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Mutation of brain aromatase
disrupts spawning behavior
and reproductive health
in female zebrafish

Katherine Shaw1*, Mylène Therrien1, Chunyu Lu1, Xiaochun Liu2

and Vance L. Trudeau1*

1Department of Biology, University of Ottawa, Ottawa, ON, Canada, 2State Key Laboratory of
Biocontrol, Institute of Aquatic Economic Animals and Guangdong Province Key Laboratory for
Aquatic Economic Animals, School of Life Sciences, Sun Yat-Sen University, Guangzhou, China
Aromatase (Cyp19a1) is the steroidogenic enzyme that converts androgens into

bioactive estrogens, and hence is in a pivotal position to mediate reproduction

and sexual behavior. In teleosts, there are two aromatase paralogs: cyp19a1a that

is highly expressed in granulosa and Leydig cells in the gonads with critical

function in sexual differentiation of the ovary, and cyp19a1b that is highly

expressed in radial glial cells in the brain with unknown roles in reproduction.

Cyp19a1-/- mutant zebrafish lines were used to investigate the importance of the

cyp19a1 paralogs for spawning behavior and offspring survival and early

development. Mutation of cyp19a1b was found to increase the latency to the

first oviposition in females. Mutation of cyp19a1b in females also increased the

number of eggs spawned; however, significantly more progeny died during early

development resulting in no net increase in female fecundity. This finding

suggests a higher metabolic cost of reproduction in cyp19a1b-/- mutant

females. In males, the combined mutation of both cyp19a1 paralogs resulted in

significantly lower progeny survival rates, indicating a critical function of cyp19a1

during early larval development. These data establish the specific importance of

cyp19a1b for female spawning behavior and the importance of the cyp19a1

paralogs for early larval survival.

KEYWORDS

aromatase, brain, cyp19a1b , estrogen, hormone, neuroendocrine, sexual
behavior, zebrafish
1 Introduction

Androgens and estrogens are two major groups of sex steroids that play critical roles in

vertebrates to coordinate the physiology and behavior of an individual with its

environment. Aromatase (Cyp19a1) is the terminal steroidogenic enzyme that converts

the aromatizable androgens, testosterone and androstenedione, into estradiol (E2) and

estrone, respectively. In birds and most mammals, there is only one aromatase gene,
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cyp19a1, whose differential tissue distribution is attributed to

differences in splicing of 5’ untranslated promoter regions across

tissues (1). In contrast, teleosts possess two distinct cyp19a1 genes,

cyp19a1a and cyp19a1b, with differential tissue distribution. This is

due to distinct regulatory elements in their promoter regions and

differences in the presence of required transcription factors in

specific cell types (2). In many teleosts, cyp19a1a is the most

highly expressed aromatase in granulosa and Leydig cells in the

gonads; while cyp19a1b is expressed at much higher levels in the

brain, and specifically in radial glial cells (RGCs; 3).

The ovaries are a major source of estrogens that are released

into systemic circulation to prepare the body for reproduction (4).

Loss of aromatase expression significantly impairs female fertility

and fecundity, at least in part, through loss of ovarian estrogen

production. For example, total aromatase knockout (tAroKO)

female mice, which lack whole body aromatase expression, are

infertile due to disrupted follilculogenesis and ovulation failure (5).

In teleosts, short term chemical inhibition of aromatase reduces

female fertility and fecundity through impaired oocyte development

and reduces plasma vitellogenin levels (6–8). Long term aromatase

inhibitor treatment induces more dramatic effects such as ovarian

retraction followed by testis formation resulting in female-to-male

sex change (9, 10). Since chemical inhibitors are non-selective for

the two Cyp19a1 isoforms, it only recently became possible to begin

identifying their independent contributions to reproduction via the

creation of zebrafish cyp19a1-/- mutant lines. It was discovered that

cyp19a1a expression is critical for sexual differentiation of the

ovaries while cyp19a1b expression is not required for this process

(11–13). Though cyp19a1a is not required for testis differentiation,

it is expressed at low levels and differences have been observed in

the importance of its expression for male fertility in mice and

teleosts. For example, the testis of male tAroKO mice were found to

have arrested germ cell development at the spermatid stage as well

as impaired sperm motility (14–17). In contrast, there were no

developmental abnormalities observed in the testis of zebrafish

cyp19a1a-/- mutants compared to wild-type (WT) males (18).

