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The gut microbiome has been implicated in a multitude of human diseases, with

emerging evidence linking its microbial diversity to osteoporosis. This review

article will explore themolecular mechanisms underlying perturbations in the gut

microbiome and their influence on osteoporosis incidence in individuals with

chronic diseases. The relationship between gut microbiome diversity and bone

density is primarily mediated by microbiome-derived metabolites and signaling

molecules. Perturbations in the gut microbiome, induced by chronic diseases

can alter bacterial diversity and metabolic profiles, leading to changes in gut

permeability and systemic release of metabolites. This cascade of events impacts

bone mineralization and consequently bone mineral density through immune

cell activation. In addition, we will discuss how orally administered medications,

including antimicrobial and non-antimicrobial drugs, can exacerbate or, in some

cases, treat osteoporosis. Specifically, we will review the mechanisms by which

non-antimicrobial drugs disrupt the gut microbiome’s diversity, physiology, and

signaling, and how these events influence bone density and osteoporosis

incidence. This review aims to provide a comprehensive understanding of the

complex interplay between orally administered drugs, the gut microbiome, and

osteoporosis, offering new insights into potential therapeutic strategies for

preserving bone health.

KEYWORDS

Osteoporosis management, microbiome and health, bone mineralization,
pharmacomicrobiomics, microbiome-derived metabolites
Introduction

Osteoporosis is a progressive systemic skeletal disorder characterized by reduced bone

mass, weakened bone structure, and increased risk of fractures (1). This condition affects

millions of people worldwide, with older adults and postmenopausal women being the

most vulnerable population (2–4). Osteoporosis can be classified as a “silent disease”
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because it can progress without symptoms until a fracture occurs.

The most common fractures associated with osteoporosis occur in

the hip, spine, and wrist, which can lead to significant morbidity,

reduced quality of life, and increased mortality.

Various factors contribute to the development and progression

of osteoporosis, including genetic predisposition, hormonal

imbalances, nutritional deficiencies, and lifestyle choices.

Recently, the gut microbiome has emerged as a significant player

in human health (5), with mounting evidence demonstrating how

gut dysbiosis contributes to the development of disease that include

obesity (6–11), diabetes (6, 8, 12–14), autoimmune disease,

inflammatory bowel disease (IBD) (15–17), cancer (18–22),

neurodegenerative diseases (23–26), neuropsychiatric disorders

(27–31), cardiovascular disease (30, 32–35), and osteoporosis (36–

41) (Figure 1). In each of these cases metabolites produced in the

gut can induce physiological changes at distant anatomical locations

via routes such as the gut-brain axis, the gut-bone axis and

enterohepatic signaling (42–49). The gut microbiome refers to the

diverse ecosystem of microorganisms, including bacteria, fungi, and

viruses, residing in the gastrointestinal tract that communicate with

host cells (50–55). This community of microorganisms is also

highly dynamic, with the composition changing over time and in

response to various factors such as diet (56, 57), pharmacological

intervention (58–64), and other environmental factors (55, 65).

Homeostasis in the gut microbiome is crucial for maintaining the

balance between health and disease and can be achieved by

regulating digestion, nutrient absorption, immune system

modulation, and synthesis of essential vitamins and metabolites

(52, 66–69).

Recent studies have begun to elucidate the mechanisms through

which dysbiosis in the gut microbiome influences bone health. This

relationship is primarily mediated by microbiome-derived

metabolites and signaling molecules that affect bone

mineralization (36, 37, 39). Moreover, immune cell activation

induced by changes in cellular diversity and metabolism in the

gut microbiome has also been shown to affect bone density. In this
Frontiers in Endocrinology 02
review we will explore how chronic disease and orally administered

drugs stimulate the development and progression of osteoporosis

via dysbiosis in the gut microbiome. The use of orally administered

drugs, including antimicrobial and non-antimicrobial agents, can

disrupt the gut microbiome’s diversity, physiology, and signaling

(61, 63, 70), leading to changes in bone density and osteoporosis

incidence. Understanding the complex interplay between orally

administered drugs, the gut microbiome, and osteoporosis is

crucial in developing effective therapeutic strategies for the

prevention and treatment of this debilitating condition,

particularly in high-risk populations.

