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CHST12: a potential prognostic
biomarker related to the
immunotherapy response in
pancreatic adenocarcinoma
Kun Liu, Lu Li and Guang Han *

Department of Anesthesiology, Shengjing Hospital of China Medical University, Shenyang,
Liaoning, China
Background: Pancreatic adenocarcinoma (PAAD) is characterized by lower

immunogenicity with a poor response rate to immune checkpoint inhibitors

(ICIs) and exhibits the poorest prognosis of all solid tumors, which results in

the highest tumor-related mortality among malignancies. However, the

underlying mechanisms are poorly understood. In addition, diverse

carbohydrate sulfotransferases (CHSTs), which are involved in the sulfation

process of these structures, play an important role in themetastatic spread of

tumor cells. Aberrant glycosylation is beginning to emerge as an influencing

factor in tumor immunity and immunotherapy. Therefore, it might serve as a

biomarker of the immunotherapeutic response in tumors. The purpose of the

study was to evaluate the role of CHST12 in PAAD prognosis and its relevance

to the immunotherapeutic response.

Methods: A comprehensive investigation of the interactions between CHST12

expression and the immune microenvironment as well as the clinical

significance of CHST12 in PAAD was conducted. Data derived from the

Cancer Genome Atlas (TCGA) database were analyzed using univariate and

multivariate approaches, the Tumor Immune Estimation Resource (TIMER),

and Tumor Immune Dysfunction and Exclusion (TIDE) algorithms. Publicly

available datasets were analyzed in this study. These data can be found on

websites such as http://www.xiantao.love and https://www.proteinatlas.org.

An assessment of the predictive value of CHST12 for PAAD prognosis was

conducted using univariate and multivariate Cox regression analysis, Kaplan–

Meier analysis, and nomograms. The TIMER algorithm calculates the

proportions of six types of immune cells. The TIDE algorithm was used to

indicate the characteristics of tumors that respond to ICI therapy.

Results: ThemRNA and protein levels of CHST12 showed the opposite trend.

CHST12 mRNA expression was significantly upregulated in PAAD. According

to Cox regression analysis, CHST12 RNA expression acts as a protective

factor for overall survival [hazard ratio (HR), 0.617, P < 0.04]. Functional

annotation indicated that CHST12-associated differentially expressed genes

(DEGs) were related to the signaling activity of receptor tyrosine kinases and
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the regulation of ubiquitin-protein transferase. These are usually involved in

tumor development and may be related to the treatment responses of

immune checkpoint inhibitors (ICIs). There was significantly higher CHST12

mRNA expression in PAAD samples than in non-malignant samples.

Conclusions: In PAAD, elevated CHST12 mRNA expression might regulate

immune cell infiltration into the tumor microenvironment (TME) and may

predict clinical outcomes.
KEYWORDS

immune cell, infiltration, glycosylation (enzymatic conjugation with carbohydrates),
prognostic signature, pancreatic adenocarcinoma (PAAD), tumor microenvironment
1 Introduction

Pancreatic adenocarcinoma, commonly referred to as pancreatic

cancer, is a type of cancer that begins in the pancreas, an organ

located deep within the abdomen (1, 2). The pancreas plays a crucial

role in digestion and blood sugar regulation by producing enzymes

and hormones, such as insulin and glucagon (3, 4). PAAD is a highly

aggressive malignancy, exhibiting the poorest clinical outcome of all

solid tumors. Generally, when patients come to the hospital, they are

diagnosed with advanced PAAD. It is characterized by lower

immunogenicity, with a lower number of predicted neoantigens,

low immune infiltration, and poor response rates to ICI therapy, with

a median survival of 6 months and growing incidence rates

worldwide (5–8). The low tumor-infiltrating immune cell

microenvironment features of PAAD consist of cancer cells,

fibroblasts, myofibroblasts, endothelial cells, tumor-infiltrating

lymphocytes (TILs), and extracellular matrix.