Rather, the testis of cyp19a1a-/- mutants had more spermatozoa

and higher levels of spermatogenesis-related genes, and these

mutant males displayed normal fertility levels. These findings

reveal critical roles of ovarian aromatase expression for female

fertility and fecundity in mice and teleosts, whilst differences have

been observed for testicular aromatase importance in male fertility,

with cyp19a1a being dispensable for male teleost fertility.

A second major source of estrogens is the brain. In birds and

mammals, the cyp19a1 gene contains a brain-specific promoter

region that specifies constitutive neuronal expression (19–22).

Teleosts have a second paralog, cyp19a1b, that is expressed

exclusively in RGCs due to the presence of G x RE, the glial x

responsive element, in the promoter region (2). Increasing evidence

has identified important roles for brain-derived estrogens in

reproduction. For example, both female and male total tAroKO

mice display reduced sexual behavior (23–26) and impaired

olfactory discrimination (25, 27) that together suggests an

involvement of brain estrogens in social recognition. The recent

creation of a male brain aromatase knockout (bAroKO) mouse line

identified the important role of brain-derived estrogens in male
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sexual behavior. Male bAroKO mice were found to have a

significantly longer latency to the first mount event and a trend,

though not significant, towards a greater latency to the first

intromission event when paired with a hormonally primed female

compared to WT males in sexual behavior assays (28). Female

bAroKO mice have not yet been studied. In teleosts, studies have

identified impairments in social recognition following chemical

aromatase inhibition, such as reduced dominant male aggression

in social behavior assays (29, 30). There has been comparatively less

study, however, of effects on sexual behavior. This is likely due, at

least in part, to the inability to identify specific Cyp19a1b- versus

Cyp19a1a-induced effects on reproduction with the use of chemical

aromatase inhibitors. There is strong evidence, however, to suggest

that brain-derived estrogens likely play an important role in teleost

sexual behaviors. Firstly, cyp19a1b is expressed in numerous brain

regions important for sexual behavior (31). Secondly, cyp19a1b is a

known estrogen-regulated gene due to the presence of an estrogen

response element in its promoter region (32). This observation

suggests that increased systemic estrogen levels, via high ovarian

Cyp19a1a activity, likely drive increased cyp19a1b expression to

prepare the brain for sexual behavior at the time in which the

ovaries are prepared for reproduction.

Here we report that mutant cyp19a1b-/- females exhibit a longer

latency to oviposition and release a significantly higher number of

eggs during spawning compared to WT females. However, there

was a higher larval mortality, resulting in no net fecundity

differences between female cyp19a1b-/- mutant and WT pairings.

A significantly higher larval mortality rate was found in progeny

from cyp19a1a-/-;cyp19a1b-/- mutant male pairings. These data

reveal the importance of cyp19a1b for zebrafish reproduction.
2 Materials and methods

