Ucp1 and Prdm16 Inhibits thermogenic adipocyte differentiation and function (70)

Histone
Demethylation

LSD1 Ppara Promotes white adipocyte browning (71)

LSD2 Brown adipogenesis genes, such
as Ucp1

Promotes brown adipocyte differentiation (72)

KDM5A C/EBPb and Wnt6 Promotes preadipocyte differentiation (73)

Kdm3a Ppara and Ucp1 Promotes white adipocyte browning (74–76)

Jmjd3 Rreb1, Ucp1 and Cidea Promotes browning of WAT (77)

UTX Ucp1 and PGC1a Regulates brown adipocyte thermogenic program (78)
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(KDM3A) positively regulates Ppara and Ucp1 expression, and

KDM3A-deficient mice developed obesity and hyperlipidemia (74).

Pan et al. revealed that JmjC domain-containing protein 3 (JMJD3)

demethylases repressive mark H3K27me3 at the promoter regions

of Ucp1 and Cell death-inducing DFFA-like effector a (Cidea) in

order to activate thermogenic program and induce white adipocyte

browning (77). Moreover, UTX, ubiquitously transcribed

tetratricopeptide repeat on chromosome X, catalyzes

demethylation of H3K27me2/3 at the promoter region of Ucp1

and Pgc1a to positively regulate their expression and promote

brown adipocyte thermogenic genes expression (78). Altogether,

various epigenetic remodelers act through altering histone

acetylation and methylation dynamics to regulate the

thermogenic program in response to the external stimuli.
Non-coding RNAs regulation
of thermogenesis of brown
and beige adipocytes

Non-coding RNAs, including microRNAs (miRNAs) and long

non-coding RNAs (lncRNAs), play important roles in the

development and physiology of white, brown and beige

adipocytes, and non-coding RNAs themselves can serve as

markers of different adipocyte tissue depots (Table 3).

miRNAs usually exert their functions on regulating

thermogenesis through complementary reaction with the UTR

regions of mRNA transcripts of effector genes. MiR-26 is

upregulated during human adipogenesis and induces brown

adipocyte differentiation through directly targeting ADAM

metallopeptidase domain 17 (ADAM17) (84). MiR-30b/c target

3’UTR of receptor-interacting protein 140 (RIP140), a negative

regulator of thermogenic genes, to promote brown adipose tissue

function and the development of beige fat (91). MiR-32 is highly

expressed during cold exposure, and increases fibroblast growth

factor 21 (Fgf21) expression through repressing the expression of

transducer of ErbB-2.1 (Tob1), which further promotes white fat cell

browning and BAT thermogenesis (92). Ge et al. showed miR-34a

inhibits white adipocytes browning through targeting fibronectin

type III domain-containing protein 5 (Fndc5) expression (93), while

Fu et al. demonstrated miR-34a promotes the deacetylation of

PGC1a and its activation by targeting fibroblast growth factor

receptor 1 (FGFR1), klotho beta-like protein (bKL) and NAD-

dependent protein deacetylase sirtuin-1 (SIRT1) (94). MiR-106b-93

cluster negatively regulate the expression of Ucp1 and promote the

lipid content in differentiated brown adipocytes (95). Giroud et al.

reported miR-125b prevents beige adipocyte formation through

decreasing mitochondrial biogenesis (96). miR-133 targets 3’ UTR

of Prdm16 to repress its expression that lead to impaired brown fat

differentiation and WAT browning (97, 98). MicroRNA 155 is

down-regulated during brown preadipocyte differentiation and

inhibition of miR-155 enhances brown adipocyte differentiation

and white adipocytes browning. Mechanistically, miR-155 forms a

bistable feedback loop with CEBP-b (99). MiR-193b–365, referred

to as miR-193b and miR-365, showed two contradictory results,

that Sun et al. found that blocking of miR-193b–365 impair brown
Frontiers in Endocrinology 06
adipocyte adipogenesis by upregulating the expression of runt-

related transcriptional factor 1 translocation partner 1 (Runx1t1)

(102), while Feuermann et al. reported that miR-193b–365 are not

required for the differentiation and development of BAT (103). The

detailed roles of miR-193b–365 in vivo and in vitro need to be

further clarified.

The regulation of lncRNAs in the thermogenesis of brown and

beige adipocytes are mainly through interacting with other

important transcription factors such as PGC1a, EBF2, and

PPARg (113). Recent study identified Blnc1 as a vital lncRNA in

promoting the function of brown and beige adipocytes, and then

further experiments demonstrated Blnc1 acts synergistically with

EBF2 to drive thermogenic gene program (108). Similarly, lncRNA-

AK079912 was also reported to play a positive role in brown

preadipocyte differentiation and white adipocytes browning,

which is mediated by PPARg (109). A brown adipose tissue-

enriched lncRNA, lncBATE10, was found to be differently

regulated in cold or exercise conditions, and it regulates brown

adipose tissue gene program through decoying the repressor factor-

CUGBP Elav-like family member 1 (CELF1) from Pgc1a’s mRNA

elements (110). In together, the influences of lncRNAs on the

regulatory network of brown and beige adipocytes differentiation

remain elusive, and especially their direct roles in affecting core

transcriptional factors of thermogenic program need to be further

elucidated. In summary, miRNAs and lncRNAs, the tight regulators

of gene expression, play an indispensable role in regulating brown

and beige adipogenesis, which further complicates the regulatory

network of thermogenesis.
Metabolic reprogramming behind
thermogenesis of brown
and beige adipocytes

The development and function of thermogenic fat involves

intensive metabolic reprogramming (114). Table 4 summarized

the nutrients and metabolites that regulates thermogenesis.