The majority of pancreatic cancers are adenocarcinomas, which

start in the cells that line the ducts of the pancreas (9, 10). There are

other less common types of pancreatic cancer, such as

neuroendocrine tumors and acinar cell carcinomas, leading

to drug resistance and great inertia in the response rates to

immunotherapy (11–13). Therefore, it is particularly difficult to

treat PAAD. Specific targeted therapies such as EGFR-targeted

therapy confer a significant survival benefit in a minority of

PAAD patients who are wild-type KRAS patients (14, 15).

Approximately 90% of pancreatic cancers harbor oncogenic

KRAS mutations (16, 17). With the improvement in many

advanced medical diagnostic technologies, such as endoscopic

ultrasound, the early diagnosis rate of PAAD has been greatly

improved (18–20). However, given the limited effectiveness of

current treatments for PAAD, new promising biomarkers are

urgently needed to improve the prognosis and treatment of PAAD.

As a fundamental and prominent post-translational

modification of proteins, the involvement of glycosylation in
02
cellular functions includes transformation, adhesion, cell growth,

differentiation, and tumor immune surveillance (21, 22). Abnormal

glycosylation has been implicated as a crucial mechanism

that triggers tumor progression (23, 24). Dysregulation in

glycosylation can affect the function, sensitivity and expression of

cell-surface receptors. These features make glycosylation a critical

molecular event in cancer pathology (25). Glycoproteins are

currently the most commonly used clinical tumor biomarkers

(e.g., the AFP test for liver cancer, CA125 test for ovarian cancer,

CEA, CA199 test for colon cancer, and PSA test for prostate cancer)

(26, 27). Subsequently, the role of aberrant glycosylation influences

tumorigenesis, which affects growth, immune surveillance,

and immunotherapy.

Many recent publications have indicated that glycosylation can

lead to an improvement in the immunotherapeutic effect and confer

better treatment outcomes in cancer (28–30). As such, further

elucidating the molecular mechanisms and consequently

promoting cancer immune evasion is urgently required (31). As

one of the important components of the tumor microenvironment,

proteoglycans promote the progression of cancers, such as lung

cancer, pancreatic cancer, and GBM (32–34). Multiple family

members are implicated in tumor occurrence and development

(35). The current evidence suggests that carbohydrate

sulfotransferase 12 (CHST12) is a cancer-related enzyme and is a

potential biomarker in some tumor subtypes. For instance, GBMs

with high CHST12 expression have a reduced survival rate and

positive associations with KI67 expression (36). Qiang Ren et al.

found that CHST12 was expressed at a significantly higher level in

pancreatic tumors, highlighting the potential diagnostic utility of

the CHST12 expression profile in pancreatic cancer (37, 38).

However, the specific functions and role of CHST12 in the

prognosis of pancreatic cancer and the regulation of TME remain

a mystery.

Here, we explored CHST12-related biological processes and

CHST12-enhanced pathways to understand its functions in PAAD.
frontiersin.org
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The prognostic model based on univariate and multivariate Cox

regression analysis revealed an independent prognosticator

characteristic. Additionally, we used the TIDE algorithm to

indicate the characteristics of CHST12 as a predictor for ICI

therapy efficacy. The present study may help develop CHST12 as

a prognostic biomarker and predict the efficacy of the

immunotherapy treatment of PAAD patients.
2 Methods

2.1 Data processing

The level 3 HTSeq-FPKM (Fragments Per Kilobase per Million)

sequencing RNA expression values were downloaded from the GTEx

and TCGA datasets and log2-transformed [log2 (FPKM+1)]. The

corresponding clinicopathological parameters were then obtained,

including 171 normal tissue samples and 179 PAAD tumor samples.

