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Association between female
circulating heavy metal
concentration and abortion:
a systematic review
and meta-analysis
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Song Quan1* and Xiao Shi1*

1Center for Reproductive Medicine, Department of Obstetrics and Gynaecology, NanFang Hospital,
Southern Medical University, Guangzhou, China, 2The First School of Clinical Medicine, Southern
Medical University, Guangzhou, China
Objective: This study aimed to evaluate the association between blood heavy

metal (zinc (Zn), copper (Cu), lead (Pb), and cadmium (Cd)) concentrations and

spontaneous abortion (SA) and recurrent pregnancy loss (RPL) and explore the

possible endocrine dysfunction associated with it.

Methods: A literature search was performed in the PubMed, Embase, Cochrane

Library, and Web of Science databases up to April 2023. The overall effects were

expressed as the standard mean difference (SMD). Subgroup analysis was

performed according to the type of abortion (SA or RPL). Stata 16.0 was

utilized for data analysis.

Results: Based on the integrated findings, abortion women showed significantly

lower Zn (SMD = −1.05, 95% CI: −1.74 to −0.36, p = 0.003) and Cu concentrations

(SMD = −1.42, 95% CI: −1.97 to −0.87, p <0.001) and higher Pb (SMD = 1.47, 95%

CI: 0.89–2.05, p <0.001) and Cd concentrations (SMD = 1.15, 95% CI: 0.45–1.85,

p = 0.001) than normal pregnant women. Subgroup analysis showed that Zn and

Cu deficiency and Cd and Pb exposure were significantly (p <0.05) associated

with RPL, whereas Cu deficiency and Cd and Pb exposure were significantly (p

<0.05) associated with SA.

Conclusion: Zn and Cu deficiencies and Pb and Cd exposure were associated

with abortion. Endocrine dysfunction, such as insulin resistance, vitamin D

insufficiency, and abnormal thyroid and sex hormone concentrations, is

thought to be involved in heavy metal-related abortion.

KEYWORDS

recurrent pregnancy loss, spontaneous abortion, endocrine dysfunction, zinc, copper,
lead, cadmium
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1 Introduction

Spontaneous abortion (SA) is a serious reproductive health

problem with various definitions. According to the World Health

Organization, SA is defined as the involuntary loss of a fetus

weighing ≤500 g before the 20th gestational week (GW) (1),

whereas the Chinese Medical Association Obstetrics and

Gynecology Branch defines it as the involuntary loss of a fetus

weighing ≤1,000 g before the 28th GW (2). SA occurs in 10%–15%

of pregnancies, and approximately 80% of SA occurs before 12

weeks of pregnancy, which is known as early pregnancy loss (3).

Recurrent pregnancy loss (RPL) is a special form of SA that affects

1.4% of women and causes physical and emotional challenges (4).

However, the definition of RPL has been inconsistent. The

European Society for Human Reproduction and Embryology

(ESHRE) defines it as two or more abortions, irrespective of

whether they are consecutive (5), while the American Society for

Reproductive Medicine defines it as the loss of two or more

consecutive pregnancies (6). There is controversy about the

quantity and consecutiveness of abortions (7). The etiologies of

SA and RPL, including chromosomal abnormalities, uterine

malformations, and endocrine dysfunction, are complex (8–10).

Exposure to environmental pollutants is also a risk factor for SA and

RPL. Most pollutants are endocrine disrupters and early embryonic

development is extremely sensitive to them (11, 12).

Heavy metals are among the most harmful environmental

contaminants because they are not biologically degradable and

can accumulate in organisms along the food chain (13). Heavy

metals are mainly absorbed through air, drinking water, and

contaminated food (14). They can be classified as essential (e.g.,

copper [Cu], zinc [Zn]) and non-essential (such as lead [Pb] and

cadmium [Cd]). Essential metals play important roles in

metabolism, enzymatic synthesis, and signal transduction, and

their deficiency or overexposure may affect normal physiological

functions of organisms (14). For instance, Zn and Cu are important

components of several proteins, including antioxidant enzymes,

metalloenzymes, and coenzymes, which are essential for fetal

growth. Maternal Zn and Cu deficiency can reduce the fetal Zn

and Cu supply through the placenta and cause fetal loss and

pregnancy complications (15–17). Non-essential metals are

usually toxic to humans, especially to human reproductive health,

even at very low concentrations. Among all nonessential metals, Cd

and Pb are endocrine-disrupting metals that can interfere with the

production and secretion of sex hormones, leading to poor

pregnancy outcomes (18).

Several previous studies have investigated the associations

between the concentrations of Cd, Pb, Zn, and Cu in the blood

and the risk of abortion (1, 19); however, the results have been

inconsistent. Some studies have reported that exposure to heavy

metals during early pregnancy can increase the incidence of SA and

RPL (20–22), and endocrine dysfunction has been suggested as a

mediator (23, 24) Other studies have reported contrasting findings

(18). Given the increasing interest of clinicians and researchers,

stronger evidence on the effect of heavy metal exposure on abortion

and its underlying mechanisms is in demand. We performed the

present meta-analysis to clarify the associations between abortion
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and the concentrations of Cd, Pb, Zn, and Cu. We also

systematically reviewed the previous literature to explore the

relationships between endocrine dysfunction, the four metals, and

RPL or SA.
2 Methods

2.1 Study selection

The systematic review was conducted according to the Preferred

Reporting Items for Systematic Reviews and Meta-Analyses

(PRISMA) statement. PubMed, Embase, Cochrane Library, and

Web of Science databases were searched for relevant studies

published up to April 2023. The subject terms included

‘Miscarriage,’ ‘Pregnancy loss,’ ‘Abortion, Spontaneous,’ ‘Zinc,’

‘Copper,’ ‘Lead,’ and ‘Cadmium.’ Random combinations of these

subject terms and their synonyms were used for retrieval. The

detailed literature search strategy is provided in the Supplementary

Material. We reached the corresponding authors when the data

were missing.
2.2 Inclusion criteria and exclusion criteria

Studies meeting the following criteria were included in the

meta-analysis. (a) Study population: Pregnant women without

internal and obstetric diseases that impair the normal process of

pregnancy, including infectious diseases, gestational hypertension,

gestational diabetes mellitus, and infertility. (b) Measurement:

Female serum, plasma, or whole blood metal concentrations. (c)

Observation group: Women who had experienced abortion,

including SA and RPL. SA is defined as the involuntary loss of a

fetus before the 28th GW (including the 20th and 24th GW) (2).