Notably, most of the studies were conducted in rodent models

and their implications in human need to be further explored.

Wu et al. reported that NAFLD patients treated with Berberine

(BBR) for 1 month exhibited increased brown adipocyte mass and

activity in mice, since BBR promotes the DNA demethylation of

Prdm16 promoter to activate its expression (117). Dietary capsaicin

induces white adipocyte browning through facilitating the

interaction and activation of PPARg and PRDM16, depending on

transient receptor potential vanilloid 1 (TRPV1) channels (119).

Chlorogenic acid (CGA), a Chinese traditional medicine, induces

brown adipocyte thermogenesis through promoting mitochondria

function and glucose uptake (121). Lone et al. and Wang et al.

demonstrated that curcumin promotes browning of white

adipocytes through upregulating Ucp1 expression (125, 126).

Ellagic Acid (EA), located mainly in fruits and plant extracts, also

increases iWAT browning through decreasing the expression of

Zfp423 and aldehyde dehydrogenase family 1 member a1 (Aldh1a1)

and increasing thermogenic genes expression (128). Epicatechin

(Epi), a cacao flavanol, can induce white adipose tissue browning
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through improving mitochondrial function and upregulating the

expression of key thermogenic genes (131).

Apart from the aforementioned nutrients and small molecules

that regulate thermogenesis of brown and beige adipocytes, there

are other metabolites performing the similar functions, including

flavan-3-Alcohol, fucoxanthin, irisin, leptin, luteolin, Menthol

Neuregulin 4 (Nrg4), Prostaglandin (PG), Purple Sweet Potato

(PSP), Quercetin, Resveratrol, Rice Bran, Sesamol, Taurine,

Telmisartan, and 3-Hydroxydaidzein (134, 135, 137–140, 142–

153, 155), which will be discussed in details in the below sections.
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Intercellular communications within
thermogenic fat

As extensively discussed in a recent review (156), thermogenic

fat consists of various cell types or cell states in stromal vascular

fractions (SVFs) and mature adipocytes, identified by state-of-art

single-cell RNA-sequencing (scRNA-seq) or single nuclei RNA-

sequencing (snRNA-seq) in mice (157–165) and humans (157, 162,

165–168). These subpopulations of thermogenic fat, including

immune cells, endothelial cells, neurons, smooth muscle cells,
TABLE 3 Non-coding RNAs behind thermogenesis of brown and beige adipocytes.

Non-coding
RNAs

Regulation Model system Roles Ref

miR-26 + Human multipotent adipose-derived stem (hMADS)
cells

Represses activity of ADAM17 to increase white adipocytes
browning

(84)

miR-27 – Human adipose-derived stem cells, Male C57BL/6J
mice, 3T3-L1 cells …

Suppresses PPARg and CEBPa, targets prohibitin (PHB) to
inhibit adipogenesis, and upregulates UCP1, PRDM16 and
PGC1a

(85–
90)

miR-30 + Brown preadipocyte cell line, SVFs, and C57BL/6
male mice

Upregulates thermogenic genes’ expression (91)

miR-32 + WT-1, iWAT SVF cells and C57BL6/J mice Promotes BAT thermogenesis and WAT browning (92)

miR-34a – Male C57BL/6 mice and SVF cells Suppresses FGF21 and sirtuin1 (SIRT1) and fat browning (93,
94)

miR-106b-93 – Mouse brown preadipocyte cell line, primary mouse
stromal vascular fraction (SVF) cells, and C57BL/6J
mice

Knockdown of miR-106b-93 increases brown fat-specific
genes’ expression

(95)

miR-125-5p – C57Bl/6J mice Inhibits WAT browning (96)

miR-133 – BAT and SAT to mature brown adipocytes, and
mouse model

Impairs Prdm16, Ucp1, Ppara and Pparg expression (97,
98)

miR-155 – miR-155-/- mice, BAT and igWAT cells isolated
from C57BL/6J mice

Targets CEBPb to impair Ucp1 and Pgc1a expression (99,
100)

miR-182 and miR-
203

+ Dgcr8 KO mice and primary brown adipocytes Knockdown of miR-182 or miR-203 causes reduction of
BAT markers

(101)

miR-193b-365 + Primary brown preadipocytes and C2C12 myoblasts Promotes brown adipocyte adipogenesis by inhibiting
Runx1t1 expression, but its roles were controversial