Orally administered drugs, especially non-antimicrobials are

regularly used to treat chronic diseases that themselves can perturb

the gut microbiome and influence osteoporosis incidence.

Consequently, we will explore how these medications can

exacerbate or, in some cases, treat osteoporosis. Finally, we will

propose potential therapeutic strategies targeting the gut

microbiome to mitigate the effects of orally administered drugs

on osteoporosis and outline future research directions in this area.
Gut microbiome and bone health

The gut microbiome is a complex and diverse ecosystem

consisting of trillions of microorganisms, including bacteria,

fungi, and viruses (55, 71). This microbial community plays a

crucial role in maintaining human health by participating in

various physiological processes such as digestion, nutrient

absorption, immune system regulation, and synthesis of essential

vitamins and metabolites. Recent evidence suggests that the gut

microbiome also has a significant impact on bone health, with

alterations in microbial diversity and composition being associated

with changes in bone density (72–74). A balanced gut microbiome

contributes to optimal bone health by promoting the efficient

absorption of essential nutrients, including calcium and

phosphorus, which are critical for bone formation and

remodeling (Figure 2). It also plays a role in the regulation of

immune and metabolic homeostasis (75). Conversely, dysbiosis in

the gut microbiome, characterized by reduced diversity and shifts in

microbial composition, can lead to malabsorption of metabolites

and vitamins (polyamines, SCFAs, calcium and vitamin D,

inflammation, and subsequent bone loss (Figure 2). This

relationship between gut microbiome diversity and bone density

underscores the importance of maintaining a healthy and diverse

microbial flora for optimal bone health.

Sjögren et al. (2012) demonstrated a link between the gut

microbiome and bone health. Female C57BL/6J germ-free mice

exhibited increased bone mass and fewer osteoclasts compared to

conventionally raised (CONV-R) mice (76). These germ-free mice

also had reduced osteoclast precursor levels, CD4+ T cells and

inflammatory cytokines compared to CONV-R mice. In a follow-up

study by Li et al. (2016) involving C57BL/6J germ free (GF) mice it

was reported that the gut microbiome could mediate bone mass

reduction during sex steroid deficiency-induced inflammation (77).

While Li et al. observed no bone loss during sex steroid deficiency in

GF mice they observed an in increase in the production of
FIGURE 1

Schematic of the physiological impact of dysbiosis in the gut
microbiome in humans. Shown here is the ability of molecules
produced in the gut to influence neurodevelopmental,
neurodegenerative, metabolic, cardiovascular, and inflammatory
disease states.
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osteoclastogenic and inflammatory cytokines such as TNF-a,
RANKL, and IL-17 during sex steroid deficiency in animals with

healthy gut microbiomes. These data supported Sjogren’s findings

that the gut microbiome was capable of amplifying bone resorption

by elevating inflammatory and osteoclastogenic cytokine levels.

In experiments involving GF mouse models the expression of

TNF-a and RANKL was reduced compared to CONV-R wildtype
Frontiers in Endocrinology 03
(WT) mice. This effect was lost in Nod1-/- and Nod2-/- mice when

the GF animals were colonized with microbiota from the CONV-R

WT mice. The observed shift in signaling indicated that microbiota

induced increases in TNF-a and RANKL expression which

modulated reductions in bone mass and is dependent on both

Nod1 and Nod2 signaling (78). Additionally, bone marrow-derived

mesenchymal stem cells (BMMCs) in GF mice displayed high
FIGURE 2

Several factors including diet, pharmaceutical use, pre- and probiotic consumption and fecal microbial transplant (FMT) influence the composition,
diversity, and metabolic profile of microorganisms present in the gut microbiome. As the organismal mix and metabolic landscape in the gut
microbiome shifts the permeability of the intestinal lining becomes compromised, gut metabolites and signaling molecules enter into systemic
circulation and perturb immune signaling. Collectively these changes accelerate bone resorption that is the hallmark of osteoporosis.
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proliferation and osteogenesis, but colonization with specific

pathogen-free (SPF) mice microbiota normalized BMMCs

proliferation and reduced osteogenesis (79).