RPL is defines as two or more abortions, irrespective of whether

they are consecutive (5). (d) Control group: Healthy pregnant

women with normal pregnancy or delivery. (e) Study type:

Observational study.

The exclusion criteria were as follows: (a) article type: review,

meta-analysis, meeting, case report, letter, comment, editorial, note,

trial registry record, or protocol, (b) studies that focused on non-

human cases (e.g., animal studies), (c) unclear definition of SA or

RPL, (d) insufficient data on metal concentration; and (e)

unavailable full text.
2.3 Quality assessment

The studies that met our inclusion criteria after the initial search

were case–control, nested case–control, and cross-sectional studies.

Therefore, the Newcastle-Ottawa Scale (NOS) was used to assess the

quality of the studies (25). Each included article was independently

appraised by two authors (MR and LiqW). Based on the NOS,

studies were categorized as high- (8, 9), moderate- (6, 7), or low-

quality (<6). Any disagreements regarding the assessment of the

studies were discussed with the third author (LiaW).
frontiersin.org

https://doi.org/10.3389/fendo.2023.1216507
https://www.frontiersin.org/journals/endocrinology
https://www.frontiersin.org


Ren et al. 10.3389/fendo.2023.1216507
2.4 Data extraction

Two investigators independently extracted the relevant data

from the included studies (MR and LiaW). All data were double-

checked by the third author (LiqW). The following information was

extracted from the selected studies: first author, publication year,

country and continent of the study population, type of detected

sample, type of article, type of heavy metal, type of abortion, follow-

up endpoint, sample size, concentrations of heavy metals, and

analytical method employed.
2.5 Statistical analysis

Meta-analysis was performed using Stata 16.0 (Stata Corp,

College Station, TX, USA). The standard mean difference (SMD)

was adopted to integrate the data on metal concentration, as it is a

continuous variable with different units across various studies. The

95% confidence intervals (CIs) were computed and presented as

forest plots. For each study, statistical heterogeneity was assessed

using Cochran’s Q-test and I2 statistics, and a random effects model

was used to estimate the relationship between metal concentrations

and abortion, as there was significant heterogeneity (p <0.05, I2

>50%). To investigate the impact of metal concentration on the

different types of abortions (SA and RPL), a subgroup analysis was

performed. To investigate the origin of the heterogeneity, four

additional subgroup analyses were performed based on the

follow-up endpoints (ongoing pregnancy and live birth) of

participants, continent of the study population (Africa, Asia,

North America, Oceania, and Europe), type of article (case–

control study, cross-sectional study, and nested case–control

study), and type of detected sample (serum, plasma, and whole

blood). An influence analysis (sensitivity analysis) was conducted to

improve the reliability of the meta-analysis results. A funnel plot

and Begg’s and Egger’s tests were used to detect potential
Frontiers in Endocrinology 03
publication bias; p-values <0.05 represented significant statistical

publication bias for Begg’s and Egger’s tests.
3 Results

3.1 Literature search

Figure 1 illustrates the PRISMA flow diagram for the selection

of studies for inclusion in the systematic review and meta-analysis.

A total of 4,222 potential studies were identified through database

search. Among them, 136 articles were removed for duplicates,

1,209 articles were not observational studies (including reviews,

meta-analyses, meetings, case reports, letters, comments, editorials,

notes, trial registry records, and protocols), and 2,829 articles were

not relevant to our study based on screening of their titles and

abstracts by two authors. The literature screening results were

double-checked to ensure that the relevant documents were not

missed and did not need to be retrieved. After an independent

review of the full texts by three authors (MR, LiaW, and LiqW), 12

studies were excluded because they did not meet the inclusion

criteria, and eight studies were excluded because they had

insufficient data (they only reported mean values without

standard deviation of the metal concentration). Twenty-eight

relevant studies were subjected to a final quantitative assessment

based on the exclusion and inclusion criteria. Among the 28 studies,

14 investigated Zn and Cu, 15 investigated Pb, and eight

investigated Cd.
3.2 Study characteristics

Table 1 lists the baseline characteristics of the included articles.

The included articles were observational studies published between

1979 and 2023 and involved 1,377 abortion cases (including 1,159

females with SA and 218 females with RPL), together with 3,289
FIGURE 1

Flow chart of the included eligible studies in systematic review and meta-analysis.
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TABLE 1 Characteristics of the eligible studies.

b- Metal concentra-
tion (mg/dL)

ols Cases Controls p Analytical
method
employed

Reference

0.76 ±
0.06 (mg/
L)

0.86 ±
0.04 (mg/
L)

0.000 AAS (26)

10.559 ±
1.317 (µg/
dL)

7.977 ± 3
(µg/dL)

0.000 AAS

3.2 ± 0.65
(µg/L)

2.74 ±
0.25 (µg/
L)

0.039 AAS

99.25 ±
2.14 (mg/
dL)

99.25 ±
2.14 (mg/
dL)

0.001 AAS (27)

94.25 ±
3.07 (mg/
dL)

122.45 ±
2.71 (mg/
dL)

0.001 AAS

85.96 ±
1.09 (mg/
dL)

60.70 ±
1.40 (mg/
dL)

0.001 AAS

4.58 ±
0.77 (mg/
dL)

2.49 ±
0.09 (mg/
dL)

