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Obesity and type 2 diabetes are chronic metabolic diseases that impact tens to

hundreds of millions of adults, especially in developed countries. Each condition

is associated with an elevated risk of breast cancer and with a poor prognosis

after treatment. The mechanisms connecting poor metabolic health to breast

cancer are numerous and include hyperinsulinemia, inflammation, excess

nutrient availability, and adipose tissue dysfunction. Here, we focus on adipose

tissue, highlighting important roles for both adipocytes and fibroblasts in breast

cancer progression. One potentially important mediator of adipose tissue effects

on breast cancer is the fibroblast growth factor receptor (FGFR) signaling

network. Among the many roles of FGFR signaling, we postulate that key

mechanisms driving aggressive breast cancer include epithelial-to-

mesenchymal transition and cellular metabolic reprogramming. We also pose

existing questions that may help better understand breast cancer biology in

people with obesity, type 2 diabetes, and poor metabolic health.
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1 Introduction

Breast cancer is the second most commonly diagnosed malignancy in women (1), with

almost 300,000 new cases and 43,000 deaths expected in 2023 (2). Heritable mutations

account for some breast cancer diagnoses; a well-known example of which are the BRCA1/

2 genes. However, most breast cancers arise from environmental or lifestyle-associated

exposures. Two major contributors to breast cancer risk and mortality, although not

necessarily separable, are obesity and type 2 diabetes (T2D). Approximately 1.9 billion

adults worldwide have a BMI over 25 kg/m2, and 650 million (13%) of these have obesity

(3). In the US, 42.4% of adults have obesity (43% of men and 41.9% of women). Globally,
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approximately 10.5% of adults have diabetes (4) and up to 90% of

these cases are T2D (5). Excess body weight is a prominent risk

factor for T2D; approximately 90% of people with T2D have

overweight or obesity (6, 7). Importantly, according to the

Centers for Disease Control and Prevention, more than 1 in 3

Americans have prediabetes and more than 80% of these people do

not know they have it. Some strategies that promote weight loss or

improve metabolic function, such as bariatric surgery, calorie

restriction, or metformin, are known to associate with reduced

breast cancer risk, suggesting that impairments in whole body

metabolism are reversible (8–10). Once tumors form, poor

metabolic health is likely to influence breast cancer risk and

progression through multiple mechanisms.

At diagnosis, breast tumors are histologically defined based on

the presence of specific receptors. These categories include

hormone receptor-positive (HR+), which express the estrogen or

progesterone receptors (ER/PR) and are collectively referred to here

as estrogen receptor-positive (ER+), human epidermal growth

factor receptor positive (HER2+), or triple-negative breast cancer

(TNBC), which lacks all of these receptors. Each subtype has

distinct treatment and mortality profiles that depend in part on

the stage of tumor at diagnosis (localized versus distant) and on the

expression of HR or HER2. The disease-free and disease-specific

survival rates for ER+, HER2+, and TNBC (2) illustrate the unique

biology of these tumors. Aside from the histological subtypes, there

are also molecular subtypes that are reflected in tumor gene

expression profiles including luminal A, luminal B, HER2-

enriched, basal-like, and normal breast-like (11, 12) that each

have unique survival patterns (13). TNBC or basal breast cancer

cases occur frequently in women under 40 and people of African

ancestry. These cases are characterized by greater early relapse and

advanced disease stage at diagnosis. While the TNBC subtype is

often more aggressive than ER+ breast cancer, approximately 40%

of ER+ tumors may be resistant to endocrine therapy. Out of these,

15-20% demonstrate intrinsic and early resistance to treatments

(14–16). Intrinsic or de novo resistance to endocrine therapies can

occur with low ER expression (17), while acquired resistance occurs

through several mechanisms such as mutations in the ESR1 gene,

loss of ER expression, alteration of transcriptional co-regulatory

proteins, growth factor receptor activation, and metabolic

reprogramming (18, 19). Nearly 50% of patients with TNBC

develop resistance to chemotherapy, attributable in part to poor

cellular differentiation and the presence of cancer stem cells that

frequently self-renew to drive chemoresistance (20). Recurrent ER+

tumors are insensitive to endocrine therapy, similar to TNBC,

suggesting that endocrine therapy-resistant ER+ breast cancer

may be functionally similar to TNBC, with potentially

overlapping risk factors and drivers.

In this review, we describe some common features of aggressive

breast cancers such as TNBC and endocrine-resistant ER+ tumors.
Abbreviations: FGF, fibroblast growth factor; FGFR, fibroblast growth factor

receptor; EMT, epithelial to mesenchymal transition; ER, estrogen receptor;

HER2, human epidermal growth factor receptor; TNBC, triple-negative breast

cancer; T2D, type 2 diabetes; BMI, body mass index.
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We discuss factors that characterize poor metabolic health and the

influence these have on breast tumor biology, emphasizing adipose

tissue. While there are many reported mechanisms through which

obesity and T2D impact cancer, our work has identified the

fibroblast growth factor signaling network (FGF/FGFR) as one

common pathway connecting metabolic dysfunction to both

TNBC and endocrine-resistant ER+ breast tumors and we

describe those studies (21–26). We also examine the various ways

tumor FGFR signaling may be altered and potential downstream

effects, including epithelial to mesenchymal transition and altered

tumor metabolism, that contribute to the hallmarks of aggressive

breast cancer.
2 The impact of metabolic health on
breast cancer risk and prognosis

