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Type II diabetes mellitus (T2DM) is a chronic metabolic disease characterized by

prolonged hyperglycemia and insulin resistance (IR). Its incidence is increasing

annually, posing a significant threat to human life and health. Consequently,

there is an urgent requirement to discover effective drugs and investigate the

pathogenesis of T2DM. Autophagy plays a crucial role in maintaining normal islet

structure. However, in a state of high glucose, autophagy is inhibited, resulting in

impaired islet function, insulin resistance, and complications. Studies have shown

that modulating autophagy through activation or inhibition can have a positive

impact on the treatment of T2DM and its complications. However, it is important

to note that the specific regulatory mechanisms vary depending on the target

organ. This review explores the role of autophagy in the pathogenesis of T2DM,

taking into account both genetic and external factors. It also provides a summary

of reported chemical drugs and traditional Chinese medicine that target the

autophagic pathway for the treatment of T2DM and its complications.

KEYWORDS

Type II diabetes mellitus (T2DM), autophagy, complications, hypoglycemic agents,
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1 Introduction

Autophagy, also known as self-cleaning and self-eating, is a conserved biological

process in eukaryotes (1). Autophagy can provide nutrients to maintain cellular function by

breaking down macromolecules, organelles, proteins, and end products, under starvation

conditions. Moreover, it also helps in maintaining cellular homeostasis by eliminating

damaged organelles, misfolded proteins, and lipid droplets (2). There are two types of

autophagy: selective and non-selective, which are triggered by different signals. While
Abbreviations: DM, Diabetes mellitus; T2DM, Type II diabetes mellitus; DN, Diabetic Nephropathy; DACD,

Diabetes-associated cognitive decline; DH, Diabetic Hepatopathy; DC, Diabetic Cardiomyopathy; DR,

Diabetic Retinopathy; IR, Insulin Resistance; IDF, International Diabetes Federation; UKPDS, The United

Kingdom Prospective Diabetes Study; ERS, Endoplasmic reticulum stress; YPHLD, Yunpi Heluo decoction;

XKP, Xiaokeping.
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selective and non-selective autophagy respond to different signals,

both pathways converge to initiate autophagy (3). In mammals,

autophagy initiation is linked to the omegasome, a functional

domain of the endoplasmic reticulum (ER) that is rich in the

lipid phosphatidylinositol 3-phosphate (PI3P). Starting from the

omegasome, the isolation membrane elongates into a cup-shaped

structure and initiates the process of phagocytosing intracellular

material (4). Overall, autophagy is a process that can be divided into

four steps (Figure 1). The first step is initiation, where the ULK1-

dominant protein complex triggers the formation of another

important protein complex called PI3KC3-C1. These two

complexes are then recruited to the phagophore assembly site,

where they assist in the formation of autophagosomes. The

second step is extension. ATG12 is activated by ATG7, leading to

the formation of an ATG12-ATG5 complex. This complex then

interacts with either ATG16 or ATG16L1 to form the ATG12-

ATG5-ATG16L complex. Simultaneously, ATG7 facilitates the

binding of phosphatidylethanolamine (PE) to LC3-I, resulting in

the formation of LC3-II. The sequential assembly of these protein-

protein and protein-lipid complexes enables the extension of the

autophagosome bilayer. The third step involves the maturation of

autophagosomes, where closed autophagosomes are formed. In the

fourth step, autophagosomes fuse sequentially with lysosomes to

form autophagic lysosomes. Subsequently, the contents are digested

by lysosomal hydrolases, and the resulting metabolites become

available for recycling. The identification of crucial genes for

autophagy in yeast has revolutionized our comprehension of

mammalian physiology and human pathophysiology. To date,

over 35 autophagy-related genes have been identified in yeast (5).

Among these genes, the 15 core genes necessary for starvation-

induced autophagy and selective autophagy are highly conserved in

mammals (6). Autophagy-associated gene mutations have been

linked to numerous human diseases (7). During the progression
Frontiers in Endocrinology 02
of chronic diseases, the accumulation of damaged organelles,

protein aggregates, lipid droplets, and aging cells has been

observed, which is speculated to be related to the disruption of

autophagy (8, 9).

Diabetes mellitus (DM) is a metabolic disease characterized by

chronic hyperglycemia. Type II diabetes mellitus (T2DM) is the

most common type of DM, accounting for over 90% of diabetic

patients (10). Typically, the elderly population is more susceptible

to T2DM. However, due to improved living standards and changing

lifestyles, the incidence of T2DM is increasing among children,

teenagers, and young adults. According to data from the

International Diabetes Federation (IDF), there are currently 537

million T2DM patients worldwide as of November 2021 (11)

(Figure 2). The IDF predicts that this number will rise to 643

million by 2030 and 784 million by 2045 (11). The prevalence of

diabetes in China is approximately 10%, with a total of 114 million

diabetic patients, representing one-third of the world’s diabetic

population (12). Insulin resistance (IR) is a characteristic of Type 2

Diabetes Mellitus (T2DM) where the efficiency of insulin to absorb

and utilize glucose is reduced. This results in the compensatory

secretion of more insulin, leading to hyperinsulinemia (13). The

overuse of islet cells eventually exhausts the pancreas, reducing its

ability to produce insulin and ultimately leading to diabetes mellitus

(13). According to the United Kingdom Prospective Diabetes Study

(UKPDS), around 50% of individuals with T2DM have impaired

islet cells, with more than 90% of these individuals also experiencing

Insulin Resistance (IR) (14). In addition to high blood sugar levels,

diabetic patients are at an increased risk of developing various

health complications. Prolonged high blood sugar can result in a

decline in organ function and severe complications affecting the

heart, blood, eyes, kidneys, nerves, and teeth. It can even cause

serious cardiovascular disease, blindness, renal failure, and

amputation (15). Diabetes mellitus has become a silent threat in
FIGURE 1

The classical process of autophagy.
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modern life, significantly impacting people’s daily lives and

reducing their quality of life. Diabetes mellitus imposes a

significant psychological burden on patients and a substantial

economic burden on both society and families (16).

Some studies indicate that autophagy plays a significant role in

the study of human diseases (2), particularly in glucose metabolism

(17, 18) (Figure 3). Understanding the mechanism of autophagy is

crucial in researching diabetes mellitus and its complications. This

review examines the regulation of autophagy in diabetes and its
Frontiers in Endocrinology 03
complications, specifically focusing on the changes in autophagy

caused by high-glucose and high-fat conditions. It also explores

the effects of nutrient deficiencies and excesses on autophagy.

Additionally, the review investigates how autophagy regulates

endoplasmic reticulum stress and oxidative stress in diabetic

states. Furthermore, it discusses the role of autophagy in the

regulation of diabetic complications and explores how both

chemical and traditional Chinese medicines target autophagy in

the treatment of diabetes and its complications. This review’s aim is

to provide some inspiration for the treatment of T2DM.
2 Overview of autophagy
in diabetic states

Autophagy is intricately linked to glycolipid levels within the

body, and it exerts a protective effect on pancreatic b-cells (19).