0.001 AAS

18.2 ± 5.5
(mmol/L)

27.1 ± 7.6
(mmol/L)

<0.001 Photometry (28)

2.84 ±
0.36
(µmol/l)

3.55 ±
0.49
(µmol/l)

<0.001 ICP-MS (29)

19.6 ±
2.75
(µmol/l)

24.5 ±
3.41
(µmol/l)

<0.001 ICP-MS

77.01 ±
11.55 (µg
%)

90.01 ±
10.77 (µg
%)

0.020 AAS (30)
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Number of su
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Sr.No Author Year Country Continent Sample Type
of
Article

Heavy
Metal

Type of
Abortion

Follow-
up End-
point

Cases Cont

1 Ahmed,
M.H.

2007 Egypt Africa Serum Case–
control

Zinc SA 12 weeks 24 14

Serum Case–
control

Lead SA 12 weeks 24 14

Serum Case–
control

Cadmium SA 12 weeks 24 14

2 Ajayi, O. O. 2012 Nigeria Africa Serum Case–
control

Zinc RPL 20 weeks 35 34

Serum Case–
control

Copper RPL 20 weeks 35 34

Serum Case–
control

Lead RPL 20 weeks 35 34

Serum Case–
control

Cadmium RPL 20 weeks 35 34

3 Alebic-
Juretic, A.

2005 Croatia Europe Plasma Case–
control

Copper SA 14weeks 17 28

4 Al-Sheikh,
Y. A.

2019 Saudi Asia Plasma Case–
control

Zinc RPL Delivery 28 28

Plasma Case–
control

Copper RPL Delivery 28 28

5 Attalla, S.M. 2009 Egypt Africa Serum Case–
control

Zinc RPL 12 weeks 40 24
r
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TABLE 1 Continued

Metal concentra-
tion (mg/dL)

Cases Controls p Analytical
method
employed

Reference

19.78 ±
3.85 (µg/
dL)

10.53 ±
1.01 (µg/
dL)

<0.0001 AAS

7.51 ±
1.02 (µg/
dL)

5.06 ±
0.81 (µg/
dL)

<0.0001 AAS

140.12 ±
15.20 (mg/
100 mL)

188.57 ±
14.41 (mg/
100 mL)

<0.01 AAS (31)

13.64 ±
2.35
(mmol/L)

13.13 ±
2.37
(mmol/L)

>0.05 AAS (32)

28.22 ±
4.68
(mmol/L)

26.05 ±
6.53
(mmol/L)

>0.05 AAS

12 ± 6.16
(mg/dL)

10.1 ±
5.34 (mg/
dL)

0.021 AAS (33)

0.75 ±
0.02 (mg/
mL)

0.69 ±
0.02 (mg/
mL)

>0.05 AAS (34)

1.36 ±
0.05 (mg/
mL)

1.48 ±
0.05 (mg/
mL)

>0.05 AAS

23.2 ± 1
3.77 (mg/
dL)

18.04 ±
13.08 (mg/
dL)

>0.05 AAS (35)

3.67 ±
0.39
(mmol/L)

4.11 ±
0.49
(mmol/L)

<0.001 ICP-MS (36)

25.6 ±
3.25
(mmol/L)

28.8 ±
3.42
(mmol/L)

<0.001 ICP-MS
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Number of sub-
jects

Sr.No Author Year Country Continent Sample Type
of
Article

Heavy
Metal

Type of
Abortion

Follow-
up End-
point

Cases Control

Serum Case–
control

Lead RPL 12 weeks 40 24

Serum Case–
control

Cadmium RPL 12 weeks 40 24

6 Bassiouni, B.
A.

1979 Egypt Africa Plasma Case–
control

Copper SA 14 weeks 24 14

7 Borella, P. 1990 Italy Europe Plasma Case–
control

Zinc SA 16 weeks 12 41

Plasma Case–
control

Copper SA 16 weeks 12 41

8 Borja-
Aburto, V.
H.

1999 Mexico North
America

Serum Case–
control

Lead SA 20 weeks 35 60

9 Dreosti, I. E. 1990 Australia Oceania Serum Case–
control

Zinc SA 12 weeks 35 37

Serum Case–
control

Copper SA 12 weeks 35 37

10 Faikoğlu, R. 2006 Turkey Asia Serum Case–
control

Lead SA 20 weeks 20 20

11 Ghneim, H.
K.

2016 Saudi Asia Plasma Case–
control

Zinc RPL Delivery 25 25

Plasma Case–
control

Copper RPL Delivery 25 25
s
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TABLE 1 Continued

Metal concentra-
tion (mg/dL)

Cases Controls p Analytical
method
employed

Reference

120.18 ±
19.55 (mg/
mL)

123.03 ±
18.57 (mg/
mL)

>0.05 AAS (37)

0.32 ±
0.28 (mg/
L)

0.22 ±
0.11 (mg/
L)

0.002 ICP-MS (38)

0.14 ±
0.13 (µg/
L)

0.13 ±
0.13 (µg/
L)

0.15 ICP-MS (39)

5,082.32 ±
1,030.13
(µg/L)

5,243.88 ±
960.87
(µg/L)

0.251 ICP-MS (40)

797.36 ±
161.42
(µg/L)

861.77 ±
188.75
(µg/L)

0.008 ICP-MS

7.27 ±
3.01 (µg/
L)

7.61 ±
2.64 (µg/
L)

0.165 ICP-MS

0.5865 ±
0.1071
(mg/L)

0.6492 ±
0.1878
(mg/L)

>0.05 AAS (41)

1.1532 ±
0.2980
(mg/L)

1.4450 ±
0.2930
(mg/L)

<0.002 AAS

35.54 ±
11.0 (mg/
L)

27.11 ±
4.6 (mg/L)

<0.0001 AAS (19)

2.730 ±
2.07 (mg/
L)

1.035 ±
0.59 (mg/
L)

<0.0004 AAS

27.21 ±
31.43 (mg/
L)

15.96 ±
12.22 (mg/
L)

0.000 ICP-MS (42)

(Continued)

R
e
n
e
t
al.