These databases are publicly open access. This study was approved by

the Ethics Committee of the Shengjing Hospital of China Medical

University (Ethical Approval Number: 2023PS700K).
2.2 Differentially expressed genes in PAAD

High-expression and low-expression groups of CHST12 were

determined by the median expression from 178 PAAD patients. R

(Version 3.6.3) was used to create plots with the ggplot2 package

comparing the DEGs between the two groups using chi-square or

Fisher exact tests (39). The following significance symbols were

used: The ns value is equal to p≥0.05; * is equal to p< 0.05, ** is equal

to p < 0.01, *** is equal to p < 0.001, and **** is equal to p < 0.0001.
2.3 Correlation analyses between CHST12
expression characteristics and the
clinicopathology of PAAD

Detailed patient characteristics are shown in Table 1. Chi-

square or Fisher exact tests were used to compare the

clinicopathological characteristics of the 178 enrolled patients.

Then, clinicopathological characteristics and CHST12 expression

were analyzed using logistic regression.
2.4 Clinical significance of CHST12
expression in PAAD

Receiver operating characteristic (ROC) curve analysis was used

to evaluate the diagnostic value of CHST12 for PAAD. Then, a

prognostic analysis of CHST12 in PAAD patients was evaluated

using the Kaplan–Meier method, univariate Cox proportional

hazards regression, and multivariate Cox regression analysis,

which were performed using the “survminer” and “survival”
Frontiers in Endocrinology 03
R packages. Published studies provide clinical outcomes data of

PAAD patients, including OS, progression-free intervals (PFIs), and

disease-specific survival (DDS). Analyses of statistical data were

conducted using R (version 3.6.3). Significance values are defined as

P-values less than 0.05.
TABLE 1 Clinicopathological characteristics of PAAD patients with
differential CHST12 expression.

Characteristic
Low expression

of CHST12

High
expression
of CHST12

p-
value

n 89 89

T stage, n (%) 0.810

T1 3 (1.7%) 4 (2.3%)

T2 11 (6.2%) 13 (7.4%)

T3 74 (42%) 68 (38.6%)

T4 1 (0.6%) 2 (1.1%)

N stage, n (%) 0.456

N0 23 (13.3%) 27 (15.6%)

N1 66 (38.2%) 57 (32.9%)

M stage, n (%) 1.000

M0 43 (51.2%) 36 (42.9%)

M1 3 (3.6%) 2 (2.4%)

Pathologic stage, n (%) 0.320

Stage I 7 (4%) 14 (8%)

Stage II 77 (44%) 69 (39.4%)

Stage III 1 (0.6%) 2 (1.1%)

Stage IV 3 (1.7%) 2 (1.1%)

Radiation therapy,
n (%)

0.209

No 62 (38%) 56 (34.4%)

Yes 18 (11%) 27 (16.6%)

Primary therapy
outcome, n (%)

0.208

PD 30 (21.6%) 19 (13.7%)

SD 3 (2.2%) 6 (4.3%)

PR 7 (5%) 3 (2.2%)

CR 34 (24.5%) 37 (26.6%)

Gender, n (%) 0.651

Female 42 (23.6%) 38 (21.3%)

Male 47 (26.4%) 51 (28.7%)

Age, mean ± SD 66.37 ± 10.58 63.12 ± 10.83 0.045
front
PAAD, pancreatic adenocarcinoma. Bold p-values represent significant relationships
(p < 0.05).
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2.5 Analysis of CHST12-associated
differentially expressed genes in PAAD with
functional annotations

DEGs identified between high and low expression groups of

CHST12 mRNA were analyzed and processed through functional

enrichment analysis with the Metascape database, Gene Ontology

(GO) terms, and Kyoto Encyclopedia of Genes and Genomes

(KEGG) pathways. In addition, reactome gene sets (https://

metascape.org/gp/index.html#/main/step1) were included (40).