2.1 Experimental animals

Procedures used in this study were approved by the University

of Ottawa Animal Care Committee and follow the guidelines of the

Canadian Council on Animal Care for the use of animals in

research. All fish were reared at the University of Ottawa

Aquatics Facility according to standard housing procedures. The

cyp19a1-/- mutant lines and WT zebrafish used in the experiments

were all derived from a parental zebrafish AB strain to ensure

identical genetic backgrounds amongst the groups for assessing the

effects of cyp19a1 mutation on spawning behavior. The cyp19a1-/-

mutant lines were generated using the transcription activator-like

effector nucleases (TALEN) genome editing system to create indel

mutations at target sites in each of the cyp19a1 paralogs producing

frame-shift mutations (13). Mutation of cyp19a1a impairs sexual

differentiation of the ovary resulting in all male populations of

cyp19a1a-/- and cyp19a1a-/-;cyp19a1b-/- mutant lines, i.e., only male

mutants can be tested in these lines. These males have significantly

lower serum E2 levels compared to WT males due to the

contributions of gonadal aromatase expression to circulating

estrogen levels. Mutation of cyp19a1b does not affect the sex ratio

of the mutant line allowing testing of cyp19a1b-/- mutant effects on
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both males and females, and serum E2 levels in these fish are not

significantly different from their WT counterparts. Fish were

housed in 10-L tanks with dechloraminated water at 28°C and

maintained on a 14:10 light-dark cycle and fed twice daily. All fish

tested in this experiment were between the ages of 5-11 months

post-fertilization and had no previous experience in the sexual

behavior assay; with males and females separated into same-sex

tanks at sexual maturation to prevent sexual interactions.
2.2 Behavioral tests

For all trials, mutant fish were size-matched within 2 mm body

length (<10% body length difference) to an opposite sex WT fish. The

evening before each experiment, paired fish were transferred to a 1-L

testing tank containing an insert at the bottom for egg collection and

a divider in the middle of the tank to keep the male and female

separate before testing. The testing pair was allowed to acclimate

overnight in a ZebraCube (Viewpoint Behavior Technology, Inc.,

Lyon, France) with the camera (either a Panasonic 16GB HC-V700M

Full HD camcorder, Osaka, Japan or a Canon VIXIA HF R800

camcorder, Tokyo, Japan) present. The next morning, the pair was

transferred to a new 1-L testing tank containing clean system water

and the divider was removed and video recording started at 0900h

(lights on). The fish pair was allowed to interact for 150 min, which

was the most appropriate time determined in preliminary trials to

capture the full timing of spawning behavior, particularly in the

cyp19a1b-/- mutant lines. Videos were coded by date to ensure that

the observer was blind to the treatment groups during viewing and

video analysis using VLC media player (https://www.videolan.org/).

Oviposition events, which represent spawning behavior, were selected

as the most appropriate measure to identify changes in sexual

behavior in this study. This decision was made based on the

similar descriptive measures for the ethograms of sexual and

aggressive behaviors in zebrafish (33, 34) that prevented

unambiguous identification of motivational state during initial

interactions in the video recordings. Since there is strong evidence

identifying roles of brain-derived E2, and therefore, brain aromatase

(i.e., Cyp19a1b), in both sexual and aggressive behaviors in

vertebrates (29–31, 35), it was important to select a definitive

measure of sexual behavior for analysis in this study. Oviposition

events were characterized and were identified in the video recordings

as the timing of gamete release during physical interaction. The

oviposition times were manually recorded in an Excel spreadsheet for

the later determination of the time to first and last spawning events,

as well as the total number of spawning events in a trial.
2.3 Egg collection and
eleutheroembryo rearing

Eggs were obtained from natural mating of a cyp19a1-/- mutant

or WT fish paired with an opposite sex WT fish using the methods

described above. Following the careful removal of the eggs from the

bottom of the tank, they were then rinsed with clean system water

and transferred to a Petri dish containing E3 medium at a density of
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3 embryos/mL (36). At 4 h post-fertilization, unfertilized eggs were

counted and removed from the Petri dish for the assessment of

fertilization rates. All embryos were raised in an incubator at 28°C

for the duration of the experiment. The following day (1-day post-

fertilization; 1 dpf), any dead embryos were counted and recorded,

then removed, following which E3 medium was replaced, and

dishes were returned to the incubator. On 2, 3, and 4 dpf, any

dead eggs were again counted and removed. Eleutheroembryos (i.e.,

hatched embryos) were counted and placed into separate Petri

dishes containing E3 medium for measurements, and the medium

was then replaced for the incubation of the remaining live eggs.
2.4 Zebrafish eleutheroembryo
morphometrics