(102,
103)

miR-196a + Human WAT-progenitor cells, fat progenitor cells,
and C57Bl/6 mice

Suppresses expression of white-fat gene Hoxc8 (104)

miR-328 + Mouse model Inhibition of miR-328 decreases thermogenic genes’
expression

(105)

miR-378 +- C57BL6 mice, and isolated BAT and gonadal WAT Promotes brown adipogenesis, and inhibits WAT browning (106)

miR-455 + C3H10T1/2 cells Activates expression of PPARg and PGC1a and promotes
iWAT browning

(107)

Blnc1 + 10T1/2 fibroblasts, 3T3-L1 fibroblasts and mouse
model

Form complex with EBF2 to stimulate thermogenic gene
program

(108)

AK079912 + Primary SVF cells Drives thermogenic gene program in white adipocytes (109)

LncBATE10 + Primary preadipocytes, 3T3-L1 cells and mouse
model

Protects PGC1a from degradation (110)

NONMMUG024827
lncRNA

+ Mouse model Positively regulates adiponectin mRNA levels (111)

lncRNA H19 Mouse model Binds MBD1 and regulates Igf2, Slc38a4 and Mest’s
expression

(112)
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TABLE 4 Metabolic reprogramming behind thermogenesis of brown and beige adipocytes.

Name Regulation Model system Roles Ref.

Atrial Natriuretic Peptide (ANP) + Mouse model Increases browning of fat cells and upregulates expression of
Ucp1

(115,
116)

Berberine + db/db mice Increases thermogenic genes’ expression (117)

Bone Morphogenetic Protein 9
(BMP-9)

+ Obese mice Enhances expression of FGF21 (118)

Capsaicin + TRPV1(-/-) mouse models Promotes interaction between PPARg and PRDM16 to
induce WAT browning

(119)

Catecholamine + Mouse model Binds to b3-AR and promotes white fat browning (120)

Chlorogenic Acid + Mouse brown adipocytes and human
Adipocytes

Upregulates AMPK expression to enhance PPARg,
PRDM16, and PGC1a expression

(121,
122)

Chrysin + 3T3-L1 cells Activates AMPK and then upregulates browning proteins’
expression

(123)

Cinnamicaldehyde + Male C57BL/6J mice Induces WAT browning and UCP1 expression (124)

Curcumin + C57BL/6J mice, and 3T3-L1 and
primary white adipocytes

Promotes beige fat cells production and induces white fat
browning process

(125–
127)

Ellagic Acid + Rats and hamsters Upregulates expression of UCP1 and inhibits lipid
accumulation

(128,
129)

Emodin + Obese Mice Increases expression of beige adipocyte markers (130)

Epicatechin + High-fat diet mouse model and
cultured human adipocytes

Increases mitochondrial biogenesis-related proteins
expression and activates browning of fat cells and WATs

(131)

Fibroblast Growth Factor 21 + C57BL/6J Fgf21-null and wild-type
mice

Upregulates thermogenic genes expression and regulates
PGC1a at post-transcription level

(132,
133)

Flavan-3-Alcohol + 3T3-L1 cells and mice Increases mRNA expression of UCP1 (134)

Fucoxanthin + White adipose tissues from mice Increases b3-AR expression and then stimulates UCP1
expression

(135)

Glucocorticoids – Murine brown adipocytes Downregulates UCP1 expression in BATs (136)

Irisin + Mouse model Activates ERK and p38MAPK signalling pathways to induce
white fat browning

(137)

Leptin + Wild type mice and UCP1 deficient
mice

Promotes expression of UCP1 and UCP2 in the WATs to
reduces white adipose tissue

(138)

Luteolin + male C57BL/6 mice Activates browning and thermogenesis (139)

Mammalian Target of Rapamycin
Complex 1 (mTORC1)

+ Mouse and human adipocytes, and
mice with mTORC1 impairment

Activates browning of fat cells (140)

Menthol + Mice and primary white adipocytes Activates TRPM8 which can upregulate UCP1 and PGC1a
expression

(141)

Neuregulin 4 (NRG4) + Mouse model Has the potential to promote white fat browning (142,
143)

Prostaglandin (PG) + Mouse model Induces the formation of BAT and white fat browning (144,
145)

Purple Sweet Potato (PSP) + Mouse model Upregulates browning-related genes’ expression (146)

Quercetin + Mouse model Increases brown fat marker genes Ucp1 and Elovl3
expression

(147)

Resveratrol + db/db mice Promotes lithocholic acid (LCA) in the plasma and faeces (148)

Rice Bran + High-fat diet-induced obese mice Upregulates UCP1 expression and downregulates WAT-
specific proteins

(149)

Sesamol + Mouse system and 3T3-L1 model cells Inhibits white adipogenic genes and promotes expression of
brown fat marker genes

(150,
151)