2.1 Obesity

Postmenopausal breast cancer is one of 13 obesity-associated

cancers (27). However, obesity is associated with a lower risk for

premenopausal breast cancer (28). This seems counterintuitive, and

many scientists are still searching for an explanation for this

phenomenon (29). In addition to menopausal status, the impact

of obesity on breast cancer risk depends on the tumor subtype. Prior

to menopause, a high BMI is associated with a lower risk for ER+

breast cancer (30–33), which may explain the overall lower

incidence of breast cancer associated with obesity in young

women. As mentioned above, ER+ tumors make up the majority

of diagnosed cases and likely drive the statistics that link obesity to

breast cancer as a whole. The risk for TNBC prior to menopause is

elevated with obesity (33, 34). Obesity is defined as a BMI30kg/m2

by the World Health Organization; however, one large study

indicated that the elevated risk for breast cancer diagnosis is

apparent in women with a BMI>25kg/m2, which includes those

considered “overweight” (35). The risk for contralateral breast

cancer diagnosis in women who received conserving surgical

treatment is significantly elevated in women with overweight or

obesity (36).

Some studies have shown a link between obesity and a higher

risk of TNBC (34, 37) and premenopausal ER-negative breast

cancer (32, 38). In the Carolina Breast Cancer Study, obesity was

associated with increased incidence of TNBC in both

premenopausal and postmenopausal women of African descent

(39). Similarly, the Women’s Circle Health Study showed that high

waist-to-hip ratio was associated with an increased risk of

premenopausal breast cancer in African Americans after adjusting

for BMI (40). Another study also reported that obese

premenopausal women had an 82% increased risk of TNBC

compared with women with high BMI (34). Also, a meta-analysis

by Pierobon and colleagues showed that premenopausal obese

women have a 42% higher risk of developing TNBC compared

with women with normal BMI (41)

Obesity is associated with a shorter overall survival in women

with breast cancer and many but not all studies report a significant

negative effect of obesity on recurrence-free or breast cancer-
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specific survival (29, 42–47). The relationship between obesity and

breast cancer specific survival may depend on a variety of factors,

including tumor subtype, lymph node involvement, tumor stage,

and years since menopause Importantly, obesity is associated with

other morbidities such as CVD, which may influence survival more

strongly than breast cancer progression. Consequently, the

epidemiological data describing the effects of obesity, metabolic

function, and their associated sequelae on breast cancer mortality

are not yet as consistent as those for breast cancer risk. This may be

due, in part, to underpowered studies that cannot assess each

variable and its impact on breast cancer-specific survival, or due

to the complex physiology associated with metabolic health in

humans. Early studies with extensive follow-up may not have

taken into consideration the complexity of breast cancer subtypes

or the driving mechanisms that underlie the BMI-breast cancer link.
2.2 Type 2 diabetes

Multiple studies have investigated the effect of diabetes on

breast cancer risk and progression (48, 49). According to one

meta-analysis, women with diabetes have a 23% higher risk of

developing breast cancer than those without diabetes (50).

Furthermore, a greater percentage of women with diabetes have a

more advanced stage of breast cancer than their non-diabetic

counterparts (48). A different study reported that women with

diabetes had a 27% greater risk for breast cancer, but this was

decreased to 16% when studies were considered that controlled for

BMI, indicating the importance of obesity in the link between T2D

and breast cancer (51). Fasting insulin and glucose, which precede

diabetes diagnosis, have been associated with a greater risk for

breast cancer in women with a BMI over 26 kg/m2 (52). A similar

impact of diabetes is seen on all-cause or overall mortality and on

breast cancer-specific mortality. In most cases, the relationship

between diabetes and all-cause mortality is stronger than that for

cancer-specific mortality since diabetes is associated with other

chronic conditions that can shorten lifespan. One meta-analysis

found that diabetes is linked with a 37% and 17% increased risk of

all-cause mortality and breast cancer-specific mortality, respectively

(53). Another study revealed that compared to those without

diabetes, breast cancer patients with pre-existing diabetes had a

51% shorter overall survival time and a 28% shorter disease-free

survival (54). The Cancer Prevention Cohort Study II which

recruited one million US adults reported a 16% increase in breast

cancer-specific mortality and a 2-fold increased risk of all-cause

mortality (55). Another retrospective study reported a two-fold

greater breast cancer-specific mortality in women with T2D (56).

Diabetes also significantly affects the treatment of choice of breast

cancer patients. For example, younger women with both diabetes

and breast cancer were more likely to undergo surgical resection

than their non-diabetic counterparts (57). Women with insulin-

treated diabetes were less likely to undergo axillary lymph node

dissection relative to their non-diabetic counterparts. Older patients

(<65 years) were less likely to receive radiotherapy than their non-

diabetic patients of the same age bracket (58). T2D is diagnosed

based on hemoglobin A1c levels, which become elevated after
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insulin resistance is established. The environment of

hyperinsulinemia, often referred to as prediabetes, may occur

long before pancreatic beta-cell failure that characterizes T2D;

however, it is difficult to capture the link between this

environment and breast cancer risk without screening criteria to

define the prediabetic state.
2.3 Other informative individual variables

Beyond BMI, other host variables may better predict breast

cancer risk than the amount of body fat and may indicate the

importance of developing tools to routinely assess metabolic health

before diabetes develops (25, 59). Adipose distribution often

changes after menopause, when women experience more visceral

adiposity or central obesity, reflected by a greater waist-to-hip ratio.