10
.3
3
8
9
/fe

n
d
o
.2
0
2
3
.12

16
5
0
7

Fro
n
tie

rs
in

E
n
d
o
crin

o
lo
g
y

fro
n
tie

rsin
.o
rg

0
6

Number of sub-
jects

Sr.No Author Year Country Continent Sample Type
of
Article

Heavy
Metal

Type of
Abortion

Follow-
up End-
point

Cases Control

12 Ghosh, A. 1985 China Asia Serum Cross–
section

Zinc SA 12 weeks 45 55

13 Jie, O. 2019 China Asia Whole
blood

Case–
control

Cadmium SA 12 weeks 95 100

14 Lamadrid-
Figueroa, H.

2007 Mexico North
America

Plasma Case–
control

Lead SA 12 weeks 71 136

15 Lu, Y. 2022 China Asia Whole
blood

Cross–
section

Zinc SA 12 weeks 92 103

Whole
blood

Cross–
section

Copper SA 12 weeks 92 103

Whole
blood

Cross-
section

Lead SA 12 weeks 92 103

16 Omeljaniuk,
W. J.

2015 Poland Europe Serum Case–
control

Zinc SA Delivery 83 35

Serum Case–
control

Copper SA Delivery 83 35

17 Omeljaniuk,
W. J.

2018 Poland Europe Whole
blood

Case–
control

Lead SA Delivery 83 35

Whole
blood

Case–
control

Cadmium SA Delivery 83 35

18 Ou, J. 2020 China Asia Whole
blood

Case–
control

Lead SA 12 weeks 150 150
s
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TABLE 1 Continued

sub- Metal concentra-
tion (mg/dL)

ntrols Cases Controls p Analytical
method
employed

Reference

20.52 ±
3.76
(mmol/L)

28.43 ±
4.45
(mmol/L)

<0.01 Colorimetry (43)

51.7 ±
10.4 (µg/
dL)

81.6 ±
20.3 (µg/
dL)

0.0000 Reaction with
nitro-PAPS

(44)

222.5 ±
60.5 (µg/
dL)

302.5 ±
95.2 (µg/
dL)

0.0006 Reaction with
Di-Br-PAESA

9 72.67 ±
11.98
(µmol/L)

83.25 ±
12.79
(µmol/L)

<0.05 AAS (45)

9 29.96 ±
5.27
(µmol/L)

31.24 ±
5.07
(µmol/L)

>0.05 AAS

1.12 ±
0.29 (µg/
L)

1.60 ±
0.54 (µg/
L)

<0.001 ICP-MS (46)

77.96 ±
5.51 (ppb)

38.65 ±
0.20 (ppb)

<0.001 ICP-MS (47)

0.45 ±
0.04 (ppb)

0.42 ±
0.01 (ppb)

<0.05 ICP-MS

5.26 ±
1.96 (mg/
l)

15.06 ±
7.17 (mg/
l)

<0.001 AAS (48)

3.69 ±
2.48 (mg/
l)

0.31 ±
0.61 (mg/
l)

<0.001 AAS

3.51 ±
1.42 (mg/
dL)

3.83 ±
1.99 (mg/
dL)

0.41 ICP-MS (49)

(Continued)
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Number of
jects

Sr.No Author Year Country Continent Sample Type
of
Article

Heavy
Metal

Type of
Abortion

Follow-
up End-
point

Cases Co

19 Popovic, J.
K.

2016 Serbia Europe Plasma Case–
control

Copper SA 12 weeks 35 50

20 Sairoz 2023 India Asia Serum Nested
Case–
control

Zinc SA 12 weeks 80 100

Serum Nested
Case–
control

Copper SA 12 weeks 80 100

21 Shen, P. J. 2015 China Asia Serum Nested
Case–
control

Zinc SA 12 weeks 58 138

Serum Nested
Case–
control

Copper SA 12 weeks 58 138

22 Skalnaya, M.
G.

2019 Russia Europe Serum Case–
control

Copper SA 28 weeks 75 169

23 Tabassum,
H.

2022 Saudi Asia Serum Case–
control

Lead RPL 12 weeks 30 30

Serum Case–
control

Cadmium RPL 12 weeks 30 30

24 Tousizadeh,
S.

2023 Iran Asia Serum Case–
control

Zinc RPL Delivery 60 60

Serum Case–
control

Lead RPL Delivery 60 60

25 Vigeh, M. 2010 Iran Asia Whole
blood

Case–
control

Lead SA Delivery 15 336
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TABLE 1 Continued

Number of sub-
jects

Metal concentra-
tion (mg/dL)

Type of
Abortion

Follow-
up End-
point

Cases Controls Cases Controls p Analytical
method
employed

Reference

SA Delivery 25 141 55.43 ±
54.3 (µg/
L)

44.97 ±
45.6 (µg/
L)

0.307 ICP-MS (50)

SA Delivery 25 141 0.51 ± 0.5
(µg/L)

0.51 ± 0.5
(µg/L)

0.957 ICP-MS

SA 12 weeks 56 55 4.18 ±
0.26 (mg/
L)

3.24 ±
1.47 (mg/
L)

>0.05 ICP-MS (51)

SA 12 weeks 56 55 1.80 ±
0.58 (mg/
L)

1.41 ±
0.55 (mg/
L)

<0.001 ICP-MS

SA 12 weeks 56 55 0.17 ±
0.09 (mg/
L)

0.15 ±
0.10 (mg/
L)

>0.05 ICP-MS

SA 12 weeks 29 20 54.11 ±
17.27 (µ/
L)

44.45 ±
12.49 (µ/
L)

0.038 AAS (52)

SA 12 weeks 29 20 0.39 ±
0.06 (µ/L)

0.40 ±
0.05 (µ/L)