(Continued)
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Schwann cells, and a few other cell types, create a unique adipose

niche and regulate adipose tissue function, such as thermogenic fat

turnover, expansion, and remodeling (156). Here we focus on the

intercellular crosstalk between thermogenic fat cells and endothelial

cells, immune cells, and neurons (Figure 2).
Endothelial cells in the thermogenic
adipose tissue

Adipose tissue, especially BAT, is one of the most vascularized

tissues in the body (169). A lot of stimuli, including cold, diet,
Frontiers in Endocrinology 09
exercise, and nutrition state, modulate angiogenesis and vascular

remodeling in adipose tissue. Vascular Endothelial Growth Factor

A (VEGFA) and Vascular Endothelial Growth Factor B (VEGFB)

are two important angiogenic factors in adipose tissue in response

to cold or b3-AR activation. BAT-specific overexpression of

VEGFA increases vascularization and improves thermogenesis in

mice after cold exposure, and protects mice against diet-induced

obesity (170). Similarly, VEGFB promotes the proliferation of

endothelial cells and fatty lipid oxidation in thermogenic fat in

mice, providing a novel cure strategy for obesity and diabetes

diseases (171). Besides, Seki et al. revealed that endothelial-

specific Vegfr2-/- mice showed impaired angiogenesis as well as
TABLE 4 Continued

Name Regulation Model system Roles Ref.

Taurine + C3H10T1/2 white adipocytes and
mouse model

Induces the browning of WAT (152)

Telmisartan + 3T3/L1 adipocytes and mouse model Increases expression of white fat browning key factors (153,
154)

3-Hydroxydaidzein + Mouse model Stimulates the browning of WAT (155)
frontie
FIGURE 2

Cellular interaction between thermogenic adipocytes and resident cells. (A). Interaction between sympathetic nerve and thermogenic adipocyte.
Sympathetic nerve secretes norepinephrine (NE) that promotes white adipocyte browning and brown adipocyte activation; in turn, beige adipocytes
and brown adipocytes promote nerve remodeling through secreting neurotrophic factor, including nerve growth factor (NGF), brain-derived
neurotrophic factor (BDNF), neuregulin-4 (NRG4) as well as Zinc. (B). Interaction between vascular endothelial cells and thermogenic adipocyte.
Vascular endothelial cells secrete endothelin 1 (EDN1) and nitric oxide (NO) to promote the thermogenic function of brown and beige adipocytes.
Besides, the secreted EDN1 and platelet-derived growth factor C (PDGF-C) also regulate the adipogenesis of preadipocytes. Reciprocally,
thermogenic adipocytes and their progenitors secrete several factors that promote angiogenesis in adipose tissue. ANGPT2, angiopoietin 2; VEGF,
vascular endothelial growth factor. (C). Interaction between resident immune cells and thermogenic adipocytes. Various cytokines and signals
mediate the bi-directional communication between thermogenic fat and different kinds of immune cells.
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reduced browning of iWAT, which is modulated through the

endothelial cells-derived platelet-derived growth factor-CC

(PDGF-CC)-induced signaling pathway, since administration of

PDGF-CC upregulated the expression level of Ucp1 and

promoted browning of iWAT both in mice and humans (172).

Endothelial cells-secreted endothelin 1 (EDN1) and nitric oxide

inhibit biogenesis and the function of brown and beige adipocytes

in vitro (173, 174). In contrast, endothelial deficiency of lysosomal

acid lipase (LAL) impairs vascularization and thermogenesis in

BAT and WAT (175). The decreased production of vasodilatory

factors and increased vasoconstricting factors production, due to

dysfunction of endothelial cells, lead to insulin resistance and

diabetes (176). The diverse functions of endothelial cells suggest

the existence of different subpopulations. Indeed, Sun et al. observed

two distinct types of endothelial cells in human deep-neck BAT

using scRNA-seq (162). Vijay et al. also identified three types of

endothelial cells in human WAT, with the largest population of

endothelial cells defined as fatty-acid-handling microvascular

endothelial cells and another subpopulation was lymphatic-

derived (167). However, delineating the exact role of each

subpopulation of endothelial cells in thermogenic fat needs

further investigation. Taken together, these bidirectional

communications between thermogenic fat and endothelial cells

maintain the adipose homeostasis, and dysfunction of them cause

metabolic disorders.
Immune cells in the thermogenic
adipose tissue

Several types of immune cells reside in adipose tissue, including

macrophages, natural killer (NK) cells, lymphocytes, dendritic cells,

neutrophils, eosinophils, T cells, and mast cells, which play an

important role in regulating metabolic homeostasis (177, 178). The

adipose immune cells composition is highly variable in response to

the nutritional status, as well as environmental stimuli (179).

Among the immune cells that infiltrate into obese adipose

tissue, macrophages are functionally and numerically dominant.

Activated macrophages are divided into two main categories, M1

macrophages and M2 macrophages. M1 macrophages produce pro-

inflammatory cytokines and chemokines, while M2 macrophages

secrete anti-inflammatory cytokines that alleviate inflammation.