Central obesity is associated with elevated risk of both ER+ and

TNBC subtypes (32, 46). Adult weight gain (i.e. adipose expansion)

is associated with elevated breast cancer risk in multiple studies

(60–63). Metabolic health, defined by a variety of criteria, may be an

independent predictor of breast cancer risk in some people. In

several studies, postmenopausal women that were considered

“metabolically unhealthy” using different approaches (e.g. high

fasting insulin, high HOMA-IR, hepatic steatosis), had elevated

breast cancer risk irrespective of BMI (64–66). However, a very

recent study indicated no difference in postmenopausal breast

cancer risk in women classified as metabolically healthy

overweight/obese or as metabolically unhealthy lean using C-

peptide measures (67). Deteriorating metabolic function may

indicate the presence of prediabetes, which is characterized by

sustained hyperinsulinemia. Insulin, a potent mitogenic and

anabolic hormone, may support breast cancer progression

through the activation of MAPK and PI3K pathways that lead to

many pro-tumorigenic cellular changes. Elevated insulin is a feature

of the “metabolically unhealthy” lean or obese phenotype, is often

associated with visceral adiposity, and is linked to adult weight gain.

According to the Women’s Health Initiative Study, higher levels of

Insulin resistance in post-menopausal women are associated with

higher breast cancer incidence and higher all-cause mortality after

breast cancer. The role of insulin in regulating cancer growth has

been recently reviewed (68). Currently, it remains to be established

whether experimentally preventing hyperinsulinemia impacts

breast cancer risk or progression.
3 The role of adipose tissue in
aggressive breast cancer biology

The crosstalk between obesity, T2D, and breast cancer is

intricate and mediated by multiple mechanisms including,

inflammation, adipose tissue dysfunction, metabolic alterations,

insulin, and hypoxia. Many of these mediators have been

thoroughly reviewed elsewhere (68, 69). There are 13 obesity-

associated cancers for which elevated risk is associated with a

high BMI. Almost all of them, including liver, pancreas,

endometrial, and certainly breast cancer, occur adjacent to or
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within adipose depots. The breast is composed of 90% adipose

tissue, which contains many cell types including adipocytes,

fibroblasts, vascular cells, and immune cells. Obesity and T2D

have been implicated in adipose tissue dysfunction, which alters

the cellular interactions within the breast that often support cancer

therapy resistance. Generally, patients with obesity and/or T2D

have poor responses to breast cancer therapies and greater

mortality, as described above. As an endocrine organ, adipose

tissue produces pro-inflammatory cytokines, adipokines, growth

factors, and also aromatizes androgens into estrogens. These factors

can alter the tumor microenvironment and promote aggressive

breast cancer. Adipose tissue dysfunction leads to excessive

production of adipokines such as leptin and adiponectin by the

adipocytes (70). Low serum adiponectin levels were associated with

a higher risk for metastasis, angiogenesis, and endocrine therapy

resistance (71, 72). Besides adiponectin, obese individuals have a

higher expression of leptin and its receptor which has been

implicated in increasing the metastatic potential in the tumor

microenvironment. Also, leptin has been shown to activate ERa
signaling and increase aromatase activity leading to excessive

proliferation and migration of tumor cells (73, 74). Knockdown

of leptin in adipose-derived stromal cells co-cultured with ER+

breast cancer cells led to a reduction in tumor growth and

expression of metastasis-related genes (75). Overall, leptin and

adiponectin have opposing effects on breast tumorigenesis and

their ratio may be modulated particularly in people with high

BMI as it significantly increases breast cancer risk and metastasis.
3.1 Estrogen

After menopause, adipose tissue is a major source of estrogen in

women, and women with obesity have elevated circulating and local

levels of estrogens. The elevated levels of estrogen (estrone and

estradiol) in women with obesity undoubtedly contribute to the

greater breast cancer risk associated with a high BMI. Indeed, a

recent study showed that, in women with BRCA mutations and a

high BMI, estrogen biosynthesis was elevated compared to women

with a low BMI, indicating a role for estrogen in DNA damage that

contributes to breast cancer risk (76). However, aromatase

inhibitors such as letrozole and anastrazole effectively reduce

circulating estrogen levels by up to 98% in postmenopausal

women, irrespective of BMI (77). Clinical studies testing higher

aromatase inhibitor doses have found no added benefit to lowering

estrogens in women with obesity (78) or to breast cancer outcomes

in general (79, 80), suggesting that the mechanisms of obesity-

associated breast cancer progression and mortality are

estrogen-independent.
3.2 Inflammation

Both obesity and T2D influence pro-inflammatory immune

cells implicated in breast cancer development and progression.