Antibiotic studies further supported the gut microbiome’s role

in inducing bone resorption, with low-dose antibiotics increasing

bone mineral density (BMD) in mice. However, results are complex

due to factors such as mouse strain and gender. Some studies on

male mice of other strains suggested that the gut microbiome might

induce bone resorption instead. Lactobacillus plantarum

supplementation stimulated growth hormone (GH) activity in

male BALB/c GF mice, promoting juvenile growth and preventing

stunted growth during chronic undernutrition (80). In contrast,

antibiotic use in male C57BL/6J mice reduced bone mineral

content, unlike in female C57BL/6J mice (81). Yan et al. reported

that long-term colonization of CB6F1 GF mice with SPF mice

microbiota increased bone mass, whereas antibiotic treatment

inhibited bone formation. Yan et al.’s study demonstrated that the

gut microbiome’s net effect on bone depends not only on the strain

but also on the duration of colonization. They found that short-

term colonization (one month) significantly decreased bone mass,

while long-term colonization (eight months) promoted bone

formation. Colonization increased IGF-1 serum levels, which

inhibited bone formation in the short term due to osteoclast

promotion but induced bone formation during long-term

colonization. Additionally, short-term colonization increased

osteoclastogenic cytokines such as RANKL, TNF-a, and IL-1b in

both the colon and bone marrow (Yan et al., (72)).

Quach et al. (82) reported that gut microbiome reconstitution

did not affect bone health in GF mice, potentially due to differences

in colonization methods, animal facilities, or sources of germ-free

mice. Studies have shown that animals from different facilities carry

distinct gut microbiomes, which might influence the colonization

effect on bone health. A similar level of interpersonal diversity is

observed in humans due in part to genetic and non-genetic factors

such as demographics, diet, lifestyle, exposure to xenobiotics, and

pollutants on gut microbial diversity (83–87). Collectively, these

studies suggest that the gut microbiome can have both catabolic and

anabolic effects, depending on the strain, gender, and colonization

duration. These findings may also apply to humans, as factors such

as birth method, genetics, sex, diet, pharmaceuticals, and other

environmental influences can affect gut microbiome composition, a

known modulator of bone health.

Various studies have since further demonstrated the gut

microbiome composition’s impact on bone health. Undernourished

children, for example, exhibit altered gut microbiome composition.

Blanton et al. (88) found that transplanting microbiota from

undernourished children or infants to germ-free mice induced

growth impairments in the recipient mice. Conversely, cohousing

GFmice that received microbiota from undernourished children with

those receiving microbiota from healthy children prevented growth

impairments (88). This evidence supports the idea that microbial

diversity determines the gut microbiome’s overall effect on bone

health. Other studies have shown that changes in gut microbiome

composition can impair bone mechanical properties and affect bone

strength (41). Rios-Arce et al. (89) reported that antibiotic-induced

dysbiosis caused bone loss in mice, while Lactobacillus reuteri
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administration restored gut microbiome composition and alleviated