Studies have shown that a prolonged high-glucose-high-fat diet can

hinder autophagy while fasting and restricting calorie intake can

activate it (20). Sustained hyperglycemia and excess free fatty acids

can lead to an increase in mitochondrial oxygen consumption,

resulting in an elevation of reactive oxygen species (ROS) and

subsequent abnormal oxidative stress (21). Additionally, ROS can

induce autophagy through various mechanisms, including the

modulation of autophagy via the mTOR and MAPK signaling

pathways, the regulation of autophagy by ROS through the PI3K/

Akt, AMPK, and ERK, JNK signaling pathways, and the oxidation

of ATG4 by ROS to regulate autophagy (22–24). To summarize,

oxidative stress activates autophagy, which helps eliminate cellular

damage caused by oxidative stress and maintain cellular

homeostasis. Excessive levels of ROS can lead to endoplasmic
FIGURE 3

Schematic diagram of the relationship between autophagy and
glucose metabolism. →: active; ⟞ :inhibit.
FIGURE 2

Diabetes around the world in 2021 (data was from IDF).
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reticulum stress, endoplasmic reticulum stress can also be induced

by insulin resistance. Evidence suggests that insulin inhibits

autophagy, while glucagon activates it (25). Insulin, the sole

hormone responsible for lowering glucose levels in the body, is

synthesized within the endoplasmic reticulum. The endoplasmic

reticulum holds significant importance within the cell as it is

involved in various processes such as protein synthesis, transport,

folding, and degradation. Maintaining homeostasis within the

endoplasmic reticulum is crucial for the proper functioning of b-
cells. When pancreatic b-cells are stimulated by prolonged high

glucose levels, it disrupts homeostasis and leads to an accumulation

of unfolded and misfolded proteins in the endoplasmic reticulum of

the cells. In order to ensure cell survival, these misfolded proteins

need to be eliminated, triggering endoplasmic reticulum stress (26).

When endoplasmic reticulum stress is induced by strong

intracellular and extracellular stimuli, the endoplasmic reticulum

has two mechanisms to deal with the accumulation of misfolded

proteins. One is the unfolded protein response (UPS), and the other

is endoplasmic reticulum associated degradation (ERAD).

However, in cases where both UPS and ERAD, activated by

endoplasmic reticulum stress, are insufficient to restore the

endoplasmic reticulum to its normal state, autophagy becomes

the last resort to restore endoplasmic reticulum homeostasis.

Autophagic vesicles engulf the damaged endoplasmic reticulum,

which is then transported to lysosomes for degradation. Studies

have shown that ERS and dysregulated autophagy are

interconnected features of diabetes in human pancreatic islet b-
cells (26). Endoplasmic reticulum stress can restore the normal

function of the endoplasmic reticulum through cellular autophagy.

This process involves inducing cellular autophagy through unfolded

proteins response (UPR) (27), promoting Ca2+ influx into the

cytoplasm to induce cellular autophagy (28), and inhibiting Bcl-2
Frontiers in Endocrinology 04
to induce endoplasmic reticulum autophagy (29) (Figure 4). The

occurrence of autophagy has both positive and negative effects on

the endoplasmic reticulum. Moderate autophagy can reduce

endoplasmic reticulum swelling and alleviate the pressure caused

by the accumulation of faulty proteins. However, excessive

autophagy can result in cell death (30).
3 Correlation between autophagy and
T2DM as well as its complications

In recent years, there has been a growing body of research

highlighting the significance of autophagy in the development of

diabetes and its associated complications (Figure 5). This section

aims to shed light on the role of autophagy in the progression of

diabetes and its complications and treatment.
3.1 Autophagy and b islet cells

T2DM is a progressive disease that initially presents as insulin

resistance. In order to achieve the desired blood glucose level,

increased insulin secretion by pancreatic b-cells is required to

compensate (13). However, over time, the pancreatic b-cells
become overwhelmed by the increased workload and begin to fail,

resulting in reduced insulin secretion to compensate for insulin

resistance (13, 31). The mechanisms that regulate pancreatic b-cell
fate in T2DM are not yet fully understood. However, studies have

shown that autophagy plays a crucial role in maintaining normal

islet architecture (32). Human pancreatic cells with impaired

autophagy regulation have been observed to have an increased

association with b-cell dysfunction and failure (33–37). On the
FIGURE 4

Schematic diagram of the relationship between ERS and autophagy. →: active; ⟞: inhibit.
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other hand, increased autophagy has been found to improve insulin

resistance (38–41), and it may serve as a survival mechanism for b-
cells (42, 43).

This section delves into the significance of autophagy in

pancreatic b-cells, particularly in the context of T2DM. The

mTORC1 is a natural inhibitor of autophagy and is crucial for

promoting the growth and survival of islet b-cells during the early

stages of insulin resistance (44). However, excessive mTORC1

activity due to a high-calorie diet can disrupt autophagy (45).

Conversely, inhibiting mTORC1 can enhance autophagy and aid

in the removal of misfolded proteins and damaged organelles (46).

Bartolomé A et al. (47) demonstrated that chronic overactivation of

mTORC1 in a mouse model (b- tsc2 -/-) led to increased pancreatic
b-cell death and impaired autophagy. In a separate study, Matthew

R. Brown et al. (48) found that negative regulation of REV-ERBa
may improve b-cell function under glucotoxicity by enhancing

autophagy. This was achieved by investigating the link between

the core circadian clock nuclear receptor REV-ERBa, autophagy,
and b-cell failure. Rui Liang et al.’s research (49) discovered that in

both healthy and diabetic pancreases, the autophagy regulators LC3

and p62/SQSTM1 were found to be expressed more significantly in

b cells than in non-b endocrine cells. Additionally, the expression of

LC3 and p62/SQSTM1 was significantly reduced in T2DM patients

and was inversely correlated with HbA1c levels, suggesting that the

autophagic ability of b-cells is impaired as the disease progresses.

Tanima Chatterjee et al.’s research (50) discovered that inhibiting

autophagy regulation in pancreatic b-cells resulted in apoptosis,

ultimately leading to cell death. In a separate study, pancreatic b-cell
Frontiers in Endocrinology 05
lines and human islets were exposed to high levels of glucose,

leading to an accumulation of autophagosomes, impaired

mitochondria, and increased mTOR expression (51). These

findings suggest that high glucose levels block autophagic flux

and lead to cell death. However, when treated with rapamycin,

the changes in autophagic flux as well as glucose-induced cell death

were reversed.

Several chemical drugs have also demonstrated good regulation

of autophagy to treat diabetes. Liraglutide, a GLP-1 analog (52), has

demonstrated effective regulation of autophagy for the treatment of

diabetes. Liraglutide has been found to upregulate autophagy

mediated by FoxO1, which helps to improve pancreatic b-cell
injury (53). Additionally, Liraglutide has been reported to protect

INS-1 cells from apoptosis induced by high glucose levels and

significantly increase cellular autophagy (54). These findings

suggest the potential of Liraglutide in targeting autophagy to

prevent b-cell apoptosis. Another drug, Exendin-4, a GLP-1

receptor agonist, has also been found to prevent Tac-induced

islet injury by activating autophagosome clearance to reduce

autophagosome burden (55). Metformin, on the other hand,

inhibits MIN6 b cell proliferation and promotes apoptosis

through AMPK-dependent and autophagy-mediated mechanisms

(56). Additionally, studies have shown that vitamin B6 can protect

RIN-m5f cells from apoptosis caused by high glucose levels through

the mTOR pathway-mediated autophagy (57).

In addition to chemical drugs, traditional Chinese compounds

and extracts have been found to improve the course of T2DM by

regulating autophagy. Yunpi Heluo decoction (YPHLD) has been
FIGURE 5

Schematic diagram of T2DM and its complications.
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reported to regulate the SIRT1-FoxO1 signaling pathway in skeletal

muscle, improve lipid metabolism, increase autophagy levels, and

attenuate insulin resistance, potentially making it an effective

treatment for diabetes (58). Xiaokeping (XKP) has also shown

potential in protecting islet b-cells from high glucose toxicity by

inducing mTOR-mediated autophagy and reducing pancreatic b-
cell apoptosis (59). Additionally, Morus alba leaves ethanol extract

has been found to protect islet cells from dysfunction and death by

inducing AMPK/mTOR-mediated autophagy (60). Finally, Dioscin

has been shown to significantly attenuate insulin resistance in

adipose tissue through the IRS-1/PI3K/Akt pathway (61).