The resultant terms were grouped into features based on attribute

similarity, with a p-value threshold of 0.01 (< 0.01) and a minimum

of three enriched genes.
2.6 Infiltration of immune cells into PAAD
is associated with CHST12 expression

Tumor Immune Estimation Resource (TIMER) is an online

database that uses a deconvolution statistical method, the single-

sample GSEA (ssGSEA), to evaluate the TME immune cell

infiltration levels from gene expression profiles (41–43). Via gene

modules, TILs, including CD8+ T cells, B cells, CD4+ T cells,

neutrophils, macrophages, and dendritic cells, were evaluated in

PAAD in relation to CHST12 mRNA expression. The website

(http://cis.hku.hk/TISIDB/) analyzes the relationship between tumors

and the innate immune system (44). A database of tumor-immune

system interactions called the Tumor-Immune System Interaction

Database (TISIDB) was used to validate the relationship between

CHST12 expression and TILs in PAAD using Pearson’s correlation

analysis. Finally, a comparison of the distributions of immune

checkpoint-associated genes (SIGLEC15, IDO1, CD274, HAVCR2,

PDCD1, CTLA4, LAG3, and PDCD1LG2) was performed between

the high and low expression groups of CHST12. Statistical significance

was examined using the Wilcox test. The asterisks represent the degree

of importance (*p < 0.05, **p < 0.01, ***p < 0.001).
2.7 Analysis of tumor immune dysfunction
and exclusion

Using the gene exclusion model for tumor immune

dysfunction, Tumor Immune Dysfunction and Exclusion (TIDE)

model predicts cancer sensitivity to immune checkpoint therapy.

The TIDE model includes dysfunctional T cells and the exclusion of

T-cell mechanisms of immune evasion by tumors (45). The TIDE

score indicates the potential for tumor immune escape. A high

TIDE score suggests a bad curative effect of ICIs and a short survival

time after ICI treatment in patients.

3 Results

3.1 Expression profiles of CHST12 and
prognosis value in PAAD

In the TCGA+GTEx datasets, compared with normal tissues

(N=171), tumor tissues (N=179, p < 0.001) expressed high levels of
Frontiers in Endocrinology 04
CHST12 mRNA. Likewise, in the paired analysis of normal and

tumor tissues, CHST12 was highly expressed in pancreatic cancer

tissues (N=41; p=0.038) (Figures 1A, B). We further analyzed the

protein expression of CHST12 by immunohistochemistry.

Interestingly, CHST12 protein levels from The Human Protein

Atlas (THPA) database showed the opposite trend of mRNA levels,

with lower levels of expression observed in PAAD tissues

(Figure 1C). These results indicate an important post-

transcriptional modification of CHST12.

To better explore the prognostic value of CHST12, patients from

the TCGA dataset were initially classified into high and low groups

based on the CHST12 mRNA level. Kaplan–Meier curves showed

that low expression patients had a significantly shorter OS (p < 0.001;

HR, 0.43), DSS (p < 0.001; HR, 0.40), and PFI (p = 0.001; HR, 0.49)

than the high expression group (Figures 1D–F). These data suggest

that CHST12 is a potential clinical outcomes-protected factor.
3.2 Correlation between CHST12
expression and the clinicopathological
characteristics of PAAD

Our study examined the clinicopathological characteristics of

patients with PAAD who expressed high and low CHST12 mRNA

expression, as shown in Table 1. In terms of the distribution of

clinicopathological characteristics, there was no significant difference

(gender, age, T-stage, N-stage, M-stage, pathologic stage, radiation

therapy, and primary therapy outcome). Furthermore, by using

logistics analysis, we determined the correlation between CHST12

expression and clinicopathological characteristics (T stage, N stage, M

stage, pathologic stage, primary therapy outcome, gender, age,

histologic grade, anatomic neoplasm subdivision, alcohol history,

history of diabetes, and family history of cancer). Prominently

positive correlations between CHST12 expression and anatomic

neoplasm subdivision and alcohol history are presented in Table 2.
3.3 Diagnostic and prognostic predictive
value of CHST12 in PAAD

To investigate the predictive value for PAAD diagnosis, ROC

curves and the AUC of CHST12 were calculated in PAAD to

demonstrate its discriminating value. As the AUC was 0.911 (95%

CI = 0.879–0.943), CHST12 showed high diagnostic efficacy, with

82.1% sensitivity and 91.2% specificity and a high positive

predictive value (PPV) (90.7%) and negative predictive value

(NPV) (83.0%) for the diagnosis of PAAD (Figure 2A). Next, we

performed univariate and multivariate Cox regression analyses to

identify the potential prognostic value of CHST12 for clinical

outcomes. CHST12 mRNA expression was shown to be an

independent risk factor for OS in a multivariate Cox regression

analysis (HR, 0.617; P = 0.040) (Table 3). Similarly, the clinical N

stage displayed a meaningful predictive value for DSS in PAAD.

