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Lean nonalcoholic fatty liver
disease and sarcopenia

Milian Chen, Ying Cao, Guang Ji and Li Zhang*

Institute of Digestive Diseases, Longhua Hospital, Shanghai University of Traditional Chinese
Medicine, Shanghai, China
Nonalcoholic fatty liver disease (NAFLD) has become one of the most common

chronic liver diseases in the world. The risk factor for NAFLD is often considered

to be obesity, but it can also occur in people with lean type, which is defined as

lean NAFLD. Lean NAFLD is commonly associated with sarcopenia, a progressive

loss of muscle quantity and quality. The pathological features of lean NAFLD such

as visceral obesity, insulin resistance, andmetabolic inflammation are inducers of

sarcopenia, whereas loss of muscle mass and function further exacerbates

ectopic fat accumulation and lean NAFLD. Therefore, we discussed the

association of sarcopenia and lean NAFLD, summarized the underlying

pathological mechanisms, and proposed potential strategies to reduce the

risks of lean NAFLD and sarcopenia in this review.
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1 Introduction

Nonalcoholic fatty liver disease (NAFLD), also known as metabolic-associated fatty liver

disease (MAFLD), is the most common chronic liver disease in the world (1), which

composed of a series of progressive liver diseases, including NAFL, non-alcoholic

steatohepatitis (NASH), and fibrosis (2). Lean NAFLD has been an emerging topic of the

current clinical study, given a considerable portion of NAFLD patients without obesity and its

distinguishing courses of disease and manifestations (3–5). Lean NAFLD is usually defined by

Body Mass Index (BMI), with BMI <23kg/m2 in Asians and <25kg/m2 in European and

American (6). An epidemiological survey showed that the global prevalence of NAFLD has

risen to 32.4% (7). Although obesity is a major contributing factor to NAFLD, approximately

40% of patients with NAFLD are nonobese and 20% are lean (8). Lean MAFLD is often

occurred in old people, with a higher proportion of females (9). The study by Younossi et al.

(10) found that the prevalence of lean NAFLD varies among different ethnic groups, ranging

from 5%- 45% in Asians to 5%- 20% in Europeans. Among 6905 Chinese people with

BMI<25kg/m2, 7. 27% had hepatic steatosis; In another study, 18% of 2000 Chinese residents

with BMI<24kg/m2 were diagnosed with NAFLD (11). This may be related to regional

differences in dietary habits (including high fructose, low protein and dietary fiber intake (11–

14) and lifestyle (such as sedentary, lack of physical exercise and sleep habits) (15–17).
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2 Clinical features and risks of
lean NAFLD

Obesity is one of the major characteristics of NAFLD, and is

known as a risk factor for the development of NAFLD (6). People

with normal BMI are often overlooked in screening for NAFLD.

Moreover, lean NAFLD is often considered to be benign in contrast

to obese NAFLD, even images show identical steatosis (18). Chen

et al. (3) included 538 patients with NAFLD confirmed by liver

biopsy, and found that compared with non-obese patients, lean

patients had better metabolic status and lower incidence and

severity of T2DM and metabolic syndrome. But these differences

occur in the early stage of liver disease, and the advanced liver disease

progression of lean NAFLD isn’t improved (3). This suggests the

homeostasis in lean NAFLD is gradually destroyed and subsequent

progression can’t be avoided, despite the baseline metabolic and

histological status of them being better than non-lean subjects (3).

HOMA-insulin resistance (Homeostasis model assessment-insulin

resistance) is significantly higher among the lean NAFLD group in

comparison to the obese group in a study by Parth et al. (19). And

multiple studies have found that both non-obese and lean NAFLD

have long-term hepatic and extrahepatic complications (10, 11). This

may explain why some studies have reported higher advanced liver

disease severity and mortality in lean NAFLD than in non-lean

NAFLD. Lean NAFLD patients have a higher risk of metabolic

syndrome and all-cause mortality in comparison to obese NAFLD

patients (12, 18–21). This suggests that lean NAFLD is not a

metabolically healthy status. Lean NAFLD patients have the same

pathological features as obese NAFLD, and the same or even shorter

course of progression to NASH (22). Numerous studies have reported

that lean NAFLD patients showed metabolic risk factors, such as

dyslipidemia, arterial hypertension, insulin resistance and type 2

diabetes mellitus (T2DM), which are closely related to the severity of

liver disease (12, 23, 24). A large, prospective, community-based cohort

(25) provides evidence that lean NAFLD subjects have more

progressive liver disease and poorer clinical outcomes, independent

from the usual risk factors and lifestyle. This is confirmed in another

meta-analysis on mortality and liver events in patients with lean

NAFLD (20), as well as in a cohort study in China (21).