0.704 AAS

Inductively Coupled Plasma Mass spectrophotometry.
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Sr.No Author Year Country Continent Sample Type
of
Article

Heavy
Metal

26 Vigeh, M. 2021 Iran Asia Whole
blood

Case–
control

Lead

Whole
blood

Case–
control

Cadmium

27 Wang, R. 2020 China Asia Serum Cross–
section

Zinc

Serum Cross–
section

Copper

Serum Cross–
section

Lead

28 Yildirim, E. 2019 Turkey Asia Whole
blood

Case–
control

Lead

Whole
blood

Case–
control

Cadmium

SA, Spontaneous Abortion; RPL, Recurrent Pregnancy Loss; AAS, Atomic-Absorption Spectrophotometry; ICP-MS
,
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normal pregnant females. Of the 28 articles included in this meta-

analysis, six were completed in China (37, 38, 40, 42, 45, 51), three

in Egypt (26, 30, 31), three in Saudi Arabia (29, 36, 47), three in Iran

(48–50), two in Mexico (33, 39), two in Turkey (35, 52), two in

Poland (19, 41), one in Nigeria (27), one in Croatia (28), one in Italy

(32), one in Australia (34), one in Serbia (43), one in India (44), and

one in Russia (46). The sample size of the included studies ranged

from 38 to 1,447.
3.3 Quality of included studies

The quality assessment results for all studies are shown in

Supplementary Table 1. Studies with quality scores higher than 6,

which is the cut-off NOS score for low quality, were considered

credible. All of the included articles had quality scores above 6.
3.4 Meta-analysis for Zn

Fourteen studies investigated the association between Zn

concentrations and abortion. The pooled effect size showed that

the Zn concentration was negatively associated with abortion (SMD

= −1.05, 95% CI: −1.74, −0.36, p = 0.003, I2 = 96.9%; Figure 2A).

Subgroup analysis showed that women with RPL had significantly

lower Zn concentrations than healthy controls (SMD = −3.44, 95%

CI: −5.01 to −1.87, p <0.001), whereas the Zn concentrations of

women with SA and healthy controls were not significantly different

(SMD = −0.14, 95% CI: −0.86–0.58, p = 0.710). Significant

heterogeneity was observed in each subgroup (SA, p <0.001, I2 =
Frontiers in Endocrinology 09
96.6%; RPL, p <0.001, I2 = 96.6%; Figure 2B). To investigate the

origin of the high heterogeneity, subgroup analyses based on follow-

up endpoint, continent, type of article, and type of detected sample

were performed. Subgroup analyses revealed persistently high

heterogeneity (Supplementary Figure 1). Sensitivity analysis

showed that omission of any study did not change the overall

effect (Figure 2C). There was no evidence of publication bias among

the included studies (Begg, p = 0.511; Egger, p = 0.335; Figure 2D).
3.5 Meta-analysis for Cu

Comparisons of Cu concentrations in women with and without

abortion were reported in 14 studies. The pooled effect size of the 14

studies revealed significantly lower Cu concentrations in the

abortion group than in the control group (SMD = −1.42, 95% CI:

−1.97, −0.87, p <0.001, I2 = 95.4%) (Figure 3A). Subgroup analysis

stratified by the type of abortion (SA and RPL) showed that patients

with SA and RPL had lower Cu concentrations than the healthy

controls (Figure 3B); the SMD was −0.97 (95% CI: −1.47, −0.48, p

<0.001) for women with SA and −3.92 (95% CI: −6.97, −0.87, p =

0.012, respectively). However, subgroup analysis based on abortion

type showed obvious heterogeneity (SA, p <0.001, I2 = 94.0%; RPL,

p <0.001, I2 = 97.8%). Subgroup analyses for the follow-up

endpoint, continent, type of article, and type of detected sample

showed high heterogeneity (Supplementary Figure 2). Sensitivity

analysis showed that omission of any single study did not change

the overall effect (Figure 3C). Publication bias was detected in the

studies that included Cu (Begg: p = 0.037; Egger: p = 0.012). Visual

inspection of funnel plots showed asymmetry (Figure 3D).
B

C D

A

FIGURE 2

Meta-analysis outcomes of zinc. (A) Forest plot showing the meta-analysis outcomes between abortion group and normal pregnant women;
(B) Subgroup analysis based on the type of abortion (SA and RPL); (C) Sensitivity analysis; and (D) Funnel plot.
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3.6 Meta-analysis for Pb

The meta-analysis of the association between Pb concentration

and abortion included 15 studies (Figure 4A). The pooled

circulating Pb concentration was significantly higher in women
Frontiers in Endocrinology 10
who had experienced an abortion than in those with normal

pregnancies (SMD = 1.47, 95% CI: 0.89–2.05, p <0.001, I2 =

96.0%). Subgroup analysis for SA and RPL showed significantly

higher Pb concentrations in women with SA (SMD = 0.33, 95% CI:

0.12–0.55, p = 0.002) and RPL (SMD = 8.19, 95% CI: 4.52–11.85,
B

C D

A

FIGURE 3

Meta-analysis outcomes of copper. (A) Forest plot showing the meta-analysis outcomes between abortion group and normal pregnant women; (B)
Subgroup analysis based on the type of abortion (SA and RPL); (C) Sensitivity analysis; and (D) Funnel plot.
B

C D

A

FIGURE 4

Meta-analysis outcomes of lead. (A) Forest plot showing the meta-analysis outcomes between abortion group and normal pregnant women;
(B) Subgroup analysis based on the type of abortion (SA and RPL); (C) Sensitivity analysis; and (D) Funnel plot.
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p <0.001) than in healthy pregnant women (Figure 4B). However,

significant heterogeneity was observed (SA: p <0.001, I2 = 68.6%;

RPL: p <0.001, I2 = 98.2%). Further subgroup analyses based on the

follow-up endpoint, continent, type of article, and type of detected

sample also showed high heterogeneity (Supplementary Figure 3).