bone loss. A recent study by Ma et al. (90) highlighted that

transplanting gut microbiomes from young rats to aged rats with

senile osteoporosis improved bone loss by restoring the aged rats’ gut

microbiome composition. This restorative phenotype was brough

about by adjusting the ratio of Firmicutes/Bacteroidetes and higher

abundance of Helicobacter and Prevotella. Collectively, these studies

have served to advance the field of osteomicrobiology as the

mechanisms through which the gut microbiome influences bone

health continue to be identified.
Gut immune signaling and
bone health

Recently, studies have shown that gut microbiome-derived

compounds such as Urolithin-A can activate autophagy in bone

marrow macrophage resulting in decreased osteoclastic bone

resorption in a mouse model of senile osteoporosis (91). The

flavanol kaemporal has also been shown to promote proliferation,

differentiation, and mineralization of osteoblasts but in higher

concentrations (>50 mM) can induce autophagy that induces a

decline in bone mineralization (92). The gut microbiome can

influence bone health by modulating local and systemic immune

responses (76, 77). A balanced gut microbiota can help maintain an

optimal immune response, while dysbiosis can trigger pro-

inflammatory cytokines, leading to an increase in osteoclast

activity and bone resorption. The inflammatory and anti-

inflammatory properties are derived in part from metabolites

synthesized in the gut and depend on various factors, including

their concentration, the presence of receptors such as toll-like

receptors (TLRs), nod-like receptors (NLRs), G protein-coupled

receptors (GPCRs) and farnesoid X receptor (FXR), and the

interactions with other signaling molecules (93, 94). For example,

bile acids can exhibit anti-inflammatory properties by activating the

FXR pathway, which in turn suppresses the production of pro-

inflammatory cytokines. Such stimulation of the FXR pathway

induces the expression of the Runx2 and b catenin genes that

promote differentiation of osteoblasts (95). Bile acid induces

inhibition of osteoclastogenesis and can be achieved via activation

of the FXR pathway (downregulation of c-Fos and NFATc1) or the

G-protein coupled bile acid receptor (TGR5) (phosphorylation of

AMP-activated kinases) (96, 97).

Bile acids can also bind to the TGR5 receptors on cells

belonging to both the innate and adaptive immune system and

contribute to immune cell homeostasis by stimulating the

production of anti-inflammatory cytokines such as IL-10 and

inhibiting the production of inflammatory cytokines such as IL-6

and TNF-a (98, 99) (Figure 3). Another way that bile acids can

modulate the host immune system is by inducing differentiation of

regulator T cells (Tregs) and suppressing the differentiation of Th17

cells (100). Tregs are major inhibitors of bone loss through several

mechanisms including the production of IL-4, IL10 and TGF-b1
cytokines and inhibiting differentiation of monocytes into

osteoclasts under both in vitro and in vivo conditions (101)

(Figure 3). Tregs can also inhibit the effector function of Th17
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cells and prevent inflammation-induced bone loss (102–104). This

Tregs effect is also induced via suppression of MCSF and RANKL.

Th17 cells are responsible for initiating and stimulating bone

resorption by secreting either RANKL or IL-17 (75, 101). IL-17

functions as an osteoclastogenic cytokine that induces the

expression of RANKL on osteoclastogenesis supporting cells and

osteoblasts (75). Additionally, IL-17 promotes the production of

inflammatory cytokines such as TNF-a, IL-1, and IL-6 that all

reenforce RANKL production (105). Th17 cells are also capable of

promoting bone loss by stimulating osteoclastogenesis (75).

Inflammatory cytokines, such as TNF-a, IL-1, and IL-6, can

influence bone remodeling by increasing osteoclast activity and

bone resorption, leading to reduced bone density. These cytokines

can be produced in response to the presence of certain gut

microbiome-derived metabolites, as well as other factors like

infections or inflammation (75) (Figure 3).
Gut metabolism and bone health

The gut microbiome synthesizes a variety of metabolites and

signaling molecules that can influence bone mineralization. The

diverse microbial cell population in the gut microbiome contributes

to a unique metabolic landscape, with each microbe housing a

distinctive set of genes that enable them to catalyze reactions that

host cells are unable to perform (55, 71). This metabolic diversity

leads to the generation of a wide array of microbiome-derived

metabolites. Some of these metabolites, such as short-chain fatty

acids (SCFAs), have been shown to play essential roles in

maintaining bone health. SCFAs, mainly produced by the
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fermentation of dietary fibers by gut bacteria, can modulate bone

remodeling by influencing the activity of osteoblasts (bone-forming

cells) and osteoclasts (bone-resorbing cells) (106). Additionally,

SCFAs have anti-inflammatory properties that can help mitigate

inflammation-induced bone loss (107). Montalvany-Antonucci et al.