On day 2 post-fertilization, five eleutheroembryos were randomly

selected from each clutch for measurement. The five measurements

were later averaged to obtain a single value to represent the clutch at

the given time. The eleutheroembryos were anesthetized with tricaine

methanesulfonate (100 mg/L) and positioned under a dissecting

microscope (Wild M10, Leica, Wetzlar, Germany) fitted with a

phone mount and iPhone XS. Eleutheroembryos were gently

positioned on their side to produce a lateral view for measurement

of body length, eye area, and yolk sac area in photographs. A ruler was

positioned under the microscope and photographed at the same

magnification as used for Petri dishes to serve as a scale bar for

image analysis. Following completion of the measurements, the

eleutheroembryos were euthanized by immersion in an ice water bath.
2.5 Enzyme-linked immunosorbent assay

Female cyp19a1b-/- andWT fish were euthanized between 9h00 –

10h00 in an ice water bath, and brains and ovaries were immediately

dissected, placed into individual labelled tubes, weighed, and tubes

were then placed on ice. Homogenization buffer (90% methanol) was

added to each tube, 150 µL per brain and 1000 µL per ovary sample,

and samples were then sonicated for tissue dispersion and steroid

release into solution. Samples were centrifuged (4°C, 13,200 rpm) for

10 min, and the supernatant was carefully removed and transferred to

a new labelled tube. The samples were then evaporated to dryness

(Labconco Centrivap Centrifugal Vacuum Concentrator, Model

#7810014, 45°C, 1 h), and stored at 4°C overnight. The following

day, 100 µL resuspension buffer (0.2% formic acid, 5% acetonitrile in

water) was added to each sample tube, vortexed, and the tubes were

then placed in a sonic water bath for 15 min to resuspend the

samples. Following resuspension, the samples were run in C-18 solid-

phase extraction columns (Catalog #r10.aq, Dr. Maisch HPLC

GmbH, Ammerbuch-Entringen, Germany; >85% recovery rate in

liquid chromatography tandem mass spectrometry) and the eluted

samples were then evaporated to dryness (45°C, 3 h). The evaporated

steroid residue was then resuspended in ELISA buffer, 200 µL for

brain samples and 1000 µL for ovary samples, for 24 h at 4°C with

intermittent vortexing prior to testing. Estradiol levels were measured

using enzyme-linked immunoassay test kits (ELISA; Catalog
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#501890, Cayman Chemical, Ann Arbor, MI, USA) according to the

manufacturer’s instructions. This assay has been extensively tested in

teleost species (37–42) with an assay range of 0.61 – 10,000 pg/mL

and sensitivity limit of 20 pg/mL. This E2 assay has very low levels of

cross reactivity to other steroids such as cortisol, progesterone and

testosterone (< 0.01%). All samples were run in duplicate on a single

assay plate and only samples with intra-assay CVs < 10% were used

in analyses.
2.6 Image analysis

Photos were analyzed using ImageJ (v1.53) software. All images

were analyzed by the same observer to ensure consistent

measurements (i.e., to prevent inter-observer variability), and

each measurement was repeated three times and the average

value was calculated. Each image was measured for body length,

eye area, and yolk sac area. Body length consisted of a straight-line

measurement from the posterior tip of the notochord to the most

anterior tip of the head passing through the eye (Figure 1). Eye and

yolk sac areas were measured according to Martıńez et al. (36) and

traced with the freehand tracing tool in ImageJ (Figure 1).
2.7 Statistical analyses