Sensitivity analysis showed that omission of any single study did not

change the overall effect (Figure 4C). Visual inspection of the funnel

plots (Figure 4D) and Begg’s and Egger’s tests showed publication

bias (Begg: p = 0.002; Egger: p = 0.001).
3.7 Meta-analysis for Cd

The pooled results of the meta-analysis of eight studies on Cd

and abortion showed significantly higher Cd concentrations in

women who underwent abortion than in normal pregnant

women (SMD = 1.15, 95% CI: 0.45–1.85, p = 0.001, I2 = 93.7%)

(Figure 5A). Subgroup analysis based on abortion type showed that

women with SA and RPL had significantly higher Cd

concentrations than the normal controls (SA: SMD = 0.42, 95%

CI: 0.02–0.82, p = 0.040; RPL: SMD = 2.45, 95% CI: 0.85–4.04, p =

0.003). However, the heterogeneity was significant in each subgroup

(SA: p = 0.003, I2 = 75.1%; RPL: p <0.001, I2 = 94.2%) (Figure 5B).

Further subgroup analyses based on the follow-up endpoint,

continent, and type of detected sample also showed high

heterogeneity (Supplementary Figure 4). All studies on Cd and

abortion were case–control studies, and subgroup analysis for

different article types could not be performed. The sensitivity

analysis showed that the exclusion of any single study could

change the overall effect (Figure 5C). Both funnel plots and
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Begg’s and Egger’s tests showed no publication bias for Cd (Begg:

p = 0.174; Egger: p = 0.113; Figure 5D).
4 Discussion

Due to widespread human exposure to (53) and bio-

accumulation of heavy metals (54), there are growing concerns

about the adverse effects of heavy metals on normal pregnancies.

Exposure to toxic metals or deficiency of essential metals has long

been suspected to lead to abortion (55). However, the results of

previous studies have not been consistent (1, 19). To provide

stronger evidence for this important clinical issue, we conducted

the present meta-analysis, focusing on two common toxic metals

(Pb and Cd) and two essential metals (Zn and Cu) (56). This study

is first to investigate the overall association between blood Zn, Cu,

Pb, and Cd concentrations and abortion, including RPL and SA. Zn

or Cu deficiency was associated with the prevalence of abortion in

women, and exposure to Pb or Cd increased the risk of abortion (SA

and RPL). Only one relevant meta-analysis was carried out in 2021,

showed that exposure to Cd and Pb increased the incidence of

abortion (undistinguished threatened abortion, SA, and RPL) (23).

Subgroup analysis based on abortion type was not performed (23).

In the present study, we recruited more studies to reinforce the

association between exposure to Cd and Pb and the increased risk of

abortion and performed subgroup analysis based on the type of

abortion to investigate the effect of Cd and Pb exposure on patients

with SA and RPL. In addition, the exploration of Zn and Cu in

women with RPL and SA provides a basis for clinicians who tend to

intervene early against RPL in women with Zn and Cu deficiencies.
B

C D

A

FIGURE 5

Meta-analysis outcomes of cadmium. (A) Forest plot showing the meta-analysis outcomes between abortion group and normal pregnant women;
(B) Subgroup analysis based on the type of abortion (SA and RPL); (C) Sensitivity analysis; and (D) Funnel plot.
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The exact mechanisms underlying the induction of SA and RPL by

Pb and Cd exposure and Zn and Cu deficiency are unknown. Studies

have shown that heavy metals are common environmental endocrine

disruptors. Previous studies have reported that exposure to toxic

metals and deficiencies of essential metals lead to abortion mainly

through endocrine dysfunction, such as insulin resistance, vitamin D

insufficiency, and abnormal thyroid and sex hormone concentrations,

among others. The details of this process are discussed below.
4.1 Female Zn concentration and abortion

In our study, we found that Zn inadequacy tended to increase

the chances of abortion, especially for RPL; however, it may not

increase the incidence of SA. The underlying mechanism of Zn

inadequacy-related RPL remains unknown. However, it may also be

associated with endocrine dysfunction caused by Zn deficiency.

Zn deficiency has been reported to decrease insulin sensitivity

and cause insulin resistance (IR) (57, 58), whereas Zn supplements

can decrease IR (59, 60). IR, defined clinically as a decreased

biological response to exogenous or endogenous insulin, can

cause mitochondrial dysfunction in the placenta, diminished

trophoblast invasion, a subclinical inflammatory state, and

oxidative stress. These factors are all considered crucial in the

pathophysiology of RPL (61–64). Zn can reinforce glucose

transport into cells and potentiate insulin-induced glucose

transport via the insulin signaling pathway (65). Zn can also act

as an insulin mimetic to maintain glucose homeostasis, which may

also be a mechanism underlying Zn deficiency-induced IR (66).

Apart from IR, Zn deficiency is also closely related to vitamin D

deficiency, as Zn regulates the transcriptional activation of hormone-

related genes via a cysteine-rich Zn-finger region in vitamin D

receptors (VDRs) (67–69). Vitamin D plays a vital role in

maintaining normal biological functions, such as calcium

homeostasis, and cell proliferation, differentiation, and apoptosis, all

of which are crucial for immunomodulation and normal pregnancy

(70). Vitamin D inadequacy was reported to be associated with SA

and RPL in a recent meta-analysis (71, 72). Supplementation with

vitamin D can suppress inflammatory cytokine production and

elevate the secretion of cathelicidin in decidual cells and

trophoblasts, which can reduce the risk of abortion (73–75).

Zn deficiency appears to interfere with sex hormone synthesis

and further causes RPL. Zn can affect the biosynthesis and function

of sex hormones, such as progesterone and prolactin, by altering LH

and FSH levels and inducing oxidative stress (17, 76–78). Zn may

also promote estrogen release by forming ligand bonds with metal-

binding sites on the estrogen receptor (ER) (79). Insufficient

secretion of sex hormones, such as progesterone, testosterone,

estrogen, and prolactin, can reduce endometrial receptivity and

oocyte quality in women, which is related to RPL (55, 80, 81).