Obesity is characterized by hypertrophic adipocytes that recruit

macrophages and sustain chronic low-grade inflammation. The
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breast environment in women with obesity has been documented

to have crown-like structures, which are named by the histological

appearance of macrophages around dying adipocytes. These

inflammatory foci are also present in women without obesity, but

who are classified as metabolically unhealthy (81, 82), illustrating

the potential limitation of using BMI to evaluate breast cancer risk

on an individual level. Obesity promotes features of immune cell

exhaustion in mice and humans (83, 84), but obesity is also

associated with a better response to immune therapy, for example

in retrospective studies of melanoma (85). Similar links are seen

with T2D, where immune cells may be senescent and low-grade

inflammation is present (86). In a small study of people with a

genetic predisposition to diabetes (i.e. first-degree relatives of people

with T2D) matched with controls for BMI, gender, and age,

subcutaneous adipocyte hypertrophy was evident even prior to

the development of obesity or overt T2D (87). Greater adipocyte

size was associated with elevated fasting insulin, higher HOMA-IR,

and proinflammatory cytokines such as IL1b and IL6 (87). Studies

like these studies highlight the potentially tumor-promotional

changes that could take place in the breast adipose

microenvironment even before obesity or T2D develops. The

intricate relationship surrounding obesity, metabolic dysfunction,

and inflammation as it relates to breast cancer has been

comprehensively reviewed by others (68, 81, 88).
3.3 Growth factors: emphasis on
FGF/FGFR signaling

Within the breast tumor environment, growth factors such as

EGF, VEGF, IGFs, and FGFs are produced by fibroblasts,

adipocytes, and by cancer cells themselves. Each of these

stimulates aggressive features of breast tumors and can drive

resistance to breast cancer therapies. Deregulated growth factor

signaling influences several cancer hallmarks by supporting cell

proliferation, rendering cancer cells resistant to apoptosis,

promoting vascular izat ion, and st imulat ing invasion

and metastasis.

Fibroblast growth factor receptor (FGFR) signaling is crucial for

breast development, tissue homeostasis, malignant transformation,

and metastasis. There are 22 FGF ligands (18 of which signal

through receptors) and 4 FGFR genes (89). Alternative splicing

generates multiple isoforms of FGFRs 1-3, while FGFR4 has only

one isoform (89). The ligands have paracrine or endocrine

functions, with multiple ligand/receptor interactions possible.

Dysregulated FGF/FGFR production or activation has been

implicated in breast cancer progression and aggressive breast

cancer phenotypes. FGF signaling regulates normal mammary

stem cells and gland development, illustrated by the reduction in

mammary outgrowth in mice lacking FGFR1 and FGFR2 (90).

Conversely, activation of FGFR1 in mammary epithelium causes

alveolar proliferation and early features of transformation (91). FGF

and FGFR DNA alterations have been described in a variety of

cancers, including breast cancer. For example, FGFR1 is frequently

amplified and overexpressed in luminal breast tumors (up to 27% of

cases), while FGFR2 is amplified in TNBC, although less frequently.
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Overexpression of FGFs and FGFRs in breast cancer cells can lead

to aberrant pathway activation, which is why clinical trials have

focused on targeting FGFRs in patients (92). The downstream

effects of FGF signaling include activation of PI3K/AKT, MAPK,

PLC, and JAK/STAT networks. Each of these pathways elicits a

variety of responses that encompass the hallmarks of cancer such as

proliferation, survival, migration, invasion, and changes in gene

expression profiles and cell differentiation, including EMT. FGF

signaling can promote growth, metastasis, and stemness in a variety

of breast cancer cell subtypes and preclinical models (reviewed

in (92).

3.3.1 FGFs from cells in the breast environment
FGFs are produced by breast cancer cells and by cells in the

breast TME, including adipocytes and cancer-associated fibroblasts

(CAFs). Obesity can impact each of the cells in the TME (25, 93).

For example, one study found that adipose-derived fibroblasts from

donors with obesity expressed elevated CAF markers compared to

those from lean individuals. Co-culture of ER+ MCF7 cells with

these obesity-associated fibroblasts facilitated proliferation and

invasion more than those cultured with lean fibroblasts (94).

Exposure of human fibroblasts to sera from women with obesity

promoted pro-inflammatory changes that may impact signaling in

breast cancer cells (95). In a mouse model of obesity, FGF1

expression was elevated in mammary adipose tissue after estrogen

withdrawal-induced weight gain (23). Hypertrophic adipocytes

secrete FGF1 as a proliferative signal to undifferentiated

preadipocytes during weight gain (96). This normal signaling

mechanism ensures healthy adipose tissue expansion through

hyperplasia and new adipocyte formation, but can also support

the proliferation of nearby breast cancer cells. ER+ tumors that

continued to grow after estrogen loss had elevated levels of

phosphorylated FGFR1, and inhibition of FGFR restored

sensitivity of these tumors to estrogen deprivation (23). In

subcutaneous adipose tissue biopsies taken from people with

obesity before and after intentional weight gain, FGF1 expression

increased significantly but only in those people who were classified

as metabolically unhealthy. In human breast adipose, FGF1

expression positively correlated with BMI and with adipocyte size.

In humans, high tumor levels of phosphorylated FGFR1 associated

with a shorted disease-free survival after tamoxifen treatment and

with an elevated BMI. An additional study found that circulating

FGF2 was directly correlated with BMI in patients with breast

cancer, and FGF2 treatment of obese tumor-bearing mice promoted

resistance to anti-VEGF therapy (97). In TNBC (MDA-231), CAFs

can stimulate FGFR1 signaling (98), and FGF2 from CAFs

promotes cell migration and tumor growth through cancer cell

FGFR1 (99). FGF2 produced by visceral adipose tissue stimulated

growth of non-cancerous human skin cells and MCF10A human

breast epithelial cells in soft agar and in low-attachment sphere

cultures, which is a hallmark of malignant transformation (21, 22,

24). A pilot study using human serum in soft-agar MCF10A

cultures showed that FGF2 signaling through FGFR1 may be

necessary but not sufficient to promote sphere formation (100).