Here, key prognostic factors in OS, DSS, and PFI were selected as

parameters for constructing nomograms to present the prognostic

status of PAAD patients (Figures 2B, D, F). Then, to test the efficacy
frontiersin.org

https://metascape.org/gp/index.html#/main/step1
https://metascape.org/gp/index.html#/main/step1
http://cis.hku.hk/TISIDB/
https://doi.org/10.3389/fendo.2023.1226547
https://www.frontiersin.org/journals/endocrinology
https://www.frontiersin.org


Liu et al. 10.3389/fendo.2023.1226547
of the nomograms, calibration curves were drawn for the 1-, 2-, and

3-year clinical outcomes. A C-index of 0.619 (0.585-0.654) was

obtained for CHST12 in the nomogram to predict OS (Figure 2C),

DSS (Figure 2E), and PFI (Figure 2G).
3.4 Functional annotation and identified
CHST12-related signaling pathways
in PAAD

A pathway enrichment analysis of CHST12-associated DEGs

was conducted using the Metascape database, GO Biological

Processes, KEGG Pathway, and Reactome Gene Set. These can

help elucidate the functional role of CHST12-associated DEGs in

PAAD patients with the criteria of false discovery rate (FDR) < 0.05

and |log2FC| > 1 (40). In the enrichment analysis, we found that the

DEGs usually target tumor progression, immune-related signaling

pathways, or biological processes that are usually involved in the

tumor microenvironment. These may include immune system

process, cellular response to growth factor stimulus, and signaling

by receptor tyrosine kinases. (Figures 3A, B).
3.5 CHST12 may have a certain correlation
with the immune infiltration of TME
in PAAD

A crucial role for glycosylation in modulating tumor

immunity has been demonstrated and CHST12-associated DEG
Frontiers in Endocrinology 05
pathway analysis suggested that as a member of glycosylation,

CHST12 may play a significant role in tumor microenvironment

immunity in PAAD tumors. Hence, we tested whether there are

correlations between CHST12 expression and TILs. We detected

that higher CHST12 mRNA expression was associated with the

increased infiltration of CD4+ T cells, macrophages, neutrophils,

and dendritic cells. (Figure 4A). Using TISIDB analysis, our

findings revealed that CHST12 mRNA was remarkably

negatively correlated with CD4 and Type2 T-helper (Th2) cells,

the infiltration of which was critical for immunotherapy

producing anti-cancer immunity (Figures 4B, C). We further

analyzed the relationship between CHST12 expression and the

expression of immune checkpoints (CD274, CTLA4, HAVCR2,

LAG3, PD-1 (PDCD1), PDCD1LG2, TIGIT, and SIGLEC15).

Additionally, we proved that CHST12 mRNA expression was

associated with several immune checkpoint distributions,

including PD-1, CTLA-4, and LAG-3 in PAAD (Figure 4D). In

summary, the expression pattern of CHST12 is closely related to

immune cell infiltration in the TME of PAAD.
3.6 CHST12 contributes to immune escape
and resistance to ICIs