Furthermore, Zn is an essential trace element for thyroid

function and homeostasis (82), and its deficiency can lead to

hypothyroidism (82–84). Hypothyroidism and subclinical

hypothyroidism can lead to poor pregnancy outcomes such as SA

and RPL (85, 86). Zn supplements can elevate thyroxine (T4)

concentrations and reduce triiodothyronine (T3) concentrations
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by altering the expression of key genes (nis, tpo, thra, dio1, dio2, and
ugt1ab) in the hypothalamic–pituitary–thyroid (HPT) axis (87).
4.2 Female Cu concentration and abortion

We found that women undergoing abortion (both SA and RPL)

had lower Cu concentrations, indicating that Cu deficiency may be

closely related to the incidence of abortion (SA and RPL). However,

the underlying mechanism remains unknown. However, previous

studies have reported that Cu deficiency can induce endocrine

dysfunction, such as IR, vitamin D insufficiency, and abnormal

thyroid and sex hormone concentrations, which may be involved in

the pathogenesis of SA and RPL. Insufficient Cu can cause IR by

upregulating cytochrome c oxidase 1 (SCO1) and vascular adhesion

protein-1 (VAP-1) (88–90); it can also reduce progesterone

synthesis by regulating the expression of steroidogenic factor 1

(SF-1) (91). Cu deficiency can also reduce Cu/Zn superoxide

dismutase (Cu/Zn-SOD) and cause oxidative stress in the ovary,

ultimately leading to dysfunctional luteal formation and insufficient

progesterone secretion (17). In addition, Cu deficiency can decrease

the expression of estrogen synthetases such as aromatase

(CYP19A1) and 17b-hydroxysteroid dehydrogenase (17b-HSD)

(92). Furthermore, Cu deficiency can lead to hypothyroidism (82–

84, 93) by inducing oxidative stress and decreasing thyroxine

synthesis by limiting tyrosinase availability (82, 93–95).
4.3 Female Pb concentration and abortion

Our study found that women who experienced abortion (SA and

RPL) had higher Pb concentrations, suggesting that Pb exposure could

increase the risk of abortion (SA and RPL). Our results are consistent

with those of the meta-analysis by Kaur et al. (23). Pb can substitute

polyvalent cations, such as calcium (Ca2+), and affect various cellular

processes, such as apoptosis, cell adhesion, and cell signaling (96).

However, the mechanism underlying Pb-induced abortion remains

unclear. Animal studies have shown that Pb exposure can

downregulate IR-related genes in the P13K and Akt signaling

pathways, which are involved in hepatic gluconeogenesis and

glucose production (97, 98). Low-level Pb exposure promotes the

gene expression of key enzymes involved in hepatic gluconeogenesis

and eventually induces hyperglycemia and impaired fasting plasma

glucose, which is known as hepatic insulin resistance (99).

Additionally, Pb appears to be involved in the pathology of vitamin

D deficiency. Pb can diminish the activity of vitamin D by blocking the

normal renal synthesis of active 1,25-dihydroxy vitamin D (1,25(OH)

2D) and reduce the generation of vitamin D binding protein (DBP)

(56, 100, 101). Pb can also promote degradation and block the

synthesis of 1,25(OH)2D3 by upregulating the hepatic expression of

Cyp24a1 enzymes and inhibiting 25-hydroxylase (CYP2R1) and 1-a-
hydroxylase (CYP27B1) at the gene and protein levels (100, 102).

Previous studies have suggested that Pb may be closely associated with

luteal phase deficiencies. Pb can directly inhibit the expression of

several key enzymes involved in progesterone synthesis, such as StAR,

CYP11A1, and 3b-HSD (103, 104). Pb also appears to indirectly
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interfere with progesterone synthesis by inhibiting the cAMP-PKA-

dependent signaling pathway that regulates the expression of these key

enzymes (104–106). Pb has adverse effects on sex hormone

concentration. Pb exposure is associated with increased testosterone

and prolactin concentrations and appears to reduce estrogen

concentrations by decreasing the expression of estrogen synthases

such as 17b-HSD (103, 107, 108). Furthermore, Pb accumulation

negatively affects thyroid function, which is also related to abortion.

Excessive exposure to Pb may lead to hypo- or hyperthyroidism (109).

As an oxidant, Pb can negatively impact thyroid cells by promoting

oxidative stress, and it can also interact with other essential elements

such as Cu, Zn, and Fe to indirectly affect thyroid function (82, 109).
4.4 Female Cd concentration and abortion

We found that the Cd concentration was significantly higher in

women who experienced abortion (SA and RPL) than in normal

pregnant women. Our results are in line with those of Kaur et al.,

who revealed that Cd exposure could increase the risk of abortion

(23). Cd is a highly potent environmental pollutant that causes

indirect oxidative damage to DNA, leading to the induction of

cellular proliferation and inhibition of DNA repair mechanisms,

causing cytotoxicity (110). However, research on the mechanisms of

Cd exposure-related abortion is lacking. In recent years, an

increasing number of studies have found a strong relationship

between Cd and endocrine dysfunction, which is the main reason

for abortions (both SA and RPL). Epidemiological surveys have

shown that Cd can cause IR through perturbations in

gluconeogenesis, pancreatic islet dysfunction, and metabolic and

mitogen impairments in the liver and adipose tissue (111, 112).