showed that the binding of SCFAs to the free fatty acid receptor 2

(FFAR2) can promote bone formation in animals that were fed a

high fiber diet, unlike the partial reversal of bone loss observed in

FFAR2 -/- mice that were fed a similar high fiber diet. In a more

recent study, Wallimann et al. (108) demonstrated the dynamic

impact of butyrate on bone integrity. In this study butyrate was

observed to significantly reduce osteoclast formation and resorption

activity, to lower the abundance of monocytes in bone marrow, and

to reduce circulating proinflammatory IL-6 levels in mice.

Other microbiome-derived metabolites, such as bile acids,

indoles, and polyamines, also contribute to bone health. Bile acids

are generated in the liver and modified by gut bacteria, impacting

bone remodeling through interactions with specific receptors on

bone cells. For instance, bile acids can bind to the G-protein-

coupled bile acid receptor (GPBAR1, also known as TGR5) (109)

and the farnesoid X receptor (FXR) on osteoblasts (110) and

osteoclasts (111, 112), influencing their differentiation, activity,

and overall bone metabolism. Indoles, derived from the

metabolism of tryptophan by gut bacteria, have been shown to

influence bone remodeling by modulating the differentiation and

activity of osteoclasts (113). This is achieved in large part because

indole metabolites can exert both pro-inflammatory and anti-

inflammatory effects on bone cells. Structurally similar

metabolites such as indole-3aldehyde (IAld) and indole-3-acetic

acid (I3AA) can initiate divergent bioactivities in bone (113). IAld
FIGURE 3

Dysbiosis in the gut microbiome induces the production of multiple pro-inflammatory cytokines such as TNF-a, IL-6, IL-17 amongst others. The
availability of these inflammatory molecules and activated T cells inhibit Tregs and their production of cytokines such as TGF-b and IL-10 that
reduce bone loss. Lastly, antigens that are produced in the gut microbiome can perturb the normal regulatory function of the immune system and
stimulate autoimmune activity.
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but not I3AA, was shown to inhibit the expression of pro-

inflammatory cytokines (IL-1b, and IL-6), and exhibited pro-

osteoclastogenic activity. Collectively, the bioavailability of IAld

and I3AA have been implicated in the development and progression

of Rheumatoid arthritis (RA).

Polyamines, another class of metabolites are synthesized in the

gut through the metabolism of amino acids, are required for various

biological processes in the body such as cell growth, proliferation, and

survival (114). Polyamines, such as spermine, spermidine, and

putrescine, are necessary for proper maintenance of bone health as

they can prevent RANKL-induced osteoclastic differentiation in

association with the inhibition of nuclear factor-kappa B (NF-kB)
in osteoclasts (115, 116). It has been reported that polyamine

supplementation inhibits bone loss via the suppression of osteoclast

differentiation and proliferation (116). Polyamines also have a

prominent role in maintaining gut integrity, which in turn impacts

the regulation of bone health. Polyamines regulate the epithelial

barrier of the gut by activating the transcription factor c-Myc,

which in turn upregulate the expression of tight junction protein

E-cadherin (117). Polyamine also regulate the gut barrier by

stimulating the expression of TLR2 on intestinal epithelial cells (118).
Chronic diseases, gut microbiome
perturbations, and osteoporosis

Several chronic diseases have been associated with an increased

risk of developing osteoporosis, including inflammatory bowel

disease (IBD), diabetes, rheumatoid arthritis, and celiac disease

(119–121). These conditions negatively impact bone health through

mechanisms including chronic inflammation, hormonal imbalances,

and nutrient malabsorption (122). Moreover, the presence of these

chronic diseases can also lead to perturbations in the gut microbiome,

which can further contribute to the development and progression of

osteoporosis (123–125). These perturbations can disrupt the delicate

balance between bone formation and resorption, ultimately leading to

bone loss and increased risk of osteoporosis. The molecular

mechanisms underlying this relationship involve the production of

microbiome-derived SCFAs, vitamin B12, flavonoids, incretins,

serotonin, and IGF-1 (121, 123).