There is growing evidence that the tumor-infiltrating immune

cells play a critical role in the TME and that higher levels of immune

cell infiltration are associated with a better prognosis for tumor
B C

D E F

A

FIGURE 1

(A) Differential expression of CHST12 mRNA in normal and tumor tissues of patients with PAAD. The results show that CHST12 was highly expressed
in pancreatic cancer tissues. (B) Differential expression of CHST12 mRNA in PAAD paired tumor and normal samples. The results show CHST12 was
highly expressed in the PAAD paired tumor sample. (C) CHST12 proteins are differentially expressed in PAAD tumors and normal tissues according to
THPA. The results show the opposite trend of mRNA levels, with lower levels of expression observed in PAAD tissues. (D) Survival curves comparing
low to high expression groups of CHST12 mRNA for PAAD patients. (E) DSS. (F) PFI. The results show that low expression patients had a significantly
shorter OS (p < 0.001, HR: 0.43), DSS (p< 0.001, HR: 0.40), and PFI (p = 0.001, HR: 0.49) than the high expression group. “*”:P<0.05, “***”:P<0.001.
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patients. Pearson correlation analysis using the TIDE web tool

showed that increased CHST12 expression was associated with an

increase in the number of cytotoxic T lymphocytes in two PAAD

datasets (TCGA-PAAD and GSE21501@PRECOG, TCGA-PAAD; r

= 0.185, p = 0.0147; GSE21501, r = 0.306, p = 0.00178) (Figures 5A,

B). Moreover, we found that in the high CHST12 expression level

group, high-level cytotoxic T lymphocyte (CTL) infiltration indicates

better survival (Figure 5C); vice versa, in the low CHST12 expression

level group, low CTL infiltration indicates better survival (Figure 5D).

In the TIDE gene set prioritization module, tumor immune evasion

phenotypes were not detected with a negative TIDE score.

Furthermore, we examined the correlation between the CHST12

expression level and the efficacy of immunotherapy. Using the gene

set prioritization module, we found that low CHST12 was related to

an increase in the clinical efficacy of immunotherapy in melanoma

and bladder cancer. These results suggest that CHST12 may be a

potential candidate predictor for immunotherapy, especially ICIs.
4 Discussion

Carbohydrate sulfotransferases are enzymes that transfer

sulfate to carbohydrate groups in glycoproteins, which have
Frontiers in Endocrinology 06
been implicated in the metastatic spread of tumor cells through

the modulation of the TME (46–49). The deregulated expression

of CHST family members has been reported in a wide range of

human cancer types (36). Here, according to our findings,

CHST12 mRNA expression was upregulated in PAAD, and low

CHST12 expression predicted a favorable outcome for

PAAD patients.

Through transcriptome analysis, we found that CHST12

mRNA was highly expressed in tumors, but CHST12 protein

showed lower expression in PAAD tumor tissues than in normal

tissues. The contradiction between the upregulation of CHST12

mRNA and downregulation of the protein may involve potential

post-transcriptional modification mechanisms, such as RNA

splicing or protein degradation. This result highly suggests that

CHST12 has experienced post-transcriptional modification.

Moreover, pancreatic cancer patients with low CHST12

protein expression have a worse prognosis, which is consistent

with the findings of Han Nie et al. (50). Through multivariate

regression analysis, we identified CHST12 and N staging as

independent prognostic risk factors for OS in PAAD patients,

which indicates that CHST12 may be useful in clinical settings as

a prognostic biomarker and possesses potential clinical utility in

PAAD patients. The ROC curve shows the diagnostic

performance of CHST12 in discriminating PAAD diagnosis

with an AUC of 0.911, suggesting that CHST12 is a high-

performance biomarker for PAAD diagnosis. These results

agree with previously reported results that other tumor

patients with high CHST12 mRNA levels have shorter survival

times (51, 52). Considering the key value of CHST12 in clinical

diagnosis, we further investigated the potential functions and

molecular mechanisms of CHST12 in PAAD. In our study,

functional enrichment analysis of CHST12-associated DEGs

showed that they are significantly enriched in tumor

progression and immune-related signaling pathways. CHST12

has shown a similar effect in hepatocellular carcinoma (53). All

the above analyses indicate that CHST12 may be involved in the

regulation of the TME in PAAD.