Epidemiological studies have also demonstrated that high blood Cd

concentrations are negatively correlated with vitamin D

concentrations (113, 114), which may be due to the interaction of

Cd with renal mitochondrial hydroxylases (115). Cd is also involved

in the pathogenesis of luteal phase deficiencies. It can directly or

indirectly inhibit the expression of several key enzymes (StAR,

CYP11A1, and 3b-HSD) involved in progesterone synthesis by

regulating the cAMP-PKA-dependent signaling pathway (24, 116,

117). Cd can also interfere with the balance of sex hormone

concentrations. Cd exposure appears to decrease the expression of

estrogen synthetases (CYP19A1 and 17b-HSD), and it is also a

potent xenoestrogen that can mediate the proliferation of anterior

pituitary cells and prolactin secretion by mimicking estrogen (118).

Cd can also negatively affect thyroid cells by promoting oxidative

stress, ultimately leading to thyroid dysfunction (82, 109).
4.5 Strengths

The strength of our study is that we comprehensively investigated

the relationships between blood Zn, Cu, Pb, and Cd concentrations

and abortion rates (SA and RPL). In addition, we systematically

reviewed previous publications on the endocrine mechanisms of

metal exposure-related abortions. We propose that IR, vitamin D

insufficiency, and abnormal thyroid and sex hormone concentrations
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may be involved in Zn and Cu deficiencies and Pb and Cd exposure-

associated abortions. Third, the large sample size of 4,666 pregnant

women from 14 countries makes our estimates reliable. Fourth, most

included studies were of good quality. In the included studies, the

definitions of cases and controls were adequate, and the selection of

controls and assessment of exposure were consistent. Fifth, a

sensitivity analysis was conducted to verify the associations

between the four metals and abortion.
4.6 Limitations

This study has some limitations. First, several dated documents that

appeared to meet our inclusion criteria were not included because we

were unable to reach the authors. Second, despite our best efforts, we

were only able to find 28 related papers because of the relatively large

number of animal studies and case reports. Third, most meta-analyses

included in our study had high heterogeneity. To ascertain its sources,

we performed a subgroup analysis based on the type of abortion,

follow-up endpoint, continent, type of observational study, and type of

detected sample. However, we failed to find sources of heterogeneity by

subgroup analysis, as most subgroup analyses showed high

heterogeneity. After carefully reviewing the included articles, we

found that different diagnoses of SA or RPL may have led to clinical

heterogeneity. In addition, regional variations in metal concentrations

of the study participants were considered another source of

heterogeneity. Local mineral deposits and their exploitation affect the

metal concentrations in the environment (air, water, and soil), and

different terrains can impact the diffusion of pollutants (119). Thus,

participants had different risks of metal exposure. Moreover,

participants of different races with different genetic backgrounds have

various sensitivities to metal exposure (120). Owing to the limited

information regarding the region and race of the investigated subjects in

the original literature, we were only able to perform a subgroup analysis

based on different continents to investigate the heterogeneity caused by

regional differences. The age of the study population and the time point

of blood collection in each study were also considered potential sources

of heterogeneity, as heavy metals could accumulate in the human body,

and older adults may have higher blood metal concentrations.

Furthermore, metal concentrations can change during different

trimesters and the time points of blood collection may lead to

heterogeneity (121, 122). Fourth, the literature regarding Cu and Pb

had obvious publication and reporting bias, although the publication

and reporting the bias of literature regarding Zn and Cd were

acceptable. Language and multiple publication biases were considered

primary problems as only the English literature was included, and two

studies had outcomes from the same study population.
4.7 Implications for treatment

The findings of the present study broaden our understanding of

the effects of toxic and essential metals on the RPL and SA.

Endocrine dysfunction can lead to metal exposure and abortions.

It will be helpful to screen blood Zn, Cu, Pb, and Cd concentrations

in females. However, well-designed prospective cohort studies are
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needed to clarify the causal relationship between endocrine

dysfunction and heavy-metal-induced abortion.
5 Conclusion

In the present study, we found that higher blood Pb and Cd

concentrations and lower Zn and Cu concentrations in females may

be associated with SA and RPL. Exposure to toxic metals, as well as

deficiencies in essential metals, may cause SA and RPL through

endocrine dysfunction, such as insulin resistance, vitamin D

insufficiency, and abnormal thyroid and sex hormone

concentrations. However, further prospective cohort and

experimental studies are required to provide stronger evidence.
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SUPPLEMENTARY FIGURE 1

Subgroup analysis of circulating Zn level in abortion women or healthy
pregnant women. (A). Subgroup analysis based on the follow-up endpoint

(ongoing pregnancy and live birth); (B). Subgroup analysis based on the
continent of study population (Africa, Asia, Europe, and Oceania); (C).
Subgroup analysis based on the type of article (case-control study, cross-
section study, and nested case-control study); (D). Subgroup analysis based

on the type of detected sample (serum, plasma, and whole blood).

SUPPLEMENTARY FIGURE 2

Subgroup analysis of circulating Cu level in abortion women or healthy
pregnant women. (A). Subgroup analysis based on the follow-up endpoint

(ongoing pregnancy and live birth); (B). Subgroup analysis based on the
continent of study population (Africa, Asia, Europe, and Oceania); (C).
Subgroup analysis based on the type of article (case-control study, cross-

section study, and nested case-control study); (D). Subgroup analysis based
on the type of detected sample (serum, plasma, and whole blood).

SUPPLEMENTARY FIGURE 3

Subgroup analysis of circulating Pb level in abortion women or healthy
pregnant women. (A). Subgroup analysis based on the follow-up endpoint

(ongoing pregnancy and live birth); (B). Subgroup analysis based on the

continent of study population (Africa, North America, Asia, and Europe); (C).
Subgroup analysis based on the type of article (case-control study and cross-

section study); (D). Subgroup analysis based on the type of detected sample
(serum, plasma, and whole blood).

SUPPLEMENTARY FIGURE 4

Subgroup analysis of circulating Cd level in abortion women or healthy

pregnant women. (A). Subgroup analysis based on the follow-up endpoint
(ongoing pregnancy and live birth); (B). Subgroup analysis based on the

continent of study population (Africa, Asia, and Europe); (C). Subgroup
analysis based on the type of detected sample (serum and whole blood).
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