In the context of chronic diseases, gut microbiome

perturbations can exacerbate inflammation, leading to increased

production of pro-inflammatory IL-1, IL-6, and TNF-a that

stimulate osteoclast activity and bone resorption (121).

Additionally, chronic diseases can also impair the absorption of

essential nutrients, such as calcium and phosphorus, which are

critical for bone mineralization.
Examples of specific chronic diseases
and their effects on the gut
microbiome and osteoporosis

Chronic diseases such as Inflammatory Bowel Disease (IBD,

including Crohn’s disease and ulcerative colitis), rheumatoid
Frontiers in Endocrinology 06
arthritis, diabetes (type 1 and type 2), Celiac disease, and others

are all characterized by chronic inflammation of the gastrointestinal

tract (16, 17). This inflammation can drive gut dysbiosis, nutrient

malabsorption, and increase production of pro-inflammatory

cytokines, all of which can contribute to bone loss and an

increased risk of osteoporosis.

Individuals with type 1 diabetes mellitus (T1DM) have

persistently low BMD which is associated with increased risk of

bone fractures compared to age, sex, and body mass index (BMI)

matched controls (126). The suppressed bone formation and

mineralization is thought to be due to hyperglycemia,

hypoinsulinemia, autoimmune inflammation, low levels of

insulin-like growth factor-1 and vitamin D. In contrast to T1DM,

individuals with T2DM have increased BMD but are also at

increased risk of bone fractures (127). T2DM induces systemic

changes including inflammation, hormonal imbalance, generation

of reactive oxygen species, and accumulation of advanced glycation

end products which are deleterious to bone health (128).

Genetically susceptible individuals suffering from Celiac disease

experience damage to their small intestine that contributes to

nutrient malabsorption, including calcium and other essential

nutrients required for bone health. They also have significantly

lower BMD compared to age, sex, BMI matched T1DM

controls (126).

Rheumatoid Arthritis (RA) is an autoimmune disease

characterized by chronic inflammation and joint destruction. In

addition to the direct effects of inflammation on bone health, RA

has also been associated with alterations in the gut microbiome,

which can further contribute to bone loss and increased risk

of osteoporosis.
Impact of orally administered drugs
on the gut microbiome

Orally administered drugs can have significant effects on the gut

microbiome, potentially altering microbial diversity, physiology,

and signaling (63). These changes can, in turn, affect bone health

and contribute to the development or exacerbation of osteoporosis.

Antibiotics are widely used to treat bacterial infections and can have

profound effects on the gut microbiome. While they are essential for

eliminating pathogenic bacteria, antibiotics can also disrupt the

balance of beneficial gut bacteria, leading to a reduction in microbial

diversity and compositional changes. This disruption can have

negative consequences on bone health, including the alteration of

calcium and vitamin D absorption and the production of

microbiome-derived metabolites and immune signaling

molecules, ultimately contributing to bone loss and osteoporosis.

In their work involving the use of narrow-spectrum antibiotics

Luna et al. were able to demonstrate that in male C57BL/6J mice

continuous exposure to neomycin whole bone strength was reduced

even though no observable differences were detected in histological

and serum markers of bone turnover in control and treated animals

(129). Similarly, Rios-Arce et al. demonstrated that two weeks of

treatment with neomycin and ampicillin antibiotics induces bone
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loss in multiple strains of mice (89). In addition to the

aforementioned antibiotics, antifungal agents such as fluconazole

can also impact the gut microbiome by reducing the diversity of

fungal species within the gastrointestinal tract (130, 131). Although

the effects of antifungal agents on bone health are less well-studied

than antibiotics, it is possible that they could contribute

to osteoporosis through similar mechanisms, such as the

alteration of microbiome-derived metabolites and immune

signaling molecules.