Kaempferol has been shown to activate autophagy through the

AMPK/mTOR pathway, resulting in pancreatic b-cell protection in

the treatment of T2DM (62). Similarly, Silymarin, a flavonoid

found in the fruit of Silybum marianum, has been found to

increase autophagy and protect INS-1 cells from TNFa or IL-1b-
induced death. This is achieved through the activation of

autophagy-dependent ERs, which help maintain cellular energy

homeostasis (63).

In addition to drug therapy, certain experimental chemicals

have shown promise in modulating autophagy to alleviate T2DM.

Specifically, 4-Phenylbutyric acid and rapamycin have been found to

induce autophagy and increase the autophagic flux, ultimately

preventing b-cell apoptosis (64) (Figure 6).
Exercise has been found to promote autophagy by activating the

AMPK/PGC1a pathway, which can help reduce insulin resistance

in mice (65).

This discovery suggests that increasing autophagy could

potentially delay disease progression and maintain b-cell function
in T2DM. Therefore, inducing autophagy in islet cells through
Frontiers in Endocrinology 06
exogenous drugs or other techniques could be a promising

approach for preventing or treating T2DM.
3.2 Autophagy and diabetic nephropathy

The kidney is highly susceptible to diabetic microvascular injury

due to prolonged high blood glucose levels (66–68). This can lead to

cellular glucotoxicity and increased oxidative stress, resulting in

irreversible kidney damage and end-stage renal disease, known as

diabetic nephropathy (DN) (69). Diabetic nephropathy is a frequent

complication of diabetes, affecting around 50% of diabetic patients

and being the primary cause of death in those with type I and type II

diabetes (66, 70–72).

Research indicates that traditional therapies are ineffective in

slowing down the advancement of diabetic nephropathy (73–75).

Additionally, there is mounting evidence that autophagy is a

crucial factor in maintaining kidney health, preventing disease,

and slowing the aging process. Autophagy has been shown to

contribute to the development of DN (68, 76–79), and targeting it

may have a positive impact on kidney function (80). This section

will delve into the role of autophagy in the progression of

diabetic nephropathy.

Renal podocytes are highly specialized, terminally differentiated

and nonproliferative cells that exhibit high autophagic activity

under non-stress conditions (81). Alterations in autophagy have

been observed in diabetic podocytes (82, 83), indicating that

regulating autophagy to maintain homeostasis could be a

potential target for treating diabetic nephropathy. In a study by

Olivia Lenoir et al. (84), renal podocytes of mice were exposed to
FIGURE 6

Role of autophagy in pancreatic islet b cells in the diabetic state. Yellow rectangle: Traditional Chinese compounds; Blue rectangle: Chemical drugs;
Pink rectangle: Monomers from Chinese Herbal; Gray rectangle: Experimental Chemicals. →: activate: ⟞: inhibit.
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high sugar levels for 48 hours, which induced autophagy. After

being exposed to high glucose levels for 15 days, autophagy was

inhibited. In vivo experiments on mice induced with STZ to develop

T1DM showed that autophagy in renal podocytes was induced at 4

weeks, but became inhibited and resulted in renal podocyte damage

at 8 weeks. Knocking down the Atg5 gene in renal podocytes

accelerated diabetes-induced deterioration, leading to glomerular

filtration barrier leakage and glomerulosclerosis. In diabetic

conditions, the expression of Beclin-1, Atg12-5 and LC-3 in renal

podocytes was found to be inhibited both in vitro and in vivo,

leading to damage in renal podocytes due to the inhibition of

autophagy (85). In a high-fat diet (HFD)-induced diabetes model,

podocyte-specific autophagy-deficient mice showed a loss of renal

podocytes and massive proteinuria (86). Markus Gödel et al. (87)

discovered that mTORC1 was highly activated and autophagy was

inhibited in renal podocytes of T2DM mice and patients. However,

when mTORC1 gene copies were reduced during the experiment,

the disease process in diabetic nephropathy was significantly

improved. Wei et al. (88) observed that in a high glucose state,

autophagy levels were reduced in human renal podocytes. However,

when treated with the autophagy activator rapamycin, autophagy

was activated and insulin response was enhanced. This suggests that

autophagy regulates insulin responsiveness and that activation of

autophagy can improve cellular damage in human podocytes. The

use of the mTORC1 inhibitor rapamycin has shown significant

improvement in the progression of diabetic nephropathy in T2D

rats (89). Further studies by Xiao et al. (90) on STZ-induced T1DM

mice have also shown that rapamycin treatment increases

autophagosomes and attenuates renal podocyte fusion, indicating

that rapamycin improves renal injury in diabetic mice by increasing

autophagic activity and inhibiting podocyte apoptosis. However, it

is important to note that AGEs inhibit autophagosome formation

and renewal in renal podocytes by activating mTOR and inhibiting

nuclear translocation of the pro-autophagic TFEB, ultimately

causing renal podocyte injury (91). These experimental results

suggest that long-term high glucose levels reduce the autophagy

level of renal podocytes, leading to renal podocyte damage and the

eventual development of diabetic nephropathy.

In addition to renal podocytes, proximal tubular epithelial cells

also have a significant role in maintaining renal function. During

the course of diabetes, autophagy in proximal tubular epithelial cells

undergoes significant changes (82, 92–94). In 1992, Barbosa et al.

discovered that in STZ-induced rats, the volume and density of

autophagic vesicles in proximal tubular cells were significantly

reduced, which led to the accumulation of autophagic substrates

(95). When the autophagy-associated gene 7 (Atg7) in the proximal

tubular cells was removed, diabetic mice experienced defective

autophagy, resulting in more severe renal hypertrophy, tubular

damage, inflammation, fibrosis, and proteinuria (96). Kosuke

Yamahara et al. (97) discovered that kidney biopsy specimens

from type II diabetic patients exhibited deficient autophagy.

Additionally, high glucose and obesity were found to significantly

inhibit the protective role of autophagy in proximal renal tubular

cells. The overactivation of mTORC1 resulted in defective

autophagy, which induced proximal tubular cell injury. However,

when the diet of diabetic animals was restricted or altered,
Frontiers in Endocrinology 07
autophagy was significantly restored, leading to an improvement

in diabetic nephropathy (98–100).

Some drug, such as metformin, has been found to reduce renal

injury in diabetic rats by regulating autophagy through the Sirt1/

FoxO1 signaling pathway (101, 102). Prostaglandin E1 (PGE1) has

also been shown to restore autophagy and insulin resistance in the

kidney of type II diabetic (T2DM) rats and promote autophagy-

related fibroblast growth factor 21 (FGF21) protein expression,

thereby reducing insulin resistance (103). In addition, experimental

data from liraglutide treated Male 8-week-old spontaneously

diabetic Torii (SDT) fatty rats showed increased expression

of phosphorylated (p)-eNOS and p-AMPK in glomeruli,

downregulated expression of p-mTOR, and increased expression

of LC3B-II, indicating that liraglutide plays a protective role in the

kidney by activating autophagy (104). The sodium-dependent

glucose transporters 2 (SGLT2) located in the proximal tubule are

responsible for reabsorbing 90% of the glucose that is filtered

through the glomerulus (105). Studies have shown that SGLT2

inhibitors induce AMPK and SIRT1 to stimulate autophagy, which

helps to alleviate cellular stress, as well as glomerular and tubular

injury (106). In a study involving 8-week-old male db/db mice,

administration of SGLT2 inhibitor Empagliflozin and DPP4

inhibitor Linagliptin resulted in enhanced autophagy in renal

podocytes, indicating that both drugs can attenuate the

progression of diabetic nephropathy through the autophagic

pathway. This resulted in the attenuation of thylakoid expansion,

podocyte foot process loss, and urinary albumin excretion (107).