Several studies show that activated M1-like macrophages facilitate

the infiltration of other immune cells into obese adipose tissues and

impairs insulin sensitivity (180). In detail, studies identified TNFa
as a pro-inflammatory cytokine produced from M1 macrophages

that suppresses the emergence of thermogenic adipocytes in mice

(181). It was also reported that the direct contact between M1

macrophage and white adipocyte could inhibit the browning

process as well as Ucp1 expression in iWAT of mice, mainly

though the direct adhesion between a4-integrin in activated M1

macrophage and vascular cell adhesion molecule 1 (Vcam-1) in

adipocytes (182). In contrast to M1 macrophages, M2 macrophages

exert positive effects on brown adipocyte activity and WAT

browning (183). Signal transducer and activator of transcription 6

(Stat6)-deficient or macrophage-specific interleukin-4 receptor a
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(Ilr4a) knockout mice exhibited impaired BAT thermogenic

response, suggesting the positive role of M2 macrophages in BAT

thermogenesis, which is further supported by the specific depletion

of Ilr4a in myeloid cells of mice (184, 185). M2 macrophages could

produce catecholamine to sustain adaptive thermogenesis, which

may also reflect the situations in WAT browning, as similar

recruitment of M2 macrophages were also found in iWAT of

cold-induced mice (185, 186). Another study demonstrated that a

fraction of M1 macrophages were concentrated around the

sympathetic nerve endings in the adipose tissue of obese people

(187). Such macrophages are called sympathetic neuron-associated

macrophages (SAM), which can transport catecholamine released

from sympathetic nerve endings into the cell body and degrade it

through monoamine oxidase A, thereby inhibiting the browning of

iWAT induced by sympathetic nerve in obese mice (187, 188).

Mutually, thermogenic fat could also secrete batokines to regulate

the activation and function of macrophages. CXCMotif Chemokine

Ligand 14 (CXCL14), one of the batokines secreted by brown

adipocytes, promotes the M2 macrophage phenotype in adipose

tissue and leads to WAT browning, and Cxcl14-deficient mice show

impaired BAT activity and altered glucose homeostasis in response

to cold exposure (189). Adiponectin is another adipokine that

promotes the activation of M2 macrophages and then results in

cold-induced browning of WAT in mice (190). Adipose-secreted

bone morphogenetic protein 4 (BMP4) also increase the

accumulation of M2 macrophages and induce beige fat biogenesis

in iWAT of mice (191). Moreover, adipocytes deficient in fatty acid

synthase (iAdFASNKO) show increased macrophage polarization,

and ablation of macrophage from iWAT in iAdFASNKO mice

inhibit beige adipogenesis (161).

Innate lymphoid type 2 cells (ILC2s), another group of adipose

resident immune cells, also activate M2 macrophage and regulate

thermogenesis in brown and beige adipocytes (192). Activation of

ILC2s in the iWAT of mice strongly stimulates the biogenesis of

beige fat (193). Mechanistically, ILC2 activation leads to the

proliferation of adipocyte precursors and their commitment to

the beige fat lineage in mice (193). ILC2 cells also secrete peptide

methionine-enkephalin (Met-Enk), which directly targets

subcutaneous white adipocytes to induce their browning (194).

Moreover, ILC2s respond to the stimulation of interleukin (IL)-33

and produce IL-13 and IL-4 to promote the browning of iWAT in

mice, although the cellular origin and signal pathways involved in

the endogenous IL-33 production in adipose tissue remain

unidentified (193). Consistent with this, Il-33 deficient mice in

iWAT have fewer beige adipocyte formations and larger white

adipocyte compared to control mice (194). In a recent study, the

unique ILC populations were profiled in human WAT (168), which

suggests ILC3s may play a similar role as ILC2 in adipose

homeostasis, but function as a more important mediator of

adipose tissue inflammation and obesity (168, 194).

Eosinophils are the main IL-4-producing cells in iWAT of mice,

and play a key role in the thermogenesis and metabolic homeostasis

(195). METRNL, a circulating factor meteorin-like hormone, is

induced after exercise and cold exposure in the skeletal muscle and

adipose tissue of mice, respectively (196). METRNL promotes

alternative activation of adipose tissue macrophages and
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thermogenic and anti-inflammatory gene programs in iWAT

through an eosinophil-dependent increased Il-4 expression, and

blocking IL4/IL13 signaling abrogates METRNL-induced browning

of iWAT in mice (196). Moreover, eosinophils-derived IL-4 directly

work on PDGFRa+ adipocyte precursors to induce beige

adipogenesis both in vitro and in vivo (193). In response to

chemokine ligand 11 (CCL11) stimulation, eosinophils are

recruited to iWAT and promote type 2 immune responses and

beige adipogenesis in mice (197).
Neurons in the thermogenic adipose tissue

BAT is highly innervated by the complex sympathetic nervous

system, which can transmit signals from the central nervous system

to BAT (198). BAT thermogenesis is triggered by the release of

norepinephrine from its sympathetic nerve terminals, which binds

to b3-AR that result in the activation of UCP1 (198). Sympathetic

innervation increases after cold exposure in BAT and subcutaneous

WAT both in mice and human adults (199). More detailed analysis

revealed that sympathetic arborizations in iWAT cover 90% of

individual adipocytes, and the sympathetic arborizations are

important for the cold-induced browning of iWAT in mice (200).