Non-antimicrobial drugs drive dysbiosis in the gut microbiome

and trigger osteoporosis. Proton pump inhibitors (PPIs) are widely

prescribed for the treatment of acid-related gastrointestinal

disorders, such as gastroesophageal reflux disease (GERD) and

peptic ulcers (132). PPIs can alter the gut microbiome by

reducing stomach acid levels, which can lead to an overgrowth of

certain bacterial species in the upper gastrointestinal tract. These

changes in microbial composition can impact bone health by

affecting the absorption of calcium, iron, magnesium, folate,

biotin, vitamin B12, and other essential nutrients, as well as the

production of microbiome-derived metabolites and immune

signaling molecules (132–134).

Nonsteroidal anti-inflammatory drugs (NSAIDs) NSAIDs are

commonly used to treat pain and inflammation, but their long-term

use has been associated with an increased risk of osteoporosis.

NSAIDs can alter the gut microbiome by disrupting the balance of

beneficial bacteria and promoting the growth of potentially harmful

species (135–137). These changes in microbial composition can lead

to an increase in gut permeability, allowing microbiome-derived

metabolites and immune signaling molecules to enter systemic

circulation, which can negatively affect bone health (138, 139).

Selective serotonin reuptake inhibitors (SSRIs) are widely

prescribed for the treatment of depression and anxiety disorders.

Emerging evidence suggests that SSRIs can also impact the gut

microbiome by altering the composition and diversity of microbial

communities (140, 141). While the exact mechanisms linking SSRIs,

gut microbiome, and bone health are not yet fully understood, it is

possible that these drugs could contribute to osteoporosis through

the dysregulation of microbiome-derived metabolites and immune

signaling molecules. Gut derived serotonin is known to reduce

osteoblast proliferation and drive bone loss (142, 143). Thus, as

SSRI use induces disruptions in the composition and diversity of the

gut microbiota, the bioavailability of brain derived and gut derived

serotonin will be skewed, leading to alterations in osteogenic and

osteoclastic activity. Antidepressants such as fluoxetine are capable

of disrupting sphingolipid metabolism in bone marrow tissue which

has been shown to contribute to increases in the secretion of

RANKL, a key inducer of osteoclastogenesis and bone loss (144).

Newer antidepressants such as arketamine can ameliorate

reductions in bone mineral density in animal models (145).

Glucocorticoids are a class of corticosteroid hormones

commonly prescribed for the treatment of inflammatory and

autoimmune diseases, such as rheumatoid arthritis and asthma

(146). Long-term use of glucocorticoids is known to increase the

risk of osteoporosis by directly affecting bone metabolism (147–

149). However, emerging evidence also suggests that

glucocorticoids can impact the gut microbiome by altering
Frontiers in Endocrinology 07
microbial composition, diversity, and metabolism in several

animal models (150–152). These changes in the gut microbiome

may exacerbate the negative effects of glucocorticoids on bone

health, contributing to the development or progression

of osteoporosis.

In addition to the inflammatory mechanisms compromising

bone health in individuals with diabetes, certain medications used

to treat diabetes such as thiazolidinediones can also adversely affect

bone health. Thiazolidinediones induce preferential differentiation

of mesenchymal stem cells into adipocytes rather than osteoblasts,

and promote osteoclast differentiation; thus impairing bone

formation (153, 154). Another antidiabetic drug, metformin, is

capable of regulating bone remodeling via its inhibitory effect on

osteoclast activation (155). Metformin has been shown to impact on

osteogenic induction of bone marrow progenitor cells and bone

repair in animal models (156, 157). In rat models of type 2 diabetes

with induced parietal bone lesions oral metformin was shown to

increase bone lesion repair and reossification in both aged and

streptozotocin-induced diabetic rats compared to controls (157).
Intervention strategies and
future directions

The growing understanding of the complex interplay between

the gut microbiome, orally administered drugs, and bone health

presents an opportunity for the development of targeted therapeutic

strategies for the prevention and treatment of osteoporosis. By

modulating the gut microbiome, it may be possible to improve bone

health and mitigate the negative effects of certain medications on

osteoporosis risk.