There is compelling evidence demonstrating the role of FGF1 and
Frontiers in Endocrinology 05
FGF2 as potent angiogenic factors in mediating increased breast

cancer risk and progression (92, 101, 102). One study showed that

in ovariectomized or tamoxifen-treated mice, MCF7 cells

overexpressing FGF1 displayed increased vascularization and

enhanced metastatic potential (103). FGF2 was linked to obesity

and elevated resistance to anti-VEGF therapy in a preclinical study.

Its inhibition reduced vascular density and restored tumor

susceptibility to anti-VEGF therapy in obese mice (97). In

addition, crosstalk between FGF2 and VEGF synergistically

amplifies breast tumor angiogenesis and metastasis (97, 104).

These studies show that adipose-derived factors associated with

obesity may not need to originate in the local tumor environment

but can come from dysfunctional adipose around the body (25).

Future research will fully define the FGF-mediated mechanisms that

contribute to malignant transformation of ER-negative breast cells.

3.3.2 FGF signaling in luminal breast cancers
Like other growth factor receptors, FGFR can stimulate ER

activation independently of the classical steroid hormone ligands

(reviewed in (105); Figure 1). Obesity and T2D may promote

features of aggressiveness in ER+ breast cancer, such as elevated

proliferation, E2F activation, and growth factor signaling (106);

pathways associated with a lack of response to endocrine therapy. In

luminal breast tumors and cell lines, evidence shows that activated

growth factor receptors can phosphorylate ER and its co-regulatory

proteins via hormone-independent mechanisms (107). This ligand-

independent activation of ER is often mediated through MAPK and

PI3K/AKT signaling pathways that phosphorylate ER on several

sites; the most commonly evaluated being S118, a target of MAPK,

and S167, a target of AKT (Figure 1). Phosphorylation of ER by any

pathway can contribute to the transcription of estrogen-responsive

genes even in the presence of anti-estrogen therapies (108–110).

CAF-derived FGF7 was shown to promote ER phosphorylation and

breast cancer cell growth through FGFR2, which ultimately reduced

the efficacy of endocrine therapies (111). FGF10/FGFR2 signaling

can interfere with classical ER activation to facilitate resistance to

endocrine therapies (112). FGF10 was also shown to promote EMT,

migration, and colony formation in HR+ and TNBC cells (113). In

multiple ER+ breast cancer cell lines, FGF1 and FGF2 can induce

membrane ruffling, which often accompanies metastatic invasion

(114). A different study showed that nuclear FGFR1 can interact

with ER to promote cell proliferation and estrogen-independent

transcription of ER target genes (115), showing that some of the

effects of FGFR do not rely on FGF ligands. In isolated ER+ breast

cancer cells, estrogen treatment was shown to maintain cancer stem

cell populations through paracrine FGF9/FGFR3 signaling (116).

Likewise, FGFR2 activation maintained mammary tumor-initiating

populations in MMTV-PyMT mice, an aggressive model of luminal

breast cancer (117). FGFR4, which can mediate signaling from

FGF1, FGF4, and FGF8 subfamilies, may facilitate acquired and de

novo resistance to endocrine therapies in breast cancer (118).

Recently , FGF1 was shown to associate with greater

phosphorylate of ER at S118, particularly in endocrine-resistant

cells that grow in obese mice even after estrogen loss. Elevated

pS118 ER associated with shorter recurrence free survival in
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patients with ER+ tumors (119). Altogether, the effects of FGF and

other growth factors on breast cancer cells are broad and involve

many different pathways. One potential target of FGFR signaling

includes ER activation independently of estrogen ligands. Since the

first line therapy for many breast cancer patients involves depleting

peripheral estrogen production, it may be worth reconsidering how

the tumor environment maintains ER activation through non-

classical mechanisms, and whether this occurs more frequently in

the context of poor metabolic health.
4 Metabolic reprogramming in
aggressive breast cancer cells

One mechanism by which obesity and T2D support breast

cancer growth and progression may be through metabolic

reprogramming that involves alterations in glycolytic and

mitochondrial metabolism. As an important hallmark of cancer,

metabolic reprogramming allows cancer cells to adapt their

increasing energy demands to available resources for growth,

motility, proliferation, and function. Aerobic glycolysis has been

widely and consistently observed in many cancer types. The rapid

ability of cells to convert glucose into pyruvate and lactate can lead

to substantial ATP production but can also support biomass

generation. Mitochondrial metabolism also generates precursors
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for fatty acids, nucleotides, and amino acids (120). Several studies

have demonstrated that metabolic reprogramming is a prominent

feature in therapy resistance and aggressiveness in breast cancer

cells. The metabolic milieu that characterizes T2D and often obesity

provides a favorable microenvironment to support breast cancer

growth, including sustained hyperglycemia and dyslipidemia

(121, 122).