Central obesity is a typical characteristic of lean NAFLD (26).

Unlike subcutaneous fat storage, excessive visceral fat leads to the

accumulation of pro-inflammatory cytokines including tumor

necrosis factor-a (TNF-a) and interleukin-6 (IL-6), and

reduction of many anti-inflammatory factors such as adiponectin,

which promotes metabolic inflammation (27, 28). Visceral fat is

reported to be more closely associated with metabolic syndrome

than subcutaneous fat (28, 29). The proportion of central obesity of

lean NAFLD is observably increased, despite the BMI of lean

NAFLD patients is in the normal range or even lower (23). It is

reported that the waist circumference and total abdominal fat levels

in the non-obese group were lower than those in the obese group,

but there was no prominent difference in visceral fat levels between

the two groups. In some non-obese patients, the visceral fat area

even exceeds 100cm2, which is higher in contrast to that in obese
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patients (30). Therefore, excessive visceral fat might be a driving

factor for the disease progression of lean NAFLD.
3 Association between lean NAFLD
and sarcopenia

Skeletal muscle as a locomotor organ as well as a metabolic organ

accounts for 40-50% of lean bodymass in adults, which plays one of the

most crucial roles in the control of energy metabolism (31). Sarcopenia,

previously considered an aging-related syndrome involving a decrease

in muscle quantity and quality as well as physical performance, is now

recognized as a progressive pathological process associated with type 2

diabetes mellitus (T2DM), metabolic syndrome, liver disease, and

cardiovascular disease (32). It is primarily associated with aging and

secondarily with diseases mediated by systemic inflammation and

insulin resistance (32).

There is a close relationship between skeletal muscle and the liver,

in particular, in terms of glucose, amino acid, and ammonia

metabolism (33). In a Korean epidemiological study of 3305

patients with metabolic syndrome, 739 (22. 4%) had sarcopenia

(34). And the coexistence of NAFLD and sarcopenia have been

reported in a series of clinical studies (Table 1) (35–44). NAFLD

patients with sarcopenia had a 2-fold higher risk of developing NASH

and significant fibrosis independent of obesity and insulin resistance

(45). Lean NAFLD patients are especially prone to sarcopenia (46).

The prevalence of sarcopenia is significantly increased in patients

with NASH compared to that in healthy subjects (35.0% versus 8.7%)

(45). A recent study demonstrated that NAFLD developed in 14.8%

of its participants during a 7-year follow-up, with an increased

incidence in participants with the lowest tertile of skeletal muscle

mass at baseline (47). Sarcopenia is associated with poor clinical

outcomes, including severe hepatic fibrosis and increased mortality,

in NAFLD patients (48–51). Therefore, low skeletal muscle mass may

be an important risk factor for NAFLD, especially lean NAFLD. In

addition, sarcopenia is also associated with cirrhosis and is a

prognostic determinant of cirrhosis (33, 52).
4 Potential mechanisms of lean
NAFLD and sarcopenia

4.1 Dietary intake and lean NAFLD

The pathophysiology of lean NAFLD can be impressed by diet

and nutrients (53, 54). A matched case-control study included 351

Chinese adults, and found the average weekly exercise and daily sleep

duration of lean NAFLD people were lower than that of healthy lean

NAFLD people, while the average daily intake of total calories,

carbohydrate, total cholesterol, fat and protein was higher than that

of healthy lean NAFLD people (55). Total starchy foods intake was

higher in those with NAFLD compared to the lean healthy group, but

no significant difference was found among lean and non-lean NAFLD

participants regarding nutrients and food items, indicating that the
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chance of lean NAFLD would increase by an increase in

carbohydrate, potato, and fat intake (56). But in the study of

Younossi et al. (57), no difference was found in macronutrients

intake (carbohydrate, fat, and protein), vitamins, and minerals

between lean NAFLD subjects and lean healthy controls. They

suggested that this may indicate that NAFLD in lean patients has

occurred due to other metabolic abnormalities. Others have

postulated that the cause of lean NAFLD could be due to genetic

characteristics, impaired intestinal motility, and some other

metabolic disturbances that are not related to weight status (58).