Recent studies have demonstrated that Empagliflozin can enhance

autophagic activity in renal tubular cells exposed to high glucose

levels, thereby providing a protective effect on the kidneys (108).

Additionally, GLP-1, a crucial pro-intestinal hormone, has been

found to stimulate autophagy through the AMPK/mTOR signaling

pathway and related proteins, ultimately alleviating diabetic

nephropathy (109).

Botanicals have been found to have a protective effect on the

kidneys in diabetic individuals by inducing autophagy (110, 111). A

study conducted on STZ-induced diabetic rats showed that Korean red

ginseng treatment resulted in an upregulation of LC3 and a

downregulation of p62 in rat kidney cells. Additionally, there was an

increase in the levels of ATG7 and inhibition of mTOR, which suggests

the activation of autophagy and subsequent recovery from kidney

injury (110). The effectiveness of resveratrol in reducing high glucose-

induced apoptosis was investigated in db/db mice and renal podocytes

(112). The activation of autophagy involving miR-383-5p was found to

be the mechanism behind this attenuation. Additionally, triptolide was

found to restore autophagy through the miR-141-3p/PTEN/Akt/

mTOR pathway, which resulted in the attenuation of fibrosis (113).

According to research, Astragaloside IV (AS-IV) has the ability to

induce autophagy through the AMPKa pathway (114) or SIRT1

deacetylation of NF-kB p65 subunit (115), which can help alleviate

the symptoms of diabetic nephropathy. Another study found that

Ginsenoside Rg1 can attenuate podocyte EMT by enhancing AKT/

GSK3b/b-linked protein pathway-mediated autophagy, indicating its

potential therapeutic benefits for DN (116) (Figure 7).

The results indicate that enhancing autophagic activity could

be a promising approach to treating diabetic nephropathy.
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Nevertheless, some studies suggest that reduced autophagy may also

have a protective effect on the kidneys against T2DM damage (117).

Further experiments are needed to confirm the exact role of

autophagy in this context.
3.3 Autophagy and diabetic hepatopathy

The liver is an important organ involved in glucose regulation,

lipid metabolism, and insulin action. NAFLD is a widespread liver

disease (118), and its disease progression is closely related to T2DM

as well as IR (119). As liver disease progresses, IR is exacerbated, and

IR is considered a critical event affecting T2DM and NAFLD (120).

Global epidemiological statistics for 2019 (121) showed that 55.5% of

patients with T2DM worldwide develop NAFLD. As early as 2016,

the European Association for the Study of the Liver, the European

Association for the Study of Diabetes, and the European Association

for the Study of Obesity strongly recommended: NAFLD screening

was performed in patients with established T2DM and T2DM

screening was performed in patients with NAFLD (122). These

two pathological states of T2DM and NAFLD seem to be difficult

to say who is the cause and who is the effect, but they share similar

complex pathophysiological mechanisms, such as insulin resistance,

chronic hyperglycemia, lipotoxicity, low-grade inflammation and

increased oxidative stress, and both act synergistically to increase

adverse clinical outcomes (123, 124). Diabetics are two-fold more

likely to develop NAFLD and vice versa (125). Moreover, T2DM

accelerates the progression of NAFLD, allowing NAFLD to rapidly

progress to nonalcoholic steatohepatitis (NASH), cirrhosis, and

hepatocellular carcinoma (126). In 2020, international experts

from 31 organizations proposed the definition of MAFLD
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(Metabolic dysfunction-associated fatty liver disease) to replace

NAFLD, where one of the diagnostic criteria is: confirmed T2DM

(127). Although the change in terminology from NAFLD to MAFLD

is still under intense debate, it largely demonstrates the close

relationship between liver disease and T2DM and the underlying

metabolic dysfunction. Studies have shown that autophagy is closely

related to NAFLD during its development (128). Impaired

autophagic flux was observed in the liver of NAFLD patients,

NAFLD mouse models and lipid-overloaded human hepatocytes

(129). Autophagy is closely related to hepatic lipid metabolism, and

inhibition of autophagy increases triglyceride and lipid droplets

in vitro and in vivo, promoting lipid accumulation, which

further inhibits autophagy and increases lipid retention (130).

Chloroquine (an autophagy inhibitor) exacerbates hepatic steatosis

and liver injury, while carbamazepine and rapamycin (2 autophagy

activators) enhance ethanol-induced macroautophagy in

hepatocytes in vitro and in vivo (131). Inhibition of the autophagy-

associated gene Atg7 in vitro and in vivo resulted in defective insulin

signaling and elevated endoplasmic reticulum stress. In contrast,

restoration of Atg7 expression in the liver resulted in reduced

endoplasmic reticulum stress, enhanced hepatic insulin action, and

increased systemic glucose tolerance in obese mice (132). Branched-

chain amino acids (BCAAs, including leucine, isoleucine, and

valine), which are abundant in high-protein foods, are thought to

be closely associated with the NALFD-related metabolic disease

T2DM. Excess circulating BCAAs activate mTOR and inhibit

autophagy, and the blockage of autophagy hinders the self-repair

mechanism of hepatic lipotoxicity and increases apoptosis (133).

Most of the drugs currently used to treat diabetic liver injury are

single hypoglycemic and hepatoprotective drugs, which are

ineffective and have significant side effects.
FIGURE 7

Role of autophagy in diabetic nephropathy. Yellow rectangle: Traditional Chinese compounds; Blue rectangle: Chemical drugs; Pink rectangle:
Monomers from Chinese Herbal; Gray rectangle: Experimental Chemicals. →: activate: ⟞: inhibit.
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Some chemical drugs can alleviate the symptoms of diabetic

liver disease by regulating autophagy. Studies have shown that

Empagliflozin, an SGLT-2 inhibitor, in addition to its significant

hypoglycemic effect, can also enhance autophagy in liver

macrophages via the AMPK/mTOR signaling pathway and

further inhibit the IL-17/IL-23 axis-mediated inflammatory

response, thereby significantly ameliorating liver injury in mice

with T2DM combined with NAFLD (134). It has also been shown

that Empagliflozin can improve hepatic steatosis through the

AMPK-TET2 autophagic pathway (135). Liraglutide promotes

autophagy through the AMPK/mTOR pathway to reduce lipid

accumulation and exert anti-lipotoxic effects (136, 137). Vitamin

D3 may improve hepatic lipid abnormalities by activating the

autophagy-regulated AMPK/Akt-mTOR signaling pathway in

diabetics (138). A report on the active form of vitamin D, 1,25

(OH)2D3, suggests that it can prevent hepatic lipid degradation by

stimulating ATG16L1-mediated autophagy (139).

Plant-derived monomeric compounds also protect against liver

injury caused by T2DM. Punicalagin (PU) administration to

C57BL/6J mice (at a dose of 20 mg/kg/day) and HepG2 cells (at

doses of 5, 10, and 20 mM) significantly improved liver histology,

reversed serum biochemical abnormalities and increased the

number of autophagosomes in the liver of T2DM mice. The

experimental results showed that PU restored autophagy through

the Akt/FoxO3a signaling pathway, thereby protecting against

T2DM-induced liver injury (140). Astragaloside alleviated liver

injury in type 2 diabetes by promoting AMPK/mTOR-mediated

autophagy (141) (Figure 8).