Elevated glycolytic metabolism is a feature of aggressive breast

cancer, including TNBC and endocrine-resistant ER-positive cancer

cells. High levels of tumor glucose uptake (FDG-PET) predicted a

shorter progression-free survival interval in patients on endocrine

therapy (123). Tamoxifen-resistant human breast cancer cells

(LCC2 and LCC9) have greater glycolytic activity than the MCF7

cells from which they were derived and are susceptible to glycolytic

inhibition (124). Multiple studies on specific glycolytic enzymes and

transporters show the importance of this metabolic pathway in

aggressive breast cancer cell behavior. For example, overexpression

of the glucose transporter GLUT1 in TNBC cells supports the

invasion, migration, and metastatic potential of these cells (125,

126). HK2 expression is associated with tamoxifen resistance in

ER+ breast cancer cells (127), and with proliferation of TNBC cells

(128). In a recent study, Zhu et al. demonstrated that the

transcription factor ETV4 regulates breast cancer stemness and

glycolic metabolism by modulating HK activity in both TNBC and

ER+ breast cancer cells (129). ENO1, which catalyzes the reversible
FIGURE 1

Summary of FGF effects in breast cancer cells. The Fibroblast Growth Factor (FGF) ligands are produced by a variety of cells including adipocytes,
cancer associated fibroblasts (CAFs), and breast cancer cells. FGFs bind to FGF receptors, inducing receptor dimerization and transphosphorylation
of its intracellular kinase domain. The FGFR signaling network activates downstream signal transduction pathways such as the RAS/MAPK pathway,
PI3K/AKT pathway, PLCg pathway, and JAK/STAT pathways. The downstream effects of these pathways include an increase in cell proliferation,
migration, angiogenesis, and survival. Downstream-activated effector molecules of FGFR signaling can also activate the estrogen receptor in a
ligand-independent manner which is implicated in endocrine therapy resistance.
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conversion of 2-phosphoglycerate and phosphoenolpyruvate, has

been implicated in tamoxifen resistance by activation of ER and

inhibition of apoptosis (130, 131). Lactate production by lactate

dehydrogenase (LDH) enzymes is a feature of enhanced glycolytic

activity in cancer cells. The LDH enzymes are significantly elevated

in TNBC tumors and associate with shorter overall and disease-free

survival (132) and with brain metastasis (133). LDH activity is also

elevated in cancer-associated adipocytes, an important component

of the tumor microenvironment, suggesting a crosstalk that can be

promoted by obesity (134). Overexpression of MCT1 and MCT4,

monocarboxylate transporters that shuttle lactate across the plasma

membrane, strongly associates with worse survival in TNBC and

endocrine-resistant breast cancer cells (133, 135). Treatment of

tamoxifen-resistant MCF7 cells with FGF1 led to elevated

expression of ETV4 and glycolytic genes, including ENO1, LDH,

and SLC2A1. Functional evaluation of metabolism after FGF1

treatment demonstrated enhanced glycolysis in endocrine-

resistant cells but not oxygen consumption, consistent with

metabolic reprogramming and aggressive phenotype (119).

Acidification of the tumor microenvironment is suggested to

provide multiple advantages including increased angiogenesis,

genomic instability, and potentially selecting for apoptosis-

resistant tumor clones (136). Overall, altered cancer cell

metabolism, particularly a shift to rapid glycolysis and lactate

production, is a feature of aggressive breast tumors, whether

TNBC or endocrine therapy resistant ER+. Tumors that benefit

from or rely on elevated glucose metabolism may thrive in an

environment of poor metabolic health in which glucose, as well as

other nutrients are readily available, and that also produces growth-

promoting signals from multiple cell types in the breast.
4.1 EMT and metabolic distinctions of
aggressive breast cancer cells

Many potential mechanisms of obesity- or diabetes-associated

signaling pathways could stimulate or maintain aggressive cancer

cell behavior. One such mechanism may be epithelial to

mesenchymal transition (EMT); a feature of aggressive cancer

cells that undergo invasion and metastasis. EMT has been linked

to altered cancer cell metabolism and to poor metabolic health. The

epithelial phenotype is often associated with luminal breast cancers,

regardless of ER expression (137). Cells of the basal subtype or

TNBC tumors have greater expression of mesenchymal genes, such

as SNAI1 (Snail), SNAI2 (Slug), VIM (vimentin), and various

MMPs. Multiple studies have suggested that metabolic

reprogramming both supports and is caused by the EMT process

and related genes (136, 138), and cancer metastasis has been

hypothesized to be under metabolic control (139). Several

glycolytic enzymes can induce an EMT phenotype, including

aldolase A, LDHA, and pyruvate dehydrogenase kinase-1 (136).

On the other hand, EMT related proteins may influence metabolic

activity in cancer cells (136). One example is a study showing that

the Snail transcription factor can inhibit mitochondrial cytochrome

C oxidase activity, and may facilitate the loss of fructose-1,6-
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bisphosphatase 1 in basal cancer cells, which enhances glucose

uptake (140). A comparison of metabolic activity between breast

cancer cells representing the luminal subtype (MCF7, T47D) and

the basal/mesenchymal subtype (MDA-231, MDA-435) revealed

distinct metabolic signatures that were influenced by EMT proteins

(141). Compared to luminal cells, the basal cells had impaired, but

not completely defective mitochondrial function, were less

dependent on mitochondrial ATP production, and displayed

elevated glycolysis and lactate production. Knockdown of E-

cadherin or b-catenin in luminal cells phenocopied the basal cell

metabolic phenotype, decreasing mitochondrial respiration and

increasing lactate production. Low expression of mitochondrial

oxidative genes is associated with metastatic potential and poor

clinical outcomes across multiple cancer types (142). In cervical

cancer cells, Porporato et al. showed that mitochondria must be

present, but defective, in cells undergoing metastasis, based on

increased cell migration that accompanied partial electron transport

chain inhibition (139). The investigators suggested that metastatic

progenitor cells are characterized by mitochondrial superoxide

production, both from overloaded TCA cycling and from

defective electron transport chain activity (139). Recently, the

concept of mitochondrial overload resurfaced with the suggestion

that glycolytic production of lactate occurs when cancer cell

mitochondria cannot oxidize NADH as fast as glycolysis can

produce it (120). It is currently not well understood if aggressive

or metastatic breast cancer cells prefer glycolysis because of specific

defects in mitochondrial electron transport subunits. A thorough

investigation of how mitochondrial function may be altered during

breast cancer progression, or in specific populations such as cancer

stem cells, may help better target therapies to patients.
4.2 The influence of poor metabolic health
on EMT and cancer metabolism