Statistical analyses were conducted using GraphPad Prism v9

(GraphPad Software, Inc., La Jolla, CA, USA) with normality and

homoscedasticity assessed using Shapiro-Wilk and Levene’s tests,

respectively. For the behavior and eleutheroembryo analyses,

normally distributed data were analyzed by either Student’s T test

or One-Way ANOVA followed by Dunnett’s multiple comparisons

tests for pairwise comparisons. Data that were not normally

distributed were analyzed using either Mann-Whitney U or

Kruskal-Wallis tests followed by Dunn’s multiple comparisons

tests for pairwise comparisons. Data are presented as boxplots

with the horizontal lines representing mean or median values,

boxes representing interquartile ranges, and whiskers representing

min-max values. For the E2 measurements, data were log-

transformed and analyzed using a Two-Way ANOVA followed

by Tukey’s multiple comparisons tests. For all data, significance is

defined at p < 0.05 and all tests were assessed as two-tailed.
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3 Results

3.1 Time to the first oviposition event

Female cyp19a1b-/- mutant fish took significantly more time to

the first oviposition event compared toWT females (U(17,17)=70.50,

p=0.0096; Figure 2A). On average, cyp19a1b-/- females took 4.1 times

longer to the first oviposition event compared to WT females. There

were no significant differences in the time to the first oviposition

event among any of the male genotypes (H(3)=7.005,

p=0.0717; Figure 2B).
3.2 Time to the last oviposition event

Female cyp19a1b-/- mutant fish took significantly more time to

the last oviposition event compared to WT females (U(17,17)=81.50,

p=0.0293; Figure 2C). On average, the last oviposition event in

cyp19a1b-/- female pairings occurred 2 times later than in WT

pairings. There were no significant differences in the time to the

last oviposition event among any of the male genotypes (F(3)=1.657,

p=0.1850; Figure 2D).
3.3 Spawning duration

There were no significant differences in the spawning duration

between the cyp19a1b-/- mutant and WT female groups (T(32)

=1.130, p=0.2668; Figure 2E) or between any of the mutant and WT

male groups (F(3)=0.3184, p=0.8120; Figure 2F).
3.4 Number of oviposition events

Female cyp19a1b-/- mutant fish had significantly more

oviposition events compared to WT females (U(17,17)=68,

p=0.0074; Figure 2G). On average, cyp19a1b-/- mutant females

exhibited 2.7 times more oviposition events than WT females.

There were no significant differences in the number of oviposition

events among any of the male genotypes (F(3)=0.7744,

p=0.5125; Figure 2H).
FIGURE 1

Depiction of the measurement of body length (BL), eye area (EA), and yolk sac area (YSA) in an eleutheroembryo on day 2 post-fertilization. Scale bar
= 1 mm.
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3.5 Fecundity

There were no significant differences in fertilization rates

between female cyp19a1b-/- mutant and WT female pairings (U

(14,16)=90, p=0.3557, data not shown), with average fertilization

rates of 99% and 93%, respectively. Female cyp19a1b-/- fish
Frontiers in Endocrinology 05
spawned significantly more eggs per clutch compared to WT

females (U(14,17)=44, p=0.0022, Figure 3A); however,

significantly more eleutheroembryos died by Day 4 from the

female cyp19a1b-/- clutches compared to the WT clutches (U

(14,16)=45, p=0.0043, Figure 3C), resulting in no net difference

in fecundity between the female groups (T(28)=0.1303, p=0.8973,
A B

D

E F

G H

C

FIGURE 2

Timing and number of oviposition events during zebrafish pairwise mating trials. Test females (n=17 pairs) are displayed on the left (A, C, E, G) and
test males (n=17-18 pairs) are displayed on the right (B, D, F, H). Mann-Whitney U (A, C, G), Student’s T (E), Kruskal-Wallis (B) and One-Way ANOVA
(D, F, H) tests were performed. Horizontal lines represent mean or median values, boxes represent interquartile ranges, and whiskers represent min-
max values. Key to genotypes: A=cyp19a1a, B=cyp19a1b. Asterisks denote p<0.05 (*) and p<0.01 (**).
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Figure 3E). On average, there were 2.3 times more eggs spawned

by cyp19a1b-/- females and 4.2 times more progeny died by Day 4

from these mutant females compared to WT females.