Mutually, the thermogenic fat also regulates the sympathetic

innervation and neuron activity. Overexpression of PRDM16 in

mice significantly increase the number of sympathetic parenchymal

nerve fibers infiltrating the iWAT compared with that in wild-type

mice, although the exact mechanism of the recruitment of

sympathetic nerves in iWAT remain elusive (200). A recent study

revealed that mice lack of fatty acid synthase in fat (iAdFASNKO)

activated the sympathetic nerve fiber to result in browning in iWAT

of mice (161). Zeng et al. reported that thermogenic adipocytes

express mammal-specific endoplasmic reticulum membrane

protein (Calsyntenin-3b), which promotes the secretion of S100b

from brown adipocytes and stimulates neurite outgrowth in mice

(201). Luan group further demonstrated that thermogenic

adipocytes secrete zinc that promotes sympathetic innervation,

and administration of zinc ameliorates obesity by promoting

sympathetic neuron-induced thermogenesis in mice (202). These

studies revealed the beneficial and critical role of sympathetic

innervation in maintenance of thermogenic fat in response to

cold exposure and other environmental challenge.
Inter-organ communications around
thermogenic fat

The coordination of multiple tissues and organs is very

important for maintaining systemic homeostasis and responding

to nutritional and environmental challenges, and its dysregulation

leads to various metabolic disorders (203–205). The thermogenic fat

function as an endocrine organ by secreting specific factors (brown

adipokines or batokines) and interact with distant organs that

express the corresponding receptors, and vice versa (Figure 3).
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Brain-thermogenic fat communication

Besides the local effects of nerve on the thermogenic fat, the

brain-thermogenic fat communication axis plays an important role in

regulating systemic energy balance. Adipose tissue transmits the

message to the brain via secreted factors and sensory innervation

(206, 207). Leptin, an adipokine, is mainly produced by the obese (ob)

gene in adipocytes, and regulates the balance of energy via decreasing

food intake and inducing energy expenditure (208, 209). Although

the role of leptin in regulating energy balance is well known, the

underlying mechanism is still elusive. Recent work has shown that

leptin target the melanocortin receptor 4 (MC4R) and melanocortin

receptor 3 (MC3R) in the brain of mice (210, 211). Mc4r-deficient

mice exhibit reduced upregulation of Ucp1 in BAT exposed to cold

condition or high-fat food (212). In contrast, central administration

of MC3/4-R agonists MTII promote Ucp1mRNA expression in mice

(213), suggesting the role of MC4R-expressing neuronal populations

in regulating BAT thermogenesis. It was also shown that leptin and

insulin act synergically on hypothalamic neurons to promote iWAT

browning in mice (214). Bone morphogenetic protein 8b (BMP8b), a

factor induced by nutritional and thermogenic stimuli inmature BAT

and hypothalamus, is also involved in central control of BAT

thermogenesis, and central BMP8B treatment increases sympathetic

activation of BAT in mice, depending on the hypothalamic AMP-

activated protein kinase (AMPK) activation (215).

Central control could also inhibit the browning process, as

fasting and chemical-genetic activation of orexigenic agouti-related

protein (AgRP) neurons in the hypothalamus suppress iWAT

browning in mice (216). Mechanistically, the levels of O-linked b-
N-acetylglucosamine (O-GlcNAc) transferase and O-GlcNAc

modification in AgRP neurons are increased after fasting in mice,

thus promoting neuronal excitability and inhibiting iWAT

browning (216). It was also reported that glucocorticoids, a class

of steroid hormones synthesized in the adrenal cortex, also suppress

Ucp1 expression and BAT thermogenesis in mice (217). In contrast,

the glucocorticoids promote UCP1 expression in human brown

adipocytes and increase glucose uptake and energy expenditure in

response to mild cold condition (218). Understanding the species-

specific action of glucocorticoid on BAT thermogenesis will provide

not only the understanding for BAT-brain axis, but also new

therapeutic strategy for maintaining energy homeostasis. Overall,

these studies show the differential effects of central control of

function of thermogenic fat, mainly depending on the different

types of neurons.
Liver-thermogenic fat communication

The liver is a metabolic organ important for glucose and lipid

metabolism, whose dysfunction leads to many kinds of metabolic

diseases. The interaction between the liver and thermogenic fat are

mainly mediated by peptide hormones, lipokines as well as bile

acids. Fibroblast growth factor 21 (FGF21) is a circulating peptide

hormone, which is mainly expressed in the liver in response to
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starvation or exercise and induced in BAT andWAT when fasted or

exposed to cold environment both in mice and humans (219).