Glycosylation plays a significant role in immunity and endows

unique properties to glycoproteins (54, 55). Moreover, our

functional studies have found that CHST12 plays a vital role in

the TME. Hence, the effects of CHST12 expression on the TME

and immunotherapy of pancreatic cancer is a key aspect of our

study. According to our findings, CHST12 expression is positively

correlated with the infiltration of immune cells (CD4+ T cells,

macrophages, neutrophils, and dendritic cells), which contributes

to immunosurveillance, the elimination of tumor cells, and the

slowing of immune evasion in the PAAD microenvironment (56,

57). Additionally, we proved that CHST12 mRNA expression was

associated with several immune checkpoint distributions,

including PD-1, CTLA-4, and LAG-3, in PAAD. Using the gene

set prioritization module, we found that low CHST12 was related

to the increase in the clinical efficacy of immunotherapy in

melanoma and bladder cancer. These results suggest that

CHST12 may be a potent ia l candidate predictor for

immunotherapy, especially ICIs. To test the prediction, we will
TABLE 2 Logistic regression analysis of the association between CHST12
expression and the clinicopathological characteristics in PAAD patients.

Characteristic
Total
(N)

Odds
ratio (OR)

P-
value

T stage (T3&T4 vs. T1&T2) 176
0.925

(0.422-2.016)
0.843

N stage (N1 vs. N0) 173
1.032

(0.534-1.999)
0.926

M stage (M1 vs. M0) 84
1.538

(0.242-12.160)
0.647

Pathologic stage (stage III & stage IV
vs. stage I & stage II)

175
1.012

(0.232-4.408)
0.987

Primary therapy outcome (PD & SD
vs. CR &P R)

139
0.875

(0.443-1.720)
0.699

Gender (female vs. male) 178
1.095

(0.606-1.981)
0.763

Age (<=65 vs. >65) 178
1.371

(0.761-2.483)
0.294

Histologic grade (G3 & G4 vs. G1
& G2)

176
1.703

(0.881-3.349)
0.117

Anatomic neoplasm subdivision (other
vs. head of pancreas)

178
2.211

(1.078-4.693)
0.033

Alcohol history (yes vs. no) 166
1.991

(1.061-3.791)
0.034

History of diabetes (yes vs. no) 146
1.375

(0.655-2.936)
0.403

Family history of cancer (yes vs. no) 110
1.173

(0.548-2.516)
0.680
Statistical significance was found between CHST12 expression and Anatomic neoplasm
subdivision (other vs. head of pancreas) (P<0.05).
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next conduct a verification experiment clinicopathologically.

Combined with the results of the previous discovery of the post-

transcriptional modification of CHST12, our study supports the

notion that the decreased expression of CHST12 protein in the

TME may produce an anti-tumor effect by acting on the

recruitment of immune cells to the TME. Notably, in terms of
Frontiers in Endocrinology 07
CTLA4, LAG3, and PDCD1, the low expression CHST12 group

differed significantly from the high expression CHST12 group.

CTLA4, LAG3, and PDCD1 are important targets for cancer ICI

therapy. This finding prompted us to investigate whether CHST12

expression impacts clinical outcomes when treated with ICIs.

Using the TIDE algorithm, we predicted the response of patients
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FIGURE 2

(A) ROC curve analysis for CHST12 clinical predictive values in PAAD patients. As the AUC was 0.911 (95% CI = 0.879–0.943), CHST12 showed high
diagnostic efficacy, with 82.1% sensitivity and 91.2% specificity and a high positive predictive value (PPV) (90.7%) and negative predictive value (NPV)
(83.0%) for the diagnosis of PAAD. (B) Nomograms of overall survival for CHSE12 expression-based risk scoring models predicting 1-, 2-, and 3-year
clinical outcomes. (C) Calibration plots for the nomograms for overall survival. (D) Nomograms of the progress free interval (PFI) for CHSE12
expression-based risk scoring models predicting 1-, 2-, and 3-year clinical outcomes. (E) Calibration plots for the nomograms for PFI.
(F) Nomograms of disease-specific survival (DSS) for CHSE12 expression-based risk scoring models predicting 1-, 2-, and 3-year clinical outcomes.
(G) Calibration plots for the nomograms for DSS.
TABLE 3 Cox regression analysis for clinical outcomes in PAAD patients.