Since studies on the association between lean NAFLD and diet are

less at present, and is still controversial, it is urgent to assess dietary

intakes and pattern, and diet quality with adequate sample size in lean

NAFLD people to find if there is any association between them.
4.2 The Role of skeletal muscle and
glucose metabolism

The concerted regulation of glucose uptake, utilization, and

storage by tissues is critical to maintaining blood glucose

homeostasis (59). Insulin increases glucose uptake into peripheral
Frontiers in Endocrinology 03
tissues, primarily skeletal muscle and adipose tissues, which express

the GLUT4 isoform of the glucose transporter. In unstimulated fat

or muscle cells (basal state), 3~10% of GLUT4 is located at the cell

surface and >90% is in intracellular compartments (60). GLUT4

participates in a cycle that consists of exocytic movement of the

transporter within post-biosynthetic vesicles of endosomal origin

towards the plasma membrane, and of endocytic movement from

the membrane back to the sorting endosomal system (61). GLUT4

exocytosis is regulated by Insulin-derived signals, including

mobilization to the cellular periphery, vesicle tethering, docking

and fusion, thereby increasing the cell-surface amount of GLUT4

and the rate of glucose uptake (62).

Skeletal muscle expresses high levels of GLUT4, responsible for

approximately 80% of glucose clearance under physiological

conditions (32, 46). In mice, muscle-specific knockout of GLUT4

leads to severe glucose intolerance (63). According to the morphology

and metabolic features, muscle fibers are mainly divided into type I

and type II subtypes. Muscles composed of different types of muscle

fibers show great differences in blood glucose metabolism, and the

density of glucose transporter 4 (GLUT4) in type I muscle fibers is

higher than that in type II muscle fibers (64). Gaster et al. (65) found

that GLUT4 expression was reduced in type I fibers in T2DMpatients
TABLE 1 The association between sarcopenia and NAFLD.

Study Study
attribute

Study
objects

Assessment of
sarcopenia

Assessment
of NAFLD

Findings Ref.

Lee et al.
(2015)

Cross-
sectional
cohort.

15,132
subjects of
Korean

DXA Noninvasive
models

The risk of NAFLD in patients with sarcopenia increased 2.3-
to 3.3-fold

(35)

Kim et al.
(2021)

Longitudinal
cohort.

11,065
subjects of
American

BIA US Sarcopenia was associated with a higher risk for all-cause
mortality. patients with both sarcopenia and NAFLD had a
higher risk for all-cause mortality.

(36)

Chung et al.
(2019)

Cross-
sectional
cohort.

5,989
subjects of
Korean

BIA US Sarcopenia was significantly associated with the presence and
the severity of NAFLD

(37)

Golabi et al.
(2020)

Cross-
sectional
cohort.

4,61 1
subjects of
American

Appendicular lean
mass divided by body
mass index

US Sarcopenia is associated with increased mortality amongst
NAFLD patients, which should be a part of clinical assessment
of patients with NAFLD.

(38)

Petta et al.
(2017)

Cross-
sectional
cohort.

225 subjects
of Italian

BIA Liver biopsy The risk of fibrosis in NAFLD in patients with sarcopenia
increased 2-fold

(39)

Zhai et al.
(2018)

Cross-
sectional
cohort.

494 subjects
of Chinese

DXA US NAFLD is significantly associated with sarcopenia. (40)

Wijarnpreecha
et al. (2019)

Cross-
sectional
cohort.

11,325
subjects of
American

BIA US The risk of advanced fibrosis in patients with sarcopenia
increased 1.8-fold.

(41)

Hsieh et al.
(2021)

Cross-
sectional
cohort.

521 subjects
of Korean

CT Liver biopsy The risk of fibrosis in NAFLD with sarcopenia increased (42)

Hsieh et al.
(2022)

Longitudinal
cohort.

338 subjects
of Korean

CT Liver biopsy Muscle loss is significantly associated with progression of
NASH in patients with sarcopenia

(43)

Harring et al.
(2023)

Cross-
sectional
cohort.

5,856
NHANES
participants

FNIH definition Transient
elastography

Patients with sarcopenic NAFLD are at risk for significant
fibrosis and advanced fibrosis.

(44)
frontier
DXA, dual energy X-ray absorptiometry; CT, computed tomography; BIA, Bioelectric impedance analysis; US, ultrasonography; FNIH, Foundation for the National Institutes of Health; NAFLD,
nonalcoholic fatty liver disease; NASH, nonalcoholic steatohepatitis; NHANES, national health and nutrition examination survey.
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by immunohistochemistry and morphometry. Therefore, it can be

assumed that the decrease in insulin-stimulated glucose uptake in the

skeletal muscle of T2DM patients might be due to the decrease of

GLUT4 in type I fibers. In addition, muscle fibers (especially type IIb

muscle fibers) can ameliorate metabolic abnormalities by secreting

proteins and muscle factors, while loss of skeletal muscle due to aging

or underlying diseases can exacerbate glucose intolerance (66).
4.3 Sarcopenia and insulin resistance

Insulin resistance is an important pathogenesis of sarcopenia

and NAFLD, regardless of lean type or non-lean type (67–69).