Taken together, therapies that restore autophagic flux may

attenuate or prevent the progression of T2DM liver disease.
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3.4 Autophagy and diabetic
cardiomyopathy

Diabetic Cardiomyopathy is divided into two main categories:

one affecting the large vessels (large arteries, including the aorta,

femoral arteries and coronary arteries) and the other affecting the

microvasculature (small vessels, including capillaries of the eyes,

kidneys and nerves) (142). People with diabetes have a 3 to 10-fold

increased risk of cardiovascular complications compared with those

with normal blood glucose (143). And cardiovascular complications

of diabetes increase the risk of myocardial infarction, stroke, and

limb loss. The lethality of cardiovascular complications of diabetes

is extremely high and is the leading cause of death (144). The

myocardium is particularly vulnerable to the negative effects of the

hyperglycemic state because it is both an insulin-sensitive and

glycolysis-dependent tissue (145). Persistent hyperglycemia

inhibits cardiomyocyte autophagy (146, 147). Studies have shown

that abnormal cellular metabolism and accumulation of damaged/

defective organelles have been observed in cardiomyocytes with

diabetic cardiomyopathy (148) and abnormal regulation of

autophagy has been observed in preclinical trials in the diabetic

heart (149). There is growing evidence that autophagy plays an

important role in cardiovascular disease (150–153), restoration of

autophagy is cardioprotective and impaired autophagy leads to

cardiac damage (154, 155). In research on diabetic cardiomyopathy,

modulation of autophagy (whether it is enhanced or diminished

needs to be confirmed) improved cardiac function in T2DM rats

(156). SGLT2 inhibitors reduced the incidence of cardiovascular

death and hospitalization for heart failure by activating autophagy

(157). However, it has also been shown that the inhibition of
FIGURE 8

Role of autophagy in diabetic hepatopathy. Yellow rectangle: Traditional Chinese compounds; Blue rectangle: Chemical drugs; Pink rectangle:
Monomers from Chinese Herbal; Gray rectangle: Experimental Chemicals. →: activate; ⟞: inhibit.
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autophagy in cardiomyocytes by sustained hyperglycemia is an

adaptively protective mechanism that limits the cytotoxicity of high

glucose. When cardiomyocytes in a high-glucose state were treated

with an autophagy inhibitor (3-MA) or silencing of autophagy-

associated genes (Atg7), autophagy was inhibited and high glucose-

induced cardiomyocyte death was attenuated. Contrary to

expectations, increasing autophagy through the use of autophagy

activators such as rapamycin or by overexpressing Beclin-1 or Atg7

actually made cardiomyocytes more susceptible to the toxic effects

of hyperglycemia (146). There are also studies with the same

findings that suggest that insulin resistance overactivated

autophagy in cardiomyocytes, thus preventing the survival of

cardiac cells in diabetics. When autophagy in diabetic

cardiomyocytes is inhibited, the survival rate of cardiomyocytes is

raised (145, 158, 159). Feng et al. (160) showed that high glucose

levels increased diabetic cardiomyopathy-related factor (DCRF)

expression and induced cardiomyocyte autophagy and lowering

DCRF expression reduced cardiomyocyte autophagy, reduced

myocardial fibrosis, and improved cardiac function in diabetic rats.

Several chemical agents, as well as plant-derived monomers, have

been reported to exert therapeutic effects by modulating autophagy.

Zinc, a protective factor in diabetic cardiomyopathy, may protect the

heart by inhibiting autophagy (161). Metformin has also been verified

to improve the course of experimental cardiomyopathy by activating

autophagy directly or indirectly through the activation of AMPK and

SIRT1 (162, 163). Some botanicals can also protect the heart of

diabetics by regulating autophagy. Carnosic acid reduces diabetic

myocardial ischemia-reperfusion injury by enhancing autophagy

(164). Polyphenols from green tea extract can protect rat hearts by

improving autophagy (165). Quercitrin has been demonstrated to

activate the ERK signaling pathway and enhance cellular autophagy

in endothelial progenitor cells in a dose-dependent manner in vitro

experiments and thus may be used as a therapy for a variety of diseases

caused by impaired endothelial function (166). Resveratrol enhances

autophagy via SIRT1/FOXO1/Rab7 axis in vivo and in vitro and

ameliorates myocardial oxidative stress injury in diabetic mice (167).

b-carotene can inhibit autophagy through activation of PI3K/Akt/

mTOR, which in turn exerts cardioprotective effects, and can protect

H2c9 cells damaged by advanced glycosylation products (168).

Curcumin ameliorates diabetic cardiomyopathy by activating AMPK

and JNK1, phosphorylated Bcl-2 and Bim and subsequently disrupted

their interactions with Beclin1, promoting autophagy and attenuating

apoptosis in vivo and in vitro diabetic models (169).

In addition to diabetic cardiomyopathy, drugs have also been

reported to exert therapeutic effects by modulating autophagy in

studies related to diabetes combined with atherosclerosis. a-lipoic
Acid sulfate, a fatty acid present in the human body, protects

vascular smooth muscle cells from atherosclerosis in T2DM patients

by downregulating autophagy through the AMPK/mTOR pathway

(170), but Sirt6-mediated Caveolin acetylation 1 is the key factor in

atherosclerosis in T2DM through activation of autophagy (171).

Based on the above findings, in terms of the relationship

between autophagy and diabetic macrovascular complications

(mainly diabetic cardiomyopathy), some scholars believe that the

role of autophagy in diabetic cardiomyopathy is more like the

“Goldilocks” phenomenon, i.e. there is a narrow “optimal”
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autophagic region, and when we adjust autophagy within the

“optimal range”, the best therapeutic effect will be achieved

(172, 173).
3.5 Autophagy and diabetes-associated
cognitive decline

Diabetes-associated cognitive decline (DACD) is one of the

common complications in diabetics (174). DACD refers to the

decline in cognitive function in diabetics, manifested by deficits in

learning, memory, reasoning and verbal expression. The long-term

hyperglycemia of T2DM significantly increases brain glucose flow

(175), producing damage to the central nervous system (176, 177),

affecting several cognitive domains and increasing the risk of cognitive

dysfunction (178–180). The longer the duration of T2DM, the more

likely it is to develop cognitive dysfunction (181). In general, DACD is

difficult to reverse. Without effective intervention, diabetes will greatly

accelerate the progression frommild cognitive impairment to dementia

(182). Here we have to mention that Alzheimer’s disease, a form of

cognitive impairment, has overlapping molecular and biochemical

features with T2DM (183), hence Alzheimer’s disease is also called

type III diabetes (184). In recent years, an increasing number of

scientific studies have confirmed that autophagy plays an important

role in the molecular basis of T2DM and cognitive impairment (185,

186). However, findings vary on how autophagy regulates the

relationship between diabetes and cognitive impairment. Some

findings suggest that T2DM causes enhanced autophagy, which in

turn causes deposition of Ab in the brain and exacerbates cognitive

impairment. For example, Son et al. (187) found that insulin resistance

promotes Ab production in the brain by altering insulin signaling and

increasing autophagic flux. Ma et al. (188) found that diabetes activates

autophagy, but the autophagy-lysosome function is impaired, and the

resulting of autophagy-lysosome dysfunction caused Ab deposition in

diabetic cognitive impairment. However, more voices contradict this,

and most findings suggest that the development of diabetic cognitive

impairment is associated with the reduced autophagic activity. For

example, Wu et al. (189) found that reduced autophagic activity of db/

db diabetic mice is associated with the accumulation of Ab, the classic
marker of Alzheimer’s disease. Decreased spatial learning, as well as

memory capacity in aged diabetic mice, is associated with the inhibition

of autophagy marked by the upregulation of p62 and the

downregulation of Beclin protein in the hippocampus (190, 191).