Fertilization rates for WT, cyp19a1b-/-, cyp19a1a-/-, and

cyp19a1a-/-; cyp19a1b-/- group pairings were 99%, 98%, 95%, and

99%, respectively, with no significant differences observed among

the male groups (H(3)=3.039, p=0.3856, data not shown). There

were no significant differences in the number of eggs per clutch

between any of the male group pairings (F(3)=1.649, p=0.1857,

Figure 3B); however, there was a significant difference in the

number of dead eleutheroembryos per clutch amongst the male

genotypes (H(3)=23.91, p<0.0001). Pairwise comparisons revealed

that significantly more progeny died by Day 4 from the male

cyp19a1a-/-; cyp19a1b-/- group pairings compared to the WT male
Frontiers in Endocrinology 06
pairings (p<0.0001, Figure 3D). There was also a significant

difference in the survival rate of eleutheroembryos from the male

group pairings (H(3)=14.13, p=0.0027). Pairwise comparisons

revealed that there was a significantly lower survival rate in the

double mutant male offspring compared to the WT male offspring

(p=0.0203, Figure 3F). The survival rate of larvae from male

cyp19a1a-/-; cyp19a1b-/- pairings was 24% lower than WT pairings.
3.6 Eleutheroembryo morphometrics

There were no significant differences on day 2 between the body

length (T(21)=0.1487, p=0.8832; Figure 4A), eye area (T(21)=1.647,

p=0.1144; Figure 4C), or yolk sac area (T(21)= 0.09161, p=0.9279,
A B

D

E F

C

FIGURE 3

Number of eggs spawned per clutch and egg survival rate during zebrafish pairwise mating trials. Test females (n=14-16 pairs) are displayed on the
left (A, C, E) and test males (n=16-23 pairs) are displayed on the right (B, D, F). Mann-Whitney U (A, C), Student’s T (E), One-Way ANOVA (B) and
Kruskal Wallis (D, F) tests were performed. Horizontal lines represent mean or median values, boxes represent interquartile ranges, and whiskers
represent min-max values. Key to genotypes: A=cyp19a1a, B=cyp19a1b. Asterisks denote p<0.05 (*), p<0.01 (**), p<0.0001 (****).
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Figure 4E) of offspring from female cyp19a1b-/- and WT females.

There were also no significant differences on day 2 between the

body length (F(3)=1.657, p=0.1844; Figure 4B), eye area

(H(3)=5.172, p=0.1596, Figure 4D), or yolk sac area (H(3)=2.561,

p=0.4644, Figure 4F) of offspring from any of the male genotypes.
3.7 Estradiol content in female brain
and ovary

There was a significant main effect of tissue type on E2 levels (F

(1,21)=11.40, p=0.0029). Ovarian tissue had 1.6 times higher E2

levels compared to brain. There was no significant main effect of

genotype on E2 levels (F(1,21)=3.295, p=0.0838). There was a

significant tissue type X genotype interaction (F(1,21)=15.36,
Frontiers in Endocrinology 07
p=0.0008). The brains of cyp19a1b-/- mutant females had 2.3