Insulin resistance refers to the reduction of glucose uptake and

utilization. To sustain stable levels of blood glucose, islet b cells

secret excessive insulin to compensate, leading to hyperinsulinemia

(70). Increased insulin content results in decreased affinity to

insulin receptors thus, further exaggerating the insensitivity of

insulin. Simultaneously, increased levels of adipokines and

inflammatory cytokines (such as IL-1, IL-6 and TNF-a) activate
NF-kB signaling pathway and promote insulin resistance (71).

Meanwhile, the weakened insulin signaling transduction also

affects the downstream mediator-glycogen synthase kinase-3b
(GSK3b) and glycogen synthesis (72). Collectively, excessive

insulin secretion, adipokines, and inflammatory factors directly or

indirectly interfere with the insulin signaling pathway, and

contribute to the development of NAFLD (73).

Insulin resistance leads to increased lipolysis and consequent

release of free fatty acids (FFAs) from adipose tissue to the liver,

which is the main contributor to the increase of De novo lipogenesis

(DNL) (63, 66). The mechanism of insulin-mediated decrease of

muscle anabolic metabolism may be related to the activation of p38

mitogen-activated protein kinase (MAPK) and mammalian target of

rapamycin (mTOR)/p70S6 kinase (74). Insulin resistance-induced

hyperinsulinemia also increases myostatin levels, which further

reduces skeletal muscle mass (48). Insulin resistance leads to

inhibition of b-oxidation, increased gluconeogenesis, increased

expression of sterol regulatory element binding protein-1c (SREBP-

1c), as well as increased production of FFAs, leading to accumulation

of triglycerides in skeletal muscle and liver, and the long-term level of

inflammation might be responsible for the disruption of

environmental homeostasis in muscle cells, ultimately leading to

systemic metabolic disorders (75, 76). Conversely, a 2-year follow-

up cohort included 194 community-dwelling nondiabetic older

adults found that loss of lower limb muscle mass is a significant

risk factor for development of insulin resistance independent of

obesity (77). Sarcopenic obesity patients had higher HOMA-IR

index in contrast to subjects without sarcopenia, indicating that

muscle mass is also a determinant for insulin sensitivity (67).

In addition, anabolic hormones such as insulin-like growth

Factor1 (IGF-1) also contribute to the progression of sarcopenia

and lean NAFLD (78), as well as non-lean NAFLD (68). Skeletal

muscle mass loss inhibits the growth hormone/insulin-like growth

factor-1 (GH/IGF-1) axis, and blocks skeletal muscle protein

synthesis (35). The GH/IGF-1 axis is involved in protein

metabolism and bone growth and remodeling in skeletal muscle
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(79). GH/IGF-1 affects carbohydrate and lipid metabolism and have

opposite effects: IGF-1 stimulates glucose uptake and facilitates

insulin signaling, while GH induces lipolysis, which induces insulin

resistance and elevated levels of free fatty acids (FFAs) (80). IGF-1

level decreases when insulin resistance occurs, leading to lipid

deposition in intramuscular and intermuscular adipose cells,

increased infiltration of adipose between muscle bundles, and

aggravated damage to muscle cells (81, 82). Patients with GH

deficiency are often comorbidity with NAFLD, which contributes

to NASH development and progression (83). Some studies also

reported low levels of IGF-1 in NAFLD patients (84, 85). These

indicate that GH/IGH-1 axis is another important association

between sarcopenia and lean NAFLD.
4.4 Sarcopenia and cytokine disorders

Sarcopenia and lean NAFLD often present with systemic chronic

inflammation, elevated levels of CRP and pro-inflammatory cytokines,

and reduced level of anti-inflammatory cytokines (86). This is due to

the high proportion of visceral adipose tissue in patients with lean

NAFLD, and then more adipose cells secret inflammatory cytokines,

and the muscle tissue is in a state of continuous chronic inflammation,

leading to an increased risk of muscle atrophy (87). In patients with

metabolic disorders, white adipocytes become hypertrophy and

proliferated, and these white adipocytes are infiltrated by activated

inflammatory macrophages and other immune cells (88). Contractile

myoglobin expression is reduced in muscle tubes cocultured with white

adipocytes from obese individuals (89). This may indicate that too

much adipose tissue disrupts the living environment of muscle cells

and promotes their apoptosis. Adipose tissue produces a large number

of pro-inflammatory cytokines, such as TNF-a, monocyte chemotactic

protein-1 (MCP-1), IL-6, and C-reactive protein, which promote

chronic inflammation, decreased muscle protein synthesis, and

insulin resistance (90). The increased production of systemic

inflammatory molecules and inhibited production of certain

adipokines (such as leptin and appetite suppressor hormone) in lean

NAFLD patients, further adversely affect the liver, pancreas and skeletal

muscle (75). Altered adipokine secretion leads to increased food intake,

decreased energy expenditure, and decreased insulin sensitivity in

muscles (90). Immune cells and adipocytes release inflammatory

cytokines, which aggravate myocyte insulin resistance and further

worsen sarcopenia (91). These processes can also occur in the

pathogenesis of non-lean NAFLD/T2DM and sarcopenia (68, 92).