FGF21 not only acts locally in an endocrine and autocrine manner,

but also travels to distant organs to exert its role by secreting into

the bloodstream (220). Studies showed that administration of

FGF21 increases energy expenditure and improves insulin

sensitivity in mice (221). Owen et al. further revealed that FGF21

improves energy expenditure through enhanced sympathetic nerve

activity in BAT of mice (222). Moreover, the administration of

recombinant FGF21 for 6 weeks in diabetic rhesus monkeys lead to

a significant decline in glucose level, body weight, and circulating

lipids levels (223). Similarly, Activin-E, a member of transforming

growth factor beta (TGFb) superfamily, is primarily produced by

the liver and functions as a hepatokine to activate thermogenesis

both in iWAT and BAT of mice (224, 225). Follistatin (Fst), which

binds and neutralizes the activity of TGFb superfamily, is secreted

by the liver and promotes brown preadipocyte differentiation and

cold-induced brown thermogenesis in mice, although the autocrine

effect could not be excluded, since Fst is also induced in brown

adipocytes in response to cold (226–228).

On the other hand, brown adipocytes secrete batokines to

regulate the functions of the liver. As discussed above, FGF21

mediate the bi-directional crosstalk between BAT and the liver in

mice (204, 221, 222). Besides, brown adipocyte-derived Neuregulin

4 (Nrg4), a member of the epidermal growth factor (EGF) family of

ligands, attenuates hepatic lipogenic signaling and protects mice
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against diet-induced insulin resistance and hepatic steatosis (142).

In mice, acute psychological stress induces IL6 secretion from

brown adipocytes and then promotes hyperglycemia through

hepatic enhanced gluconeogenesis (229). Other reports revealed

that some adipokines, such as adiponectin, suppress hepatic injury

induced by alcohol intake in mice model (230).

Another class of molecules that mediate the communication

between the liver and thermogenic fat are lipokines, which can be

secreted both by the adipose tissue and the liver (231, 232). Through

quantitative and systemic lipidomic analyses, Cao et al. identified

C16:1n7-palmitoleate as an adipose tissue-derived lipid hormone that

functions as an important regulator of metabolic homeostasis, such as

suppression of hepatosteatosis in mice (231). Similarly, using non-

targeted liquid chromatography-mass spectrometry-based

lipidomics, Simcox et al. identified that acylcarnitine,produced by

the mouse liver in response to cold exposure, transports to BAT to

induce UCP1-dependent uncoupling respiration and heat production

(232). Bile acids also participate in the communication between the

liver and thermogenic fat. TGR5, a G-protein-coupled receptor, could

bind to the bile acids transported to brown or beige adipocytes from

the liver and induce cold-induced thermogenesis in mice (233–235).

BAT also regulate liver inflammation, although the exact pathway

governing this crosstalk remains unclear. Previous studies showed

that Ucp1-/- mice exhibits decreased capacity to clear succinate from

both the liver and the circulation, thus driving liver inflammation

through the interaction with stellate cells and macrophages (236,
FIGURE 3

Inter-organ communications between thermogenic fat depots and different organs. Multiple organs, such as the brain, liver, muscle, and gut, can
have crosstalk with thermogenic fat depots. The communications between these organs and the thermogenic fat depot mainly involve the secretion
of different kinds of molecules, including peptide hormones, lipokines, glucocorticoids, and bile acids. Dashed arrows mean the secretion of factors;
solid arrows mean positive effects; blunt-end lines mean inhibitory effects.
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237). Collectively, these studies show that the intensive crosstalk

between the liver and thermogenic fat mediated by various circulating

factors, including peptide hormones, lipokines as well as bile acids.
Skeletal muscle-thermogenic fat
communication

Upon muscle contraction, skeletal muscles produce and release

circulating cytokines and other peptides, known as myokines, which

exert endocrine effects and mediate the communication between

muscle and other organs (238–240). In reciprocal, cold- or exercise-

induced batokines from thermogenic fat also regulate the function

of skeletal muscle.

The earliest identified and most studied myokine is IL-6, which

can increase up to 100 folds in circulation during physical exercise

(241). Daily injection of IL-6 for 1 week significantly increases Ucp1

mRNA levels in iWAT of mice (242). Moreover, administration of

recombinant human IL-6 enhances lipolysis as well as fatty acid

oxidation both in healthy young and elderly humans (243, 244).