Probiotics are live microorganisms that, when administered can

confer health benefits to the host. Several studies have suggested

that probiotics, particularly those containing Lactobacillus and

Bifidobacterium strains, can improve bone health by modulating

the gut microbiome, enhancing nutrient absorption, and reducing

inflammation (158–160). Probiotic supplementation may be a

promising strategy for the prevention and treatment of

osteoporosis, particularly in individuals with altered gut

microbiome due to chronic diseases or medication use. The

consumption of probiotics helps to limit dysbiosis in the gut

microbiome via regulation of the ratio of Firmicutes/Bacteroides

and other bacterial species, as well as maintenance of the Treg-Th17

cell balance that is needed to prevent bone loss (161–164).

Prebiotics are non-digestible food components, such as dietary

fiber and oligosaccharides, that selectively stimulate the growth and

activity of beneficial gut bacteria (165). Prebiotic supplementation

can help restore and maintain a healthy gut microbiome and

promote the production of microbiome-derived metabolites, such

as short-chain fatty acids that are key regulators bone health (166).

Incorporating prebiotics into the diet may be an effective strategy

for preventing and treating osteoporosis, especially in populations

at risk due to gut microbiome perturbations (167, 168). Prebiotics

can increase bone mineral density by decreasing intestinal

permeability and systemic inflammation, and by increasing the
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expression of Ca transporters in the intestine (169). Fecal

microbiota transplantation (FMT) involves the transfer of fecal

material from a healthy donor to a recipient with an altered gut

microbiome, with the goal of restoring a healthy microbial

community. Although FMT has been primarily used for the

treatment of recurrent Clostridium difficile infection, there is

growing interest in its potential for treating other conditions

associated with gut microbiome dysbiosis, including osteoporosis

(75). Significant increases in the markers of bone health (volume

fraction, trabecular number, thickness) have been observed in senile

rat models treated via FMT (90). Further research is needed to

explore the efficacy and safety of FMT for osteoporosis treatment, as

well as the optimal donor selection and administration protocols.

Personalized nutrition and lifestyle interventions tailored to an

individual’s unique gut microbiome may be an effective approach

for preventing and treating osteoporosis. By assessing an

individual’s gut microbial composition and functional capacity,

personalized dietary and lifestyle recommendations can be

developed to promote a healthy gut microbiome and optimize

bone health. Such interventions may include the consumption of

specific prebiotic-rich foods, the incorporation of probiotic

supplements, and the adjustment of medications that adversely

affect the gut microbiome and bone health.
Conclusion

The field of osteomicrobiology has made significant progress in

recent years, shedding light on the complex interactions between

the gut microbiome, orally administered drugs, and osteoporosis.

However, there are still many challenges and unanswered questions

that need to be addressed in order to fully understand these

interactions and develop effective therapeutic strategies for

osteoporosis prevention and treatment.

While it is clear that many orally administered drugs can impact

the gut microbiome, the exact mechanisms by which these

medications alter microbial composition, diversity, and function

has been elucidated for a fraction of FDA approved therapeutics.
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Additionally, the bidirectional relationship between medications

and the gut microbiome, wherein the microbiome can also affect

drug metabolism and efficacy, adds another layer of complexity to

these interactions. Future research should aim to unravel these

complex interactions to inform the development of targeted drug

therapies that minimize negative effects on bone health.

Although various therapeutic strategies targeting the gut

microbiome, such as probiotics, prebiotics, and fecal microbiota

transplantation, have shown promise for the prevention and

treatment of osteoporosis, many challenges remain. Further

research is needed to optimize these approaches, determine their

long-term safety and efficacy, and identify the most effective

combinations of interventions for specific patient populations.
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