Inflammation and oxidative stress appear to be major factors in

the etiology of muscle loss (93). Muscle cells are particularly

vulnerable to oxidative damage because they are post-mitotic cells

and are particularly prone to the accumulation of oxidative damage

molecules (94). In addition, skeletal muscle accounts for a prominent

portion of total oxygen consumption, increasing the inherent risk of

elevated mitochondrial-derived ROS such as H2O2 (95). Increased

reactive oxygen species (ROS) production and inefficient clearance in

muscle cells trigger cellular senescence and eventually muscle loss

(96). The imbalance of mitochondrial unfolded protein response and

mitochondrial phagocytosis modified integrated stress response

systems involved in the development of sarcopenia (97). Oxidative
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stress also increases the production and circulation of inflammatory

cytokines, which promote protein degradation inmuscle (98). TNF-a
also induces lipid accumulation in the liver by activating DNL (71). It

is reported in many rodent studies that inhibition of TNF-a
attenuates muscle proteolysis, while an infusion of TNF-a increases

Myo-fibrillation lysis (99, 100). This indicates that pro-inflammatory

cytokines (CRP, IL-6, and TNF-a) may increase proteolysis and

muscle atrophy.

The development of sarcopenia and lean NAFLD is accompanied

by a decrease in some protective factors, such as adiponectin (27, 28).

Adiponectin is a hormone secreted by adipose tissue that mediates

glucose and lipid metabolism in insulin-sensitive tissues such as the

liver and muscle (101). In the liver, adiponectin improves insulin

resistance by activating AMP-activated protein kinase (AMPK), thus

promoting glucose usage and fatty acid oxidation. In addition,

adiponectin plays the role of anti-inflammatory by inhibiting TNF-

a, improving liver steatosis and inflammation (102, 103). Fat

accumulation and aging damage the signaling pathway of the GH/

IGF-1 axis, leading to decreased levels of muscle synthesis (104, 105).

In an animal model, NAFLD is reported to be associated with

decreased muscle mass and strength as well as decreased IGF-1

levels, suggesting that decreased IGF-1 may contribute to the

development of NAFLD-related sarcopenia (106).

In addition, Irisin is also involved in the progression of

sarcopenia and NAFLD (107, 108). Irisin, an exercise-induced

myokine, increases energy expenditure through peroxisome

proliferator-activated receptor a-dependent downstream signaling

and improves insulin sensitivity and hepatic steatosis by upregulating

fibroblast growth factor-21 (108). It increases glucose uptake by

enhancing GLUT4 translocation and FFA b-oxidation through

activating AMPK in muscle cells (108). Irisin is reported to be

inversely associated with the degree of hepatic steatosis and is a

potential cause of sarcopenia and NAFLD (107, 109).
4.5 Genetic susceptibility

NAFLD is highly influenced by genetic and environmental

factors, and its susceptibility, progression and risks of related

complications vary greatly between individuals, and the genetic

variations of NAFLD are confirmed in genome-wide association

studies (GWAS) (110). It is reported that the proportion of the G

allele in PNPLA3 and the T allele in TM6SF2 in lean NAFLD patients

is significantly higher than that in non-lean NAFLD patients, and the

mutations of these two alleles are highly related to the disorder of

glucose and lipid metabolism (111). The PNPLA3 rs738409 G allele is

associated with higher liver-related mortality than the C allele in a

nationwide population study in the United States (112). The C allele

frequency of rs2279026 and G allele frequency of rs2279028 in the

TBC1D1 gene as well as the C allele frequency of rs780093 and

rs1260326 in GCKR gene in lean NAFLD patients are lower than

those in obese patients (113). A cohort study of 5387 Chinese

residents (≥60 years old) revealed that the AA genotype frequency

of SOD2 gene rs4880 in patients with lean NAFLD is lower than that

in lean healthy people, and rs4880 site in SOD2 determined the
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susceptibility to lean NAFLD (114). The PEMT gene controls liver

triglyceride secretion in the form of VLDL and is associated with

NAFLD. Bale et al. (115) sequenced the intact exon region of lean

NAFLD patients and found that the PEMT rs7946 variant is

associated with a three-times increase in the risk of lean NAFLD.