Consistent with this, elevated IL-6 secretion is also observed in

differentiating human beige adipocytes, and blockage of IL-6

receptor by specific antibody inhibits human brown adipocyte

differentiation (245). Irisin is another myokine that mediates the

communication between skeletal muscle and thermogenic fat,

which is secreted from skeletal muscle in a PGC1a-dependent
manner and stimulates Ucp1 expression and thermogenesis both

in vitro and in vivo (246). Irisin is also induced by cold exposure in

human and promotes brown fat thermogenesis in collaboration

with FGF21, representing a cold-activated endocrine axis regulating

both shivering and non-shivering thermogenesis (247). METRNL is

released by skeletal muscle and adipose tissue after exercise or upon

cold exposure respectively, and significantly promotes browning of

WAT depots (183), stimulates energy expenditure and improves

glucose tolerance, which is mediated by the recruitment of resident

eosinophil in WAT depots of mice (196). Roberts et al. identified b-
aminoisobutyric acid (BAIBA), a myokine secreted after exercise,

increases the expression of brown adipocyte marker genes and

induces a brown adipocyte-like phenotype both in human iPSC-

derived white adipocytes and in white adipose depot of mice (248).

Meanwhile, batokines from thermogenic fat also regulate the

function of skeletal muscle. 12,13-dihydroxy-9Z-octadecenoic acid

(12,13-diHOME), a lipokine secreted from BAT when exposed to

cold or exercise in mice and human, increases skeletal muscle fatty

acid oxidation and uptake (249, 250). 12-hydroxyeicosapentaenoic

acid (12-HEPE), a 12-lipoxygenase-derived lipokine that is secreted

in response to cold exposure and b-AR signaling, also promotes

glucose uptake in muscle as well as BAT in mice (251). These studies

clearly show the mutually regulatory network between skeletal muscle

and thermogenic fat to maintain thermogenic fat homeostasis.
GI tract-thermogenic fat communication

The gastrointestinal tract (GI tract) plays a very important role

in thermogenesis through gut microbiota or directly secreting
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factors from intestinal cells (252). In a study that compared the

metabolic profiling between germ-free mice and conventional mice,

Mestdagh et al. revealed increased lipolysis while reduced

lipogenesis in BAT of germ-free mice (253). Suarez et al. also

showed that depletion of microbiota, either by antibiotic

treatment or in germ-free mice, promote the browning of iWAT

and perigonadal visceral adipose tissue in lean mice, obese mice and

high-fat diet-fed mice (254). However, Zietak et al. found cold

exposure markedly alter the microbiome composition, and cold-

adapted microbiota improved energy metabolism (255).

Transplantation of the gut microbiota from cold-induced mice to

germ-free mice increase insulin sensitivity, cold tolerance, and

browning of WAT (256). Other study revealed that acetate and

lactate from the gut microbiota promote the browning of iWAT of

mice after intermittent fasting, although the underlying mechanism

remains unclear (257). Of note, administration of the bacterial

metabolite butyrate also increases the thermogenic capacity of the

germ-free mice (258).

Besides gut microbiota, the GI tract also secrete various factors

to regulate thermogenesis. Secretin, secreted by the gut and

upregulated during fasting, increases lipolysis and inhibits glucose

uptake in mice (259). Li et al. revealed that secretin mediates a gut-

BAT-brain axis, which stimulates brown fat thermogenesis and

satiation in mice (260). The similar role of secretin is also observed

in human (261). Glucagon-like peptide 1 (GLP-1), a peptide

released from enteroendocrine cells in the gut, increases insulin

secretion in beta cells and activates BAT thermogenesis in mice

(262). GLP-1 has also been proved to increase satiety and reduce

energy intake in human (263). GLP-1 agonists significantly induce

BAT thermogenesis and promote browning of iWAT in mice (264).

Numerous evidences support that GLP-1 agonists decrease the risk

of developing cardiovascular disease in diabetes and obesity both in

mice and humans (265). Ghrelin, another growth-hormone-

releasing acylated peptide from stomach, also modulates

thermogenesis in BAT as well as lipid utilization in WAT,

possibly through the gut-brain-BAT axis, as this occurs when

ghrelin was centrally administered in mice (266–269). Further

studies need to investigate whether and how thermogenic fat

could influence the gut homeostasis, as this has not been explored

in depth so far.
Conclusion

Understanding of the development route of thermogenic fat will

provides novel therapeutic interventions for metabolic diseases. In

this review, we discussed the regulatory network of thermogenic fat

at the molecular and cellular levels, respectively. The molecular

regulation of thermogenic fat mainly involves transcriptional

regulation, epigenetic regulation, non-coding RNA regulation and

metabolic reprogramming. Among these regulators, PPARg,
PRDM16 and PGC1a represent the core regulators, as most of

the other regulators regulate the thermogenesis depending on them.

Besides, thermogenic fat is also educated by other cell types within

adipose depots or other organs. These complex and comprehensive

regulatory networks help to maintain the functionality of
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thermogenic fat in response to kinds of changes of the environment.

This holds a promising strategy for inducing artificial

thermogenesis to counteract obesity in vivo. For example, recent

study has shown that thermogenesis could be induced through local

hyperthermia therapy, mainly through the HSF1-A2B1

transcriptional axis (270). However, whether this kind of induced

thermogenesis represents a new specific regulatory network or

converges on the core regulators still needs to be identified. In

future, more advanced technology, such as spatial transcriptomics

and epigenomics methodologies, should be applied to this field to

better delineate the development route of thermogenic fat.
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