Many of the genes encoding glycolytic enzymes are regulated by

the HIF1a transcription factor that is upregulated or stabilized in

hypoxic environments (143). The consequences to cancer cells

include EMT, invasion, metastasis, therapy resistance, and

metabolic reprogramming (143). The obese or diabetic breast

tissue is often characterized by reduced vascularization, which

leads to hypoxia and inflammation. This, coupled with the excess

available nutrients is the prime environment to support tumor

progression. Sustained hyperinsulinemia in a mouse model of T2D

promoted ER+ breast cancer cell growth associated with

stabilization of HIF1a (144). A recent study reported that obesity

associated with greater DNA damage in the breast epithelium of

women with BRCA mutations (76). In several models, DNA

damage was shown to be enhanced by estrogen and insulin

signaling; two hormones that likely mediate many adverse effects

of obesity on breast cancer. The top pathway enriched in isolated

breast epithelial organoids from women with obesity and BRCA

mutations was HIF1a signaling (76). These two reports clearly link

a poor metabolic environment to changes that could facilitate

glycolytic metabolism in tumors. Future studies are needed to
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define the metabolic changes in cancer cells in these contexts, and

whether they can be targeted to prevent disease progression.

Within the breast, CAFs and cancer cells have intricate

interactions where each can reprogram its metabolism to benefit

the other (145). A recent study using murine models of breast

cancer found that cancer-associated adipocytes, which are present

at the invasive front of tumors, underwent dedifferentiation to a

myofibroblast-like cell type that expressed markers of immune

cells and ECM remodeling (146). These de-differentiated

adipocytes had enhanced glycolytic metabolism and oxygen

consumption compared to CAFs that did not arise from

adipocytes (146). Preventing adipocyte dedifferentiation reduced

tumor growth under chow and high-fat diet conditions (146),

indicating the tumor promotional role of lipids when they are

present in excess. Another recent study evaluated breast adipose

tissue fibroblasts isolated from tissue immediately adjacent to

tumors (CAFs) and distant from tumors in the same

individuals, classified as either lean (BMI<25kg/m2) or obese

(BMI>35kg/m2) (147). The CAFs from women with obesity

expressed higher levels of myoepithelial markers such as CD29,

alpha-smooth muscle actin (ACTA2), and connective tissue

growth factor (CTGF). In contrast, the CAFs from lean

individuals expressed markers associated with inflammation

such as IL1b and CXCL10. Notably, FGF2 and to a lesser extent,

FGF1, were each more highly expressed in CAFs compared to

distant fibroblasts, but the distant fibroblasts from women with

obesity had greater FGF2 expression than the lean group. This

could indicate a more widespread impact of the tumor on the

breast in obesity, or it could reflect a tumor-promotional milieu

present throughout the obese breast tissue. In several different

assays, the most prominent effect of fibroblast conditioned media

on cancer cells, including proliferation and motility, appeared to

be from the site of origin, with CAFs imparting a more aggressive

cancer cell phenotype than distant fibroblasts. However,

compared to all other groups (lean CAFs, lean or obese distant

fibroblasts), obese CAFs promoted greater growth of luminal

breast cancer spheroids in direct co-culture assays. Interestingly,

the pathways altered in ER+/HER2+ (BT474) cancer cells cultured

with lean CAFs included cell migration and EMT, while those

altered by obese CAFs included cell cycle progression and cellular

metabolism. In TNBC (MDA-231), the obese CAFs induced a

cancer stem cell-like phenotype, while in ER+/HER2+ cells the

impact was greater for EMT (147). Reprogramming of CAF

metabolism towards glycolysis and lactate production can

promote the growth of TNBC in vivo (148). A different study

found that extracellular vesicles (EVs) from adipocytes induced

genes associated with EMT and cancer stem cells in ER+ and

TNBC cell lines (149). Conditioned media from breast adipocytes

collected from women with obesity stimulated migration and

invasion of breast cancer cells, but this phenotype was

attenuated when EVs were depleted (149). TNBC cells grafted in

a murine model of streptozotocin-induced diabetes showed

greater tumor growth and had elevated expression of EMT
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non-diabetic mice (150). Diet-induced obesity accelerated

growth and elevated cancer stem cell and EMT markers in

MMTV-Wnt1 mice, a model of TNBC (151). The effects of

obesity in this study were mediated by circulating leptin,

produced by adipose tissue.