Variation in skeletal muscle traits among individuals can be

attributed to both genetic and environmental factors (116). Though

the influence of environmental factors, such as physical activity and

diet, have been broadly investigated, only a few studies have identified

the specific genetic influences on skeletal muscle traits (117). Sarlo et al.

enrolled 120 Italian healthy women and found a positive correlation

between sarcopenic normal-weight subjects and G/A-308 TNF-a
polymorphism (118). The gene TP53, encoding p53, is reported to

be involved in the pathogenesis of NAFLD (119). It is also affects

myoblast differentiation in severe and rapid skeletal muscle atrophy,

which represents a hallmark of cachexia and sarcopenia during aging

(120). The G/G genotype of TP53 codon 72 in exon 4 polymorphism is

found to increase the risk of sarcopenia up to 20% (121). The skeletal

muscle mass is reported to be associated with FTO (Fat mass and

obesity-associated) genotype variation. In a study enrolled 559 non-

athlete subjects, TT genotype and T allele carriers of the FTO rs9939609

variant had greater total body (4.8% and 4.1%) and total appendicular

lean mass (3.0% and 2.1%) compared to AA genotype (122). The FTO

genotype variants also play an important role in lipid-related

parameters (123). In a cohort study, AA genotype of the FTO

rs9939609 is found to be associated with LDL levels lean NAFLD

subjects but not in overweight and obese NAFLD subjects (113).

Besides, the ACTN3, ACE, VDR, IGF1/IGFBP3, APOE, CNTF/R and

UCP2/3 gene polymorphism are also found to be associated with

muscle phenotypes (124–130), but their association with lean NAFLD

is still to be determined. Therefore, certain genetic factors might be

associated with both sarcopenia and lean NAFLD, but further studies

are needed to verify the association and underlying mechanisms.
4.6 Differential metabolites

Circulating cholesterol is the major metabolic risk of NAFLD

patients, with the potential to develop cardiovascular diseases (131,

132). Both low-density lipoprotein (LDL) and high-density lipoprotein

(HDL) are carriers of cholesterol, with LDLmoving cholesterol into the

arteries and HDL clearing cholesterol from the arteries. Dyslipidemia is

a common complication of NAFLD (133). Cheng et al. (9) found that

among 394 NAFLD patients (16. 5% lean), lean NAFLD patients are

older, more female and have higher levels of HDL, but lower serum

triglyceride and alanine transaminase (ALT) levels in contrast to non-

lean patients. Compared with the lean healthy group, lean NAFLD

patients showed a higher percentage of hyperlipidemia, age, and an

increase in waist circumference, serum triglyceride, LDL-C, and blood

glucose levels (9). A study involving 1,305 Chinese residents found that

sarcopenic lean NAFLD patients presented a distinct metabolomic

profile that is prone to carotid plaque and liver fibrosis, with increased

serum valine, small LDL triglyceride and VLDL5 components, and

reduced components of HDL4 (134). Park et al. found that higher

relative grip strength, one of the indicators of sarcopenia, is associated
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with lower TG, TC, and LDL-C and higher HDL-C levels (135). These

studies suggest that LDL-C, TG and TC as well as HDL-C might be

biomarkers of sarcopenic lean NAFLD.

Bile acids (BAs) are amphiphilic steroid molecules synthesized

from cholesterol in the liver (136). BAs regulate lipid and glucose

metabolism, as well as the synthesis, transport and reabsorption of BAs

through bile acid receptors (137). The dysfunctional BA metabolism

promotes the accumulation of fat and infiltration of inflammatory cells

in the liver (4). Compared with non-lean NAFLD patients, the total

BA, primary BA and secondary BA levels are higher in lean NAFLD

patients. BA profiling showed that lean NAFLD patients had lower

levels of deoxycholic acid (DCA), glycodeoxycholic acid (GCDCA)

and goosenodeoxycholic acid (CDCA), and higher levels of

glycocholic acid (GCA) (3). Studies reported that serum cholic acid

(CA), ursodeoxycholic acid (UDCA) and DCA impair muscle fiber

structure and function and induce sarcopenia (138–140). And the level

of CA is significantly higher in patients with severe fibrosis compared

with those with none/mild fibrosis (3).