Excessive activation of the PI3k/Akt/mTOR signaling pathway and

inhibition of autophagy can be observed in macrophages of the brains

of diabetic animals (192, 193). Up to now, some Chinese traditional

herbs’ monomers and compounds, and chemical drugs in the market,

can improve diabetic cognitive impairment by modulating autophagy.

We’ll cover each in the following.

Gliflozins, an oral antidiabetic drug, can restore mTOR to its

activated physiological state and prevent the development of

neurodegenerative diseases (194). Metformin improves cognitive

impairment in T2DM by regulating autophagy through an AMPK-

dependent pathway (195). A high dose of liraglutide (200 mg/kg)
alleviated learning and cognitive impairment in T2DM rats

enhanced autophagic signaling and improved cognitive function
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by activating PI3K/Akt and AMPK pathways to inhibit p-mTOR

expression (196). Exendin-4 activated PKA and PI3K/Akt signaling

pathways in rat cerebral cortex to promote autophagy and inhibit

the onset of apoptosis (197).Melatonin activates autophagy through

the TLR4/Akt/mTOR pathway and improves learning and memory

in type II diabetic mice (198).

In addition to chemical drugs, there are also reports of Chinese

herbal monomers and compounds targeting autophagy to improve

cognitive function in diabetics. Huanglian Jiedu Decoction can

inhibit the activation of inflammasome NLRP and upregulate

autophagy (199). ZDF rats administered with ZiBuPiYin Recipe

were found to obtain improvement in learning memory

impairment, presumably achieved by inhibiting mTOR

upregulation, enhancing autophagy, and promoting Ab clearance

(200). Besides traditional Chinese compounds, the traditional

Chinese monomer was reported to have the same biological

activities. Berberine, a quaternary alkaloid isolated from Coptis, a

traditional Chinese medicine, enhances cellular autophagy and

attenuates neuronal apoptosis by activating the AMPK/mTOR

pathway (201) (Figure 9).

In summary, most of the studies concluded that enhanced

autophagy can promote the clearance of Ab and thus improve the

condition of DACD.
3.6 Autophagy and diabetic retinopathy

Diabetic retinopathy (DR) is a chronic and progressive

complication of type 2 diabetes mellitus (T2DM), primarily
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resulting from prolonged hyperglycemia (202). It is also the

leading cause of blindness in diabetic patients. The incidence of

DR has significantly increased due to the elongation of human

lifespan and the rising prevalence of T2DM. According to WHO

statistics (203), it is projected that approximately one-third of

diabetic patients worldwide will develop diabetic retinopathy

by 2025. Recent scientific research has revealed that diabetic

retinopathy is not only a vascular condition but also a

neurodegenerative disease (204). Autophagy has been found to

have a significant impact on the development and treatment of

diabetic retinopathy (205–207). For instance, The dysregulation of

mTOR-dependent autophagy is a contributing factor to the loss of

retinal ganglion cells in streptozotocin-induced diabetic

retinopathy. This loss further worsens the condition of diabetic

retinopathy (208). Autophagy-related proteins are highly expressed

in the retinas of both normal individuals and diabetic patients (209,

210). Notably, the Atg16L1 gene shows a significant up-regulation,

indicating its involvement in the cell death process associated with

diabetic retinopathy (211). An experiment was conducted to

observe the effects of high glucose conditions on human retinal

pigment epithelial cells (ARPE-19). The cells were exposed to 30

mmol/L D-glucose and subsequently observed. Subsequently, the

observed results indicated a reduction in ARPE-19 cell viability, an

increase in apoptosis, and elevated protein expression of Bax,

Caspase-3, and LC3-II/LC3-I. Conversely, the expression of Bcl-2,

p62, and p-mTOR was decreased. Notably, the activation of

autophagy was observed. Moreover, the effects induced by high

glucose were reversed upon treatment with the autophagy inhibitor

3-MA (212). The same results were obtained in another experiment.
FIGURE 9

Role of autophagy in DACD. Yellow rectangle: Traditional Chinese compounds; Blue rectangle: Chemical drugs; Pink rectangle: Monomers from
Chinese Herbal; Gray rectangle: Experimental Chemicals. → activate; ⟞: inhibit.
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The expression of LC3-I in ARPE-19 cells was significantly reduced

under high glucose stress. Additionally, intracellular ROS levels

were significantly elevated, and the number of autophagosomes was

significantly increased. These findings indicate that high glucose

activates autophagy (213). Contrary experimental results have also

been reported regarding the regulation of autophagy in response to

high glucose. When mouse retinal explants were treated with high

glucose (HG) for 10 days, it was observed that there was a

significant increase in explant apoptosis, while autophagic flux

showed a significant decrease. The findings indicate a potential

relationship between autophagy dysfunction and the mechanism of

DR. There have been reports of drugs targeting autophagy for the

treatment of DR, which are described below.

Treatment of retinal explants treated with the growth hormone

analog octreotide (OCT) demonstrated that the explants were

shielded from apoptosis and exhibited enhanced autophagic

activity. Furthermore, the addition of the autophagy inhibitor

chloroquine completely negated the anti-apoptotic effect exerted

by OCT (214). The study on Glucagon-like peptide-1 (GLP-1)

treatment in rats with type II diabetes demonstrates that GLP-1

reduces oxidative stress-induced autophagy by activating the GLP-

1R-ERK1/2-HDAC6 signaling pathway. This mechanism ultimately

leads to an improvement in diabetic retinopathy (215). PG545, a

heparanase inhibitor, was administered to diabetic mice via

intraperitoneal injection at a dose of 20 mg/kg/d. This treatment

effectively slowed down the diabetes-induced changes in body

weight and reduced fasting blood glucose levels in mice.

Additionally, PG545 was observed to mitigate the reduction in

retinal thickness and the formation of microaneurysms both in vivo

and in vitro. These beneficial effects were attributed to the

promotion of autophagy and the inhibition of inflammatory

responses by PG545 (216). b-hydroxybutyrate (BHB) has been

previously employed as a trophic agent for brain-derived

neurotrophic factor (BDNF). In experimental studies, the

administration of BHB (25-50-100 mg/kg) to treat STZ-induced

C57BL/6J diabetic mice resulted in a noteworthy reduction in

autophagy activation in M1 microglia, while simultaneously

increasing retinal BDNF levels (217). Arjunolic acid, an active

ingredient derived from Cyclocarya paliurus, was investigated in a

rat model of STZ-induced diabetes mellitus. The experimental

animals were orally administered doses of 10 mg/kg and 30 mg/

kg of Arjunolic acid for a duration of 10 weeks. The study revealed

that Arjunolic acid effectively safeguards retinal cells against

oxidative stress and inflammation induced by STZ. This

protection is mediated through the autophagy pathway, which is

regulated by AMPK/mTOR/HO-1 (218). Artesunate (ART), an

active ingredient derived from the traditional Chinese medicine

Artemisia annua L., was intravenously injected into STZ-induced

diabetic rats. The study demonstrated that ART improved the

physiological state of the retina in a positive manner. The

findings indicated that the expression of Beclin-1 and the ratio of

LC3II/I were up-regulated, while p62 was down-regulated.