FGFR signaling has been linked to EMT in various cancer types,

such as lung, pancreas, and prostate; an effect that may be FGFR

isoform-specific (152). In endometrial cancer, FGFR2 mutations

were associated with features of EMT, such as high vimentin

staining, low E-cadherin, and tumor budding (153). FGFR1 was

identified as a potential mediator of EMT-induced drug resistance

in EGFR mutant non-small cell lung cancer (154). In HER2-

transformed breast cancer cells, FGF2/FGFR1 were identified to

be highly expressed in Lapatinib-resistant populations (155). FGF

signaling, through the MAPK pathway, stabilized the Twist

transcription factor to help maintain the mesenchymal, drug-

resistant cell population (155). A separate study showed that, in

chemotherapy-resistant MCF7 and MDA-231 cells, glycolytic genes

were elevated compared to parental lines, and FGFR4 inhibition

reduced glycolytic flux (156). Overexpression of N-cadherin in

MMTV-Neu mice, a model of HER2+ breast cancer, did not alter

primary tumor latency or growth, but significantly augmented lung

metastasis (157). In cell lines derived from these primary tumors,

N-cadherin overexpression was associated with greater levels and

phosphorylation of FGFR1 and with greater relative levels of the

mesenchymal IIIc isoform of FGFR2 compared to the epithelial IIIb

isoform. The expression of EMT markers Snail and Slug was

elevated in N-cadherin overexpressing cells and was dependent

upon FGFR.

Metabolism of other nutrients besides glucose, such as amino

acids and lipids, is often altered in aggressive breast tumors. Breast

cancer cells are often dependent on glutamine for the production of

carbon and nitrogen needed for proliferation, invasion, and

metastasis (158–160). Serum glutamine levels are elevated in

individuals with obesity and T2D, as well as in breast cancer

patients. The amino acid transporters SLC6A14 and SLC1A5 are

upregulated in breast cancer cells and implicated in therapy

resistance (161). TNBC displays increased glutamine uptake and

glutamine-related enzymes (160) and reduction of glutamine

transporters reduces the proliferation and migration of TNBC

(159). Circulating free fatty acids were correlated with increased

proliferation and aggressiveness of ER+ breast cancer via activation

of ER and mTOR pathways and reprogrammed cancer cell

metabolism (162). In a preclinical model, the induction of

hypercholesterolemia in mice resulted in greater breast cancer

growth (163). Tamoxifen resistance in ER+ breast cancer cells

was found to be linked to deregulation of cholesterol pathways

and altered lysosomal integrity (164). ER-dependent breast cancer

cells develop resistance to aromatase inhibition through epigenetic

and transcriptomic activation of cholesterol biosynthesis that

contributes to aggressive breast phenotypes (165). Key enzymes

and mediators of fatty acid metabolic pathways have been shown to
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drive metabolic reprogramming of endocrine-resistant invasive

lobular carcinoma cells (166). As more and more investigators

incorporate aspects of obesity and metabolic disease into preclinical

models and in the analysis of clinical specimens, our understanding

of how these environments associate with and influence aggressive

tumor cell metabolism will greatly improve.
5 Discussion

Obesity and T2D are closely linked chronic diseases that impact

millions of adults worldwide. The proportion of children with

obesity has increased in recent decades, foretelling a future where

most adults may be impacted by poor metabolic health. The

relationship surrounding obesity, T2D, and breast cancer is

incredibly complex, but scientists have uncovered many

interesting mechanisms. Growth factor signaling from the tumor

environment, specifically FGF/FGFR pathways, may be one

important link between poor metabolic health and aggressive

breast cancer. Cancer cells themselves may benefit from

a complex relat ionship between EMT and metabol ic

reprogramming that is influenced by host metabolic health

through growth factor production and excess nutrient availability

(Figure 2). People who are metabolically healthy and who do not

have obesity do develop and die from breast cancer, but statistically,

it is less likely compared to those with poor metabolic health. It is

not known if aggressive breast cancers are unique between these two

groups of individuals, and currently, BMI and metabolic health is

not factored into treatment decisions for breast cancer. Based on the

studies reviewed here, some specific knowledge gaps remain. For

example, several preclinical studies show a link between FGFR and

ER activation. The loss of classical ER target gene expression

signature is associated with endocrine therapy resistance, but it

isn’t clear if growth factor receptor activation alters the ER-

dependent transcriptome resulting in a distinct estrogen-

independent ER transcriptome. Is there a gene expression

signature that could indicate what is activating ER in endocrine-

resistant breast cancers? In some people with obesity or T2D, a

strategy to directly target ER may be more effective than targeting

estrogen synthesis. Another area for investigation involves the

similarities and differences between TNBC and endocrine-

resistant ER+ breast cancers. In addition to estrogen-independent

ER+ tumor growth, FGFs, and FGFR have been linked to malignant

transformation of ER-negative breast cells, potentially accelerating

TNBC formation. Are there common driving mechanisms that can

be targeted in these tumors specifically? Further, what are the

unique molecular responses of endocrine-sensitive and endocrine-

resistant breast cancer cells to FGF treatment? From the host

perspective, FGF signaling is a normal, necessary growth-

promoting pathway, so is it feasible to target these factors directly

for prevention or treatment of breast cancer. In summary, the

prevalent incidence of obesity, T2D, and poor metabolic health,

which may remain undefined, illustrates the importance of paying

attention to BMI, adiposity, and individual metabolic state when
Frontiers in Endocrinology 09
evaluating breast cancer risk or prognosis. Future research will help

illuminate the role of whole-body metabolism in breast cancer

incidence and progression.
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FIGURE 2

Proposed pathways mediating the link between poor metabolic
health and breast cancer biology. Poor metabolic health influences
breast cancer progression through a variety of mechanisms. Studies
suggest that the FGFR signaling pathway may mediate some of the
effects of whole-body metabolism on breast tumor biology.
Features of aggressive breast cancer include epithelial to
mesenchymal transition (EMT) and metabolic reprogramming. FGFR
signaling may influence each of these areas to promote aggressive
breast cancer behavior.
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