Serum uric acid, a metabolite of purines in the liver, is

considered to be a predictor of insulin resistance and the severity

of liver injury in NAFLD (141). Serum uric acid levels are reported

to be higher in lean NAFLD than in healthy controls, but HDL-c

levels are in the contrary. Since the ratio of uric acid to HDL-c

(UHR) is independently associated with an increased risk of

NAFLD, UHR might be a new promising marker for lean

NAFLD (142). Some studies have reported a positive association

between serum uric acid levels and relative grip strength (143–145).

However, a cross-sectional study of 5,247 adults from Korea found a

negative association (146). Therefore, the relationship between

serum uric acid level and sarcopenia remains controversial and

needs further studies to verify the association.
4.7 Altered gut microbiota

The gut microbiome has a significant contribution to digestion,

vitamin synthesis and pathogen resistance (147). The disruption of

intestinal homeostasis and changes in microbiota are involved in

the pathogenesis of NAFLD (147). Recent studies highlight that lean

NAFLD subjects have a distinct gut microbiota profile from obese

ones (18).

In a study conducted in a Chinese population, lean NAFLD subjects

demonstrated a reduced enrichment of Firmicutes, including

Lachnospiraceae, Ruminococcaceae, Lactobacillaceae, and an increase

in lipopolysaccharide-producing Gram-negative bacteria (148). Chen

et al. (3) reported a distinct microbiome profile in a Caucasian

population, and found that lean NAFLD patients have an increased

proportion of Ruminococcaceae compared to obese NAFLD patients

and an increased population of Dorea and decreased populations of

Marvinbryantia and Christensellenaceae compared with healthy

controls. According to the analysis of liver biopsy proved NASH

patients, intestinal permeability and bacterial overgrowth are

associated with the severity of steatosis (149). The gut microbiomes

affect FXR-mediated signaling pathways in the liver and gut by

interacting with BAs, which is associated with the pathogenesis of lean

NAFLD (150, 151). Gut microbiome and BA alterations may predispose
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NAFLDdevelopment at a lower BMI, and further studies ofmicrobiome

modulation are required to better understand its role as both a potential

biomarker and a therapeutic option in lean NAFLD patients (152).

Nikkhah et al. found that the alteration in age-related sarcopenia

and liver cirrhosis-induced sarcopenia was a reduction in short-chain

fatty acids (SCFAs) -producing bacteria. Lachnospiraceae family,

consisting of Lachnospira, Fusicatenibacter, Roseburia, and

Lachnoclostridium, is significantly decreased in age-related

sarcopenia, while in liver cirrhosis-induced sarcopenia, the alpha

diversity of gut microbiota decreased in comparison to the control

group (153). The richness of gut microbiota is considerably reduced

in sarcopenic patients, and the Firmicutes/Bacteroidetes ratio,

Agathobacter, Dorea and Butyrate are decreased, whereas Shigella

and Bacteroides are enriched in the gut (154). A case-control study

also reported that Phylum Bacteroides is significantly decreased in

old-women with sarcopenia, whereas genus Prevotella is increased

(155). However, the relationship between the types and richness of

gut microbiota in sarcopenia and lean NAFLD is not clear.
5 Strategies for sarcopenia and
lean NAFLD

There is a close relationship between the amount of physical

activity and mortality, and people with more physical activity have a

lower risk of death (156). Lack of physical activity leads to loss of

muscle mass and reduced energy expenditure, leading to obesity

and hepatic steatosis (157). Chronic inflammation, oxidative stress,

and insulin resistance can worsen sarcopenia and NAFLD (158).

During exercise, the production of pro-inflammatory cytokines

decreased while the anti-inflammatory cytokines and muscle

protein synthesis, as well as glucose uptake increased. Physical

activity may reduce the risk of sarcopenia progression (159).

Studies found that exercise improves metabolic health even

without observable weight loss (160, 161).

Circuit training has been reported as an effective way to

simultaneously improve both the muscular and cardiovascular

systems. Circuit training programs offer a combination of aerobic

and resistance exercises, the intensity of which can be adapted to the

individual and purpose. In a Korean study on circuit training

intervention on elderly women with sarcopenia, the muscle mass

and strength, body composition, balance, and pulmonary function

in subjects were improved after 12-week circuit exercise training

(162). Nutrition supplements also have a significant contribution to

the improvement of sarcopenia. A randomized controlled trial

shows that the skeletal muscle mass index in the exercise and

protein supplementation group is significantly higher than either

the exercise-only or protein supplementation-only groups.

Simultaneously, the increase in grip strength and gait speed is

significantly greater for the exercise and protein supplementation

group than for the protein supplementation-only group (163).