Characteristic Total (N)

HR for overall survival
(95% CI)

HR for disease-specific
survival (95% CI)

HR for progression-free
intervals (95% CI)

Univariate Multivariate Univariate Multivariate Univariate Multivariate

T stage 176

T1&T2 31

T3&T4 145 2.023 * 1.079 3.119 ** 1.780 2.414 ** 1.614

N stage 173

N0 50

N1 123 2.154 ** 1.814* 2.746 ** 2.162* 1.735 * 1.405

CHST12 178 0.478 *** 0.617* 0.508 * 0.658 0.505** 0.650

Anatomic neoplasm subdivision 178

Head of pancreas 138

Other 40 0.417 ** 0.539 0.447 * 0.681 0.495 ** 0.700
HR, hazard ratio; PAAD, pancreatic adenocarcinoma; CI, confidence interval. *P < 0.05; **P < 0.01; ***P < 0.001.
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to immunotherapy. We found that high CHST12 mRNA

expression is related to the increased efficacy of immunotherapy

in melanoma and bladder cancer. These data imply that CHST12

may be a predictor for the efficacy of immunotherapy.

Our findings uncover CHST12 as a new independent predictor

of PAAD prognosis and immunotherapeutic efficacy, but it has its

limitations. First, CHST12 expression and its prognostic

significance were identified through bioinformatic analysis.

Hence, further study with clinical samples for such applications

is needed to verify the above findings. In addition, in vivo and in

vitro experiments are needed to provide additional information
Frontiers in Endocrinology 08
about how CHST12 impacts immune infiltration in the

PAAD TME.

Conclusively, in this study, we have shown that CHST12

mRNA expression is upregulated in PAAD, whereas CHST12

protein expression is downregulated. The expression of CHST12 is

an independent predictor of a good prognosis in PAAD. In

addition, CHST12 may affect the infiltration of immune cells in

the microenvironment of PAAD. Our data highlight the potential

of CHST12 in predicting ICI efficacy. In the future, we hope to

further investigate the regulatory mechanisms of CHST12 through

animal trials to test its validation. Additionally, we hope to
B

A

FIGURE 3

(A) Top 23 pathway clusters associated with CHST12-related DEGs enriched by Metascape. (B) TGraph of the top 20 enriched clustered terms. The
term colors indicate nodes in close proximity to each other. An edge links terms that have a similarity score of >0.3 (the edge thickness corresponds
to the similarity score). The darker the color, the greater the statistical significance. In the enrichment analysis, we found that the DEGs usually
targeted tumor progression, immune-related signaling pathways, or biological processes that are usually involved in the tumor microenvironment.
B C D

A

FIGURE 4

(A) A positive correlation was found between CHST12 expression and the infiltrating levels of T cells, macrophages, neutrophils, and dendritic cells;
however, there was a negative correlation with CD8+ cells. (B) Correlation between CHST12 expression and the abundance of activated CD4 T cells
in PAAD. (C) Correlation between CHST12 expression and the abundance of activated Th2 cells in PAAD. (D) CHST12 mRNA expression was
associated with several immune checkpoint distributions, including PD-1, CTLA-4, and LAG-3 in PAAD.
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conduct clinical trials as well. Overall, CHST12 may be a novel

prognosis biomarker and a potential predictor of the response to

ICI treatment in PAAD patients.
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FIGURE 5

(A, B) Correlation between the levels of CHST12 and the CTL in the TME of PAAD from TCGA and GSE21501@PRECOG datasets. TCGA-PAAD: r =
0.185, p = 0.0147; GSE21501: r=0.306, p=0.00178) (C, D) The association between the CTL level and OS for PAAD with CHST12 high and low
expression groups.
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