times lower E2 levels compared to the brains of WT females

(p=0.0066; Figure 5). The brains of cyp19a1b-/- mutant females

also had 3 and 2.2 times lower E2 levels compared to their ovaries

(p=0.0002) and to the ovaries of WT females (p=0.0080),

respectively (Figure 5).
4 Discussion

This study is the first assessment of the independent

contribution of cyp19a1b and by implication, brain estrogen

production, to female spawning behavior in a teleost species. It

was found that cyp19a1b-/- mutant female zebrafish exhibited an

increased latency to initiate spawning and released higher numbers
A B

D

E F

C

FIGURE 4

Body length, eye area, and yolk sac area measurements of eleutheroembryos from zebrafish pairwise mating trials on day 2 post-fertilization.
Eleutheroembryos from test females (n=9-14) are displayed on the left (A, C, E) and from test males (n=16-21 pairs) are displayed on the right (B, D,
F). Student’s T (A, C, E), One-Way ANOVA (B) and Kruskal-Wallis (D, F) tests were performed. Horizontal lines represent mean or median values,
boxes represent interquartile ranges, and whiskers represent min-max values. No statistical differences between genotypes were evident. Key to
genotypes: A=cyp19a1a, B=cyp19a1b.
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of eggs compared to WT females. These findings represent an

important difference from the observed impairment of female

fertility in chemical inhibitor studies in which both aromatase

isoforms are inhibited in the body. For example, total aromatase

inhibition reduced female fathead minnow (Pimephales promelas;

6), medaka (Oryzias latipes; 7) and zebrafish (8) fecundity. These

differences are likely due to the contribution of circulating estrogens

produced by the ovaries via Cyp19a1a that function to maintain the

integrity of the ovarian state and the reproductive capacity (i.e.,

fertility) of female zebrafish (10). The observed effects on female

spawning behavior in the current study are linked to altered local

brain estrogen production via Cyp19a1b, because brain E2 levels are

significantly lower in cyp19a1b-/- mutant females compared to WT

females, whilst ovarian E2 levels are similar between the groups.

The time to the last spawning event, but not the spawning duration,

was also longer in the cyp19a1b-/- mutant females. This suggests that

the mutation of cyp19a1b affects the perception of reproductive cues

important for timely mate identification and assessment, since

zebrafish rely heavily on visual and pheromonal cues for

reproductive behavior (43). We note that cyp19a1b and estrogen

receptors (esr1, esr2a, esr2b) are highly expressed at multiple levels

of these sensory pathways including from the peripheral level of

sensory nerve fibres to the levels of primary targets and sensory

integration centres in the brain (31). Future study of cyp19a1b-/-

mutant females will need to account for these potential multiple

levels of sensory impairments as well as to identify downstream

neuronal mediators of RGC-derived estrogens.

Our results resemble those observed in the tAroKO female mice

that display reduced sexual behavior when paired with WT males

(25), likely due to impaired brain estrogen signalling (44). There has

been no study to date of specific bAroKO effects on female sexual

behavior in mammalian models. However, male bAroKOmale mice

have impaired social recognition and a significantly longer latency

to initiate mounting behavior with hormonally primed female mice

compared to WT males (28). Our data for male zebrafish contrast
Frontiers in Endocrinology 08
those in mice as we observed no significant differences in spawning

success between male cyp19a1b-/- mutants and WT fish. Rather,

increasing evidence indicates that brain androgen signalling is

critical for male teleost sexual behavior. It was recently discovered

that cyp17a1-/- male zebrafish display reduced mating behaviors

with WT females compared to WT males, which is likely a result of

lower brain levels of testosterone and 11-ketotestosterone (45). The

reduced contact time of cyp17a1-/- male mutants with WT females

could be rescued following 11-ketotestosterone administration,

indicating that non-aromatizable androgens regulate male sexual

behavior (45). Evidence from androgen receptor gene editing

studies also demonstrate the important role for androgen

signalling in male teleost sexual behavior (46–48).