Other trials also proved that nutrition such as amino acids,

vitamin D, or calcium supplements improve muscle mass,

strength, and physical function in patients with sarcopenia (164–

168). The above evidence indicates that combined intervention of
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exercise (including aerobic and resistance exercises) and nutrition

(such as whey protein, branched-chain amino acids, and vitamin D

as well as calcium supplement) has positive effects on sarcopenia,

which provide a theoretical basis and therapeutic strategy for the

improvement of sarcopenia. Since sarcopenia is associated with

some hormones disorder and decreased muscle protein synthesis,

some drugs such as sex hormones (e. g. testosterone and 17 beta-

estradiol plus cyclic norethisterone acetate) and monoclonal

antibodies that stimulate muscle growth (e. g. bimagrumab) have

been used to improve sarcopenia (169–171).

Currently, there is no specific drug for the treatment of NAFLD

including lean NAFLD. However, some potential medications might

be suitable for countering the syndromes or preventing disease

progression. Insulin resistance is one of the most critical potential

co-pathogenesis of sarcopenia and lean NAFLD (48). Pioglitazone is a

PPAR-g agonist that increases insulin sensitivity, and exerts anti-

inflammatory and anti-atherosclerosis effects (172). In the UTHSCSA

NASH Phase 4 trial (NCT00994682) (173), the number of patients in

the pioglitazone group who recovered from impaired fasting glucose

(IFG)/impaired glucose tolerance (IGT) is significantly higher than

that in the placebo group, suggesting that pioglitazone has a desirable

effect in reducing metabolic risk factors, which can be used as a

potential therapeutic agent for lean NAFLD. Dapagliflozin and

Empagliflozin, sodium-glucose cotransporter 2 (SGLT-2) inhibitors,

are approved by the FDA as oral hypoglycemic agents in patients with

T2DM (174). A Phase 2 trial (175) studied the effect of Dapagliflozin
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on NAFLD patients with T2DM, and showed a significant

radiographic improvement in liver fat content compared with

placebo. SGLT-2 inhibitors have also found to reduce visceral fat,

improve glycemic disorder, and protect the heart, which may have

therapeutic potential for lean NAFLD (175). Fenofibrate is a drug for

dyslipidemia (176). Abdelmoneim et al. (177) fed experimental mice

palm oil and fructose to establish a non-obese NAFLD model, and

found that fenofibrate could prevent the occurrence of NAFLD,

improve high blood glucose and oxidative stress status, indicating

that fenofibrate can be a potential candidate for lean NAFLD.
6 Conclusions

Although BMI is within the normal range, lean NAFLD is not a

benign state. It can also progress to NASH and fibrosis, and even

cirrhosis and hepatocellular carcinoma as obese NAFLD. Lean

NAFLD patients even have a higher risk of metabolic syndrome

and all-cause mortality in comparison to obese NAFLD patients.

Skeletal muscle is a major metabolic organ, and the decline of

skeletal muscle quality and quantity leads to a decrease of insulin

sensitivity and metabolic disorders. Sarcopenia is commonly

coexistent with lean NAFLD, may present in the early stage of

liver disease and worsen with the severity of liver disease. Under the

background of co-pathogenesis of insulin resistance and chronic

inflammation, the interaction between sarcopenia and lean NAFLD
FIGURE 1

Potential mechanisms of lean NAFLD and sarcopenia. Excessive dietary intake and decreased energy consumption, as well as genetic predisposition
and other factors, result in visceral fat accumulation, IR and the development of lean NAFLD. Simultaneously, IR and metabolic inflammatory worsen
the living environment of muscle cells, aggravates muscle atrophy, and leads to the occurrence of sarcopenia. Loss of skeletal muscle mass inhibits
the GH/IGF-1 axis, resulting in decreased muscle protein synthesis, increased lipolysis. The decreased expression of GLUT4 in sarcopenia, further
suppressed glucose utilization and aggravated IR, forming a vicious circle.
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forms a vicious circle (Figure 1). Clinical interventions should be

considered for patients with lean NAFLD as intensively as for those

with obese NAFLD, especially when they have a comorbidity of

sarcopenia. The first-line recommendation for lean NAFLD

patients with sarcopenia is exercise, nutrition supplements and

reduce total calories, carbohydrates, and fat as well as total

cholesterol, so as to reduce visceral fat and increase skeletal

muscle mass, so as to restore the homeostasis of lipid, glucose,

endocrinal and metabolic status. However, there is no study to

compare the status of sarcopenia between lean NAFLD and obese

NAFLD, or exploring the underlying mechanisms, and more studies

are needed to explore the pathophysiology and underly mechanisms

of lean NAFLD and sarcopenia, which will assist in treatment and

preventive strategies for lean NAFLD.
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