Additionally, the AMPK/SIRT1 pathway was activated, suggesting

that ART can activate autophagy and potentially play a therapeutic

role (219). Similarly, quercetin treatment of human retinal

microvascular endothelial cells (HRMECs) cultured in vitro at
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high glucose levels showed a dose-dependent inhibition of

autophagy (220). On the other hand, Gypenoside XVII (Gyp-17), a

natural product isolated from the traditional Chinese medicine

Panax ginseng, was used for the treatment of early diabetic

retinopathy (DR) in db/db mice and Müller cells. The results

demonstrated that Gyp-17 significantly increased the expression

of pro-autophagy-related proteins and could prevent early DR by

enhancing autophagy (221). Norkurarinone and isoxanthohumol

have been shown to enhance cellular oxidative stress, activate the

PI3K/AKT/mTOR signaling pathway, and regulate autophagy

dysregulation. These effects have been found to protect human

retinal microvascular endothelial cells under conditions of high

glucose and hypoxia (222). Procyanidin, a polyphenolic compound,

also exhibits anti-diabetic properties. In an experimental study,

retinal pigment epithelial cells were initially exposed to high

glucose, resulting in reduced cell viability, increased apoptosis

rate, and enhanced autophagic flux. However, subsequent

administration of procyanidin reversed these changes induced by

high sugar levels. Furthermore, when the autophagy agonist

rapamycin was reintroduced, retinal pigment epithelial cells

exhibited decreased activity and increased apoptosis. This

suggests that PC protects retinal pigment epithelial cells by

inhibiting autophagy (223). In type II diabetic rat model, it

was discovered that Mingmu Xiaomeng Tablets (MMXM)

administration protected the retina in the diabetic state. This

protection was achieved by decreasing the protein expression of

LC3-II and p62, reducing the phosphorylation of PI3K, Akt, and

mTOR, inhibiting PI3K/Akt/mTOR signaling, and promoting

autophagy (224).

This section highlights the dual role of autophagy in DR and its

potential as a target for drug therapy. The study reveals that certain

drugs can activate autophagy to positively treat DR, while others

can inhibit autophagy. However, the exact mechanism of action is

still not fully understood and requires further investigation.
4 Conclusion

Diabetes mellitus is an endocrine metabolic disease

characterized by disorders in glucose and lipid metabolism,

leading to increased plasma glucose levels. Its pathophysiology is

characterized by a deficiency in insulin secretion, either absolute or

relative, with or without increased glucagon activity (15). With

accelerated economic development and industrialization, the

prevalence of diabetes and the number of diabetics have risen

sharply, and diabetes itself and its complications have placed a

heavy burden on human health and social development (225, 226).

The pathogenesis of diabetes is complex, including both genetic and

external environmental factors, and there is an intricate link

between diabetes and diabetes complications, and between

complications and complications. Autophagy, as a strictly

regulated intracellular catabolic process, is closely related to

glucose metabolism. One type of autophagy is non-selective

autophagy, which refers to autophagy initiated in the starved

state. The other type of autophagy is selective autophagy, which

removes and recycles harmful or unwanted substances from the cell,
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such as protein aggregates, damaged mitochondria, accumulated

peroxisomes, excess ribosomes, endoplasmic reticulum, and other

cellular phases, which, if left to accumulate without timely removal,

can lead to human diseases (3). Studies have shown that autophagy

is disrupted under a high-calorie diet (51, 88, 97). Impaired

autophagy function in pancreatic islet beta cells is associated with

beta cell dysfunction and failure. Activation of autophagy improves

insulin resistance in the diabetic process, and inhibition of

autophagy accelerates the death of islet beta cells. In studies on

the relationship between autophagy and diabetic complication, it

was found that autophagy is involved in the development of diabetic

nephropathy, diabetic hepatopathy, diabetic cardiomyopathy,

diabetic cognitive dysfunction, and so on, with different

mechanisms of upregulation or downregulation of autophagy,

which are briefly summarized here.
4.1 Diabetic nephropathy

Both in vivo and in vitro experiments showed that short-term

(48 hours in vitro, 4 weeks in vivo) high-sugar exposure activated

autophagy in renal podocytes, while long-term (15 days in vitro, 8

weeks in vivo) high-sugar exposure inhibited autophagy (84). And

the physiological characteristics of T2DM are precisely the chronic

hyperglycemia levels. Experiments have shown that both chronic

high blood glucose levels (88), and the accumulation of AGEs (91),

as well as the knockout deletion of autophagy-related genes (Atg5-

12/Beclin-1/LC-3) (84–86, 96), eventually lead to damage of renal

podocytes and proximal tubular epithelial cells by inhibition of

autophagy, which in turn causes renal inflammation, fibrosis,

proteinuria, and other symptoms of diabetic nephropathy. When

the autophagy inhibitor (rapamycin) was used to treat the diabetic

nephropathy cells, the autophagic flux was increased and the course

of diabetic nephropathy was improved (89, 90). In conclusion, the

development of diabetic nephropathy is associated with the

inhibition of autophagy, and activation of autophagy can restore

the viability of renal podocytes and proximal renal tubular cells, and

thus treat diabetic nephropathy.
4.2 Diabetic hepatopathy

As an important organ for regulating glucose and lipid

metabolism, the progression of liver disease and T2DM are both

closely related to metabolic dysfunction. Impaired autophagy has

been demonstrated to be present in diabetic liver disease (129). A

high protein diet (133), use of autophagy inhibitors (chloroquine)

(131), and autophagy gene deletion (Atg7) (132) all lead to

disruption of autophagy, which in turn leads to obstruction of

hepatic lipotoxic self-repair mechanisms and increases apoptosis,

resulting in the development and progression of diabetic liver

disease. When autophagy activators are used and expression of

the autophagy gene (Atg7) is restored, a positive effect on the

treatment of the disease is demonstrated (132). In conclusion,

autophagy inhibition plays a negative role in the development

and progression of diabetic liver disease, and activation of
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autophagy may be a new target for the treatment of diabetic

liver disease.
4.3 Diabetic cardiomyopathy

Cardiac muscle cells are insulin-sensitive tissues and glycolysis-

dependent tissues, making them vulnerable to hyperglycemia.

Studies have shown that persistent hyperglycemia inhibits

autophagy in cardiac muscle cells (146, 147). However, this

autophagy inhibition does not always have a negative effect on

cardiac muscle cells. When cardiac muscle cells in the high-glucose

state were treated with an autophagy inhibitor (3-MA) or silencing

of autophagy-related genes (Atg7), autophagy was inhibited and

high-glucose-induced cardiac muscle cell death was reduced.

Meanwhile, when autophagy is activated with an autophagy

activator (rapamycin), the cells are prone to suffer from high

glucose toxicity. It has also been shown that insulin resistance

over-activates autophagy in cardiomyocytes and prevents

cardiomyocyte survival. Therefore, inhibition of autophagy in

cardiac muscle cells may enhance their survival rate. The role of

autophagy in diabetic cardiomyopathy is considered by some

scholars a “Goldilocks” phenomenon, which means that excessive

activation or inhibition of autophagy can lead to the development

and progression of diabetes and its complications. In order for

autophagy to play a positive role, it may be necessary to find an

“optimal range” of autophagy, within which autophagy is triggered

to obtain the best positive feedback (172, 173).
4.4 Diabetic-associated cognitive
decline, DACD

Prolonged high sugar levels can produce damage to the central

nervous system, affecting cognitive domains and increasing the risk

of cognitive dysfunction. The longer the duration of T2DM, the

more likely it is that cognitive dysfunction will occur. It has been

confirmed that autophagy plays a role in DACD. However, the

specific trends of the roles are not the same. Most studies suggest

that the occurrence of DACD is related to the inhibition of

autophagy, which is suppressed and Ab accumulates (187).