An important observation in the current study is that female

cyp19a1b-/- mutants paired with WT males spawned significantly

more eggs compared to WT females; however, there was a

concomitant decrease in larval survival so that the total number

of viable larvae produced was similar in female mutants and WT

fish. One possible but unlikely explanation for the observed higher

larval mortality is reduced circulating E2 and vitellogenin egg

deposition in female cyp19a1b-/- mutants. Vitellogenin is a

classical estrogen-regulated hepatic protein that nourishes the

embryo during early development and is critical for embryo

survival (49). Vitellogenin levels correlate with serum E2 and are

significantly lower in females following administration of chemical

aromatase inhibitors (6–8). The higher larval mortality in the

current study is not due to changes in ovary-derived E2 in

cyp19a1b-/- mutant females since the cyp19a1b-/- mutant and WT

females have similar ovarian tissue (this study) and circulating E2

(13) levels. Moreover, there were no significant differences in yolk

sac volume or body length at 2 dpf in progeny from cyp19a1b-/-

mutant female and WT pairings. These two morphometrics are

positively correlated in embryos and directly linked to maternal

vitellogenin levels that are driven by systemic estrogens which bind

to activate hepatic estrogen receptors (50, 51).
FIGURE 5

Estradiol (E2) levels in the brains and ovaries of adult WT (A++B++) and cyp19a1b-/- (A++B–) female zebrafish (n=5-8 per group). Data were log-
transformed and analyzed using a Two-Way ANOVA followed by Tukey’s multiple comparisons tests. Data are plotted as means + SEM. Means with
different letters a-b represent statistically significant differences (p<0.05). For clarity, the significant main effect of tissue type is not displayed. Key to
genotypes: A=cyp19a1a, B=cyp19a1b.
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The cyp19a1b-/- mutant females released more than twice the

number of eggs thanWT females. This suggests that the mutation of

Cyp19a1b may increase the energetic cost of reproduction due to

the substantial metabolic investment in large quantities of larvae

that do not survive to adulthood. It is well known that spawning is

one of the most metabolically demanding activities for a fish (52).

For example, the rate of gamete biomass production is roughly

proportional to whole-organism metabolic rate, with female fishes

allocating approximately half of their energy reserves towards

reproductive function (53). It will be important for future studies

to determine the contribution of Cyp19a1b to long-term fitness

costs associated with higher reproductive investment by

mutant females.

Higher mortality rates in larvae from cyp19a1a-/-;cyp19a1b-/-

pairings compared to WT pairings among the male genotypes also

reveals a role for aromatase in males. While larval survival was similar

between WT, cyp19a1a-/- and cyp19a1b-/- males, survival of offspring

from the double mutant males was 24% lower than WT offspring.

Thus, total aromatase activity of the father contributes to offspring

survival. This idea is supported by previous studies reporting

increased mortality in larval zebrafish during acute chemical

aromatase inhibition (36, 54–57). Moreover, both cyp19a1

transcripts are expressed during the first 48 h post-fertilization in

zebrafish embryos, which suggests a role in early development and

survival (58). While overall survival rate was lower in larvae from

cyp19a1a-/-;cyp19a1b-/- males, there were no obvious larval

abnormalities observed and the size of the remaining survivors

appeared relatively normal. Yolk sac area, eye area, and body length

at 2 dpf were similar across all genotypes. These observations are

similar to those of Gould et al. (59), reporting no effect of aromatase

inhibition on larval zebrafish development. However, our study

contrasts those demonstrating chemical inhibition of both

aromatases affect one or multiple of these morphometrics (36, 56,

57, 60, 61). It is possible that significant differences in these

morphometrics might emerge during later development after 2 dpf.
5 Conclusions

We have demonstrated a role of brain aromatase in female

spawning behavior. Female zebrafish carrying a frameshift

mutation in cyp19a1b had a longer latency to initiate spawning

behavior and had higher numbers of eggs spawned compared to

WT females. The importance of cyp19a1b for embryo survival was

demonstrated by the increased mortality of progeny from female

cyp19a1b-/- mutants and cyp19a1a-/-;cyp19a1b-/- mutants compared

to WT pairings. Further study will be needed to determine the

downstream neuronal pathways through which brain estrogens

produced in RGCs lead to the observed changes in female

spawning behavior. It will also be important to determine the

causes of increased mortality in eleutheroembryos from cyp19a1b-/-

mutant females and cyp19a1a-/-;cyp19a1b-/- mutant males.
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