However, some studies have suggested that T2DM activates

autophagy, which in turn causes Ab deposition in the brain.

Therefore, we wonder whether the role of autophagy in DACD is

similar to that of the “Goldilocks” phenomenon, in which excessive

activation or inhibition can lead to accelerated disease progression,

and the most appropriate treatment point is within a narrow range.
4.5 Diabetic retinopathy

As a vasculopathy and neuropathy, DR is the leading cause of

blindness in diabetic patients. Research studies have identified

autophagy as a potential target for the treatment of DR. In

human retinal pigment epithelial cells, prolonged high glucose

levels activate autophagy, while in mice retinal explants, they
frontiersin.org

https://doi.org/10.3389/fendo.2023.1228045
https://www.frontiersin.org/journals/endocrinology
https://www.frontiersin.org


Zhao et al. 10.3389/fendo.2023.1228045
inhibit autophagy. Therefore, dysregulation of autophagy worsens

DR. When considering autophagy as a therapeutic target for DR,

certain drugs have shown the ability to prevent or treat DR by

activating autophagy and reducing oxidative stress. However, other

drugs have beneficial effects by inhibiting autophagy. It is important

to note that the role of autophagy in DR is dose-dependent, acting

protectively at low doses but promoting cell death at high doses.

Oral hypoglycemic drugs currently used in clinical practice are

divided into seven major classes: sulfonylureas, biguanides, alpha-

glucosidase inhibitors, thiazolidinediones, glinides, glucagon-like

peptide-1 (GLP-1) and its analogs, and DPP-4 inhibitors. Some

chemical drugs are mentioned in this review that can treat T2DM

and its complications by regulating autophagy. For example,

metformin (a biguanide hypoglycemic agent) can exert

therapeutic effects on pancreatic b-cell protection (56), diabetic

nephropathy (102, 103), cardiomyopathy (163, 164), and DACD

(196) by activating autophagy. Liraglutide, a GLP-1 analog, has

been shown to enhance autophagy, providing protection to

pancreatic b cells (53, 54) and potential treatment for conditions

such as diabetic nephropathy and diabetic hepatopathy. However, it

is important to note that GLP-1 inhibits autophagy and improves

diabetic retinopathy (215). Additionally, Exendin-4 and Linagliptin

have been found to activate autophagy, leading to potential benefits

in protecting pancreatic b-cells and improving conditions like

diabetic nephropathy and DACD (55, 197). Empagliflozin

(SGLT2 inhibitor) can be used to treat diabetic nephropathy and

diabetic hepatopathy by enhancing autophagy (107, 108, 134, 135),

but Gliflozins (SGLT2 inhibitor) is used to alleviate DACD by

inhibiting autophagy (194). In addition to the commonly used

glucose-lowering drugs in clinical practice, there are alprostadil

(prostaglandins), vitamin D3 and 1,25(OH)2D3 (Vitamin), a-lipoic
acid (a fatty acid in the human body), melatonin (Indole

heterocycles), zinc, octreotide (growth hormone), PG545

(heparanase inhibitor), b-hydroxybutyrate have also been shown

in experiments to treat diabetes-related complications by

modulating autophagy (138, 139, 161, 170, 214, 216, 217). Among

them, zinc, a-lipoic acid, GLP-1 and b-hydroxybutyrat alleviate the
symptoms of diabetic cardiovascular complications by inhibiting

autophagy, while the rest of the drugs play a therapeutic role in

treating the disease by upregulating autophagy.

Most chemical drugs are single drug components, and some of

them can produce unexpected adverse effects. For example, mTOR

inhibitors can activate autophagy to provide kidney protection, but

at the same time, they can inhibit cell growth and hinder kidney

repair. Considering that diabetes and diabetic complications, as well

as diabetic complications and complications, do not exist

independently but are complexly connected and closely linked, it

is promising to consider the application of herbal medicine for the

treatment of metabolic diseases. In traditional Chinese medicine

formula, Yunpi Heluo Decoction can activate autophagy by

regulating the SIRT1-FoxO1 signaling pathway in skeletal muscle,

while improving lipid metabolism, attenuating insulin resistance

and exerting a protective effect on pancreatic b cells (58). Huanglian

Jiedu Decoction can improve DACD by inhibiting the activation of
Frontiers in Endocrinology 14
NLRP3 inflammatory vesicles upregulating autophagy (199). Zibu

Piyin Recipe improves DACD by inhibiting mTOR upregulation,

enhancing autophagy, and promoting Ab clearance (200).

Xiaokeping induces mTOR-mediated autophagy and reduces

apoptosis in pancreatic b-cells, with a potential protective effect

on pancreatic b-cells in high glucose toxicity (59). Mingmu

Xiaomeng Tablets exerts a protective effect on the retina during

diabetic states by inhibiting the PI3K/Akt/mTOR signaling pathway

and promoting autophagy (224). Besides the TCM formula, herbal

extracts have also shown good efficacy in animal and cellular

models. For example, Morus alba leaves ethanol extract could

protect islet cells by inducing AMPK/mTOR-mediated autophagy

and by upregulating LC3-activated autophagy, respectively (60).

Ginseng extract could treat diabetic nephropathy by upregulating

LC3 and downregulating p62 (110). Green tea extract polyphenols

could also treat diabetic cardiomyopathy in rats by improving

autophagy (165). Monomers from TCM, such as kaempferol and

silymarin can maintain cellular energy homeostasis, increase

autophagy, and exert insulin b-cell protection through AMPK/

mTOR pathway (62), activating autophagy-dependent ERs (63)

respectively. Resveratrol, triptolide, astragaloside IV, ginsenoside

Rg1, and ferulic acid can exert their effects in the treatment of

diabetic nephropathy through activation of miR-383-5p (112), ERK

signaling, miR-141-3p/PTEN/Akt/mTOR pathway (113), and

AKT/GSK3b/b-linked protein pathway-mediated autophagy

(116), respectively. Among them, astragaloside IV can improve

diabetic hepatopathy by promoting AMPK/mTOR-mediated

autophagy (114, 115), and PU can restore autophagy through

Akt/FoxO3a signaling pathway to treat diabetic hepatopathy

(140). Resveratrol, carnosic acid, beta carotene, and curcumin can

activate autophagy through the SIRT1/FOXO1/Rab7 axis (167),

PI3K/Akt/mTOR (168), activate AMPK and JNK1, phosphorylated

Bcl-2 and Bim and subsequently disrupted their interactions with

Beclin1 to treat diabetic cardiomyopathy (169). Quercetin can

activate the ERK signaling pathway in a dose-dependent manner

and enhance cellular autophagy in endothelial progenitor cells

(166). Berberine enhances cellular autophagy, attenuates apoptosis

and improves DACD by activating the AMPK/mTOR pathway

(201). Arjunolic acid, artesunate, quercetin, gypenoside XVII,

norkurarinone and isoxanthohumol, procyanidin treat diabetic

retinopathy through activating or inhibiting autophagy (218–223).

All the above-mentioned drugs have been summarized in

Supplementary Table 1.

In the mechanistic exploration of complex metabolic diseases

T2DM as well as drug development, as a mechanism to regulate

energy metabolic homeostasis autophagy has now been shown to

play a role in the treatment of diabetes. Targeting the regulation of

autophagy is likely to have great advantages for the treatment of

T2DM and its complications. It is however important to note that

autophagy is inherently two-sided, and its two-sidedness is even

more evident in its treatment of diabetes and its complications.

Therefore, elucidating the range within which autophagy can

be regulated for optimal therapeutic effect is the focus of

future research.
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