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As important organelles of energetic and metabolism, changes in the dynamic

state of mitochondria affect the homeostasis of cellular metabolism.

Mitochondrial dynamics include mitochondrial fusion and mitochondrial

fission. The former is coordinated by mitofusin-1 (Mfn1), mitofusin-2 (Mfn2),

and optic atrophy 1 (Opa1), and the latter is mediated by dynamin related protein

1 (Drp1), mitochondrial fission 1 (Fis1) and mitochondrial fission factor (MFF).

Mitochondrial fusion and fission are generally in dynamic balance and this

balance is important to preserve the proper mitochondrial morphology,

function and distribution. Diabetic conditions lead to disturbances in

mitochondrial dynamics, which in return causes a series of abnormalities in

metabolism, including decreased bioenergy production, excessive production of

reactive oxygen species (ROS), defective mitophagy and apoptosis, which are

ultimately closely linked to multiple chronic complications of diabetes. Multiple

researches have shown that the incidence of diabetic complications is

connected with increased mitochondrial fission, for example, there is an

excessive mitochondrial fission and impaired mitochondrial fusion in diabetic

cardiomyocytes, and that the development of cardiac dysfunction induced by

diabetes can be attenuated by inhibiting mitochondrial fission. Therefore,

targeting the restoration of mitochondrial dynamics would be a promising

therapeutic target within type II diabetes (T2D) and its complications. The

molecular approaches to mitochondrial dynamics, their impairment in the

context of T2D and its complications, and pharmacological approaches

targeting mitochondrial dynamics are discussed in this review and promise

benefits for the therapy of T2D and its comorbidities.
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1 Introduction

Mitochondria represent one of the major resources of reactive

oxygen species (ROS) and the main part of ATP production (1, 2).

In the persistent hyperglycemic state of diabetes, mitochondria will

increase the output of ROS, which leads to oxidative stress (OS) and

tissue damage (3–5). Hyperglycemia can lead to a relative increase

in ROS in three ways (causing respiratory chain electron transport

blockage, burst production of ROS, and damage to the antioxidant

system), mediating mitochondrial OS, damaging mitochondria and

causing mitochondrial dysfunction (4, 6, 7). The normal function of

mitochondria relies in their efficient quality of control with a highly

plasticity of their dynamic structure, that makes them continually

changeable through fusion and fission processes, namely

mitochondrial dynamics (8, 9).

Mitochondrial fusion consists of outer membrane (OMM) and

inner membrane (IMM) fusion, with OMM fusion are modulated

by mitofusin-1 (Mfn1) and mitofusin-2 (Mfn2), whereas IMM

fusion are modulated by optic atrophy 1 (Opa1) (10, 11).

Dynamin related protein 1 (Drp1) is a crucial protein in

mediating mitochondrial division, and other proteins involved in

fission include mitochondrial fission factor (MFF) and

mitochondrial fission 1 (Fis1) (11, 12). Regulatory mitochondrial

dynamics is a complicated process in which mitochondria are

coregulated by the above GTPases to maintain the homeostasis of

their fission and fusion, which is fundamental to cellular functions

including mitochondrial DNA distribution, mitochondrial

functions, cell survival and signaling (8, 13, 14). Alterations in

this balance may result in OS, mitochondrial impairment and

metabolic modification, finally contributing to the occurrence of

mitochondrial-related diseases (8, 15, 16).

Mitochondrial dynamics are markedly changed in type II

diabetes (T2D) patients and are involved in the progression of

insulin resistance, and not only that, mitochondrial dynamics are

also closely correlated with the evolution of diabetic complications

(6, 17–19). Therefore, it is significant to investigate the association

between alterations in mitochondrial dynamics and T2D and its

complications, and this article reviews existing research progress in

this area.
Abbreviations: ROS, reactive oxygen species; OS, oxidative stress; Mfn1,

mitofusin-1; Mfn2, mitofusin-2; Opa1, optic atrophy 1; Drp1, dynamin related

protein 1; Fis1, mitochondrial fission 1; MFF, mitochondrial fission factor; T2D,

type II diabetes; OMM, outer mitochondrial membrane; HR1, helix regions 1;

HR2, helix regions 2; TM, transmembrane domains; IMM, inner mitochondrial

membrane; MTS, mitochondrial targeting sequence; CC, coiled coil domain; MD,

middle domain; GED, GTPase effector domain; ER, endoplasmic reticulum;

INF2, inverted formin 2; MCU, mitochondrial calcium unidirectional; OXPHOS,

oxidative phosphorylation; PINK1, PTEN-induced putative kinase 1; Cyt c,

cytochrome c; DN, diabetic nephropathy; ROCK1, rho-associated kinase 1;

DCM, diabetic cardiomyopathy; PPARa, peroxisome proliferator-activated

receptor a; CaN, calcineurin; CaM, calmodulin; CnA, catalyzes subunit A; p-

ERK1/2, phosphorylates- extracellular signal-regulated kinase; DPN, diabetic

peripheral neuropathy; PDN, painful diabetic neuropathy; DRG, dorsal root

ganglion; DR, diabetic retinopathy; REC, retinal endothelial cell; AC, acellular

capillaries; PL, pericyte loss; TXNIP, thioredoxin-interacting protein.
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2 Mitochondrial dynamics

Mitochondrial dynamics means that the dynamic equilibrium

in which mitochondria are in a constant fusion and fission process.

The mitochondrial fusion and fission processes are synergistic,

highly conserved processes, and the two are generally in dynamic

equilibrium, a balance that is essential for sustaining the proper

mitochondrial morphology, distribution and function (8). Both

abnormal fusion and fission will affect the normal function of

mitochondria, for example, abnormal fission will result in small

and broken mitochondrial morphology and abnormal fusion will

result in extended mitochondria (6, 20).
2.1 Mitochondrial fusion

The morphology of mitochondria can be changed by

mitochondrial fusion, which refers to the phenomenon of two

adjoining mitochondria merging their contents into one

mitochondria with fibrous extensions and a network structure,

and is present in all cells with mitochondria (10, 11, 21).

Mitochondrial fusion is considered to be a key factor in

maintaining a healthy mitochondrial network. The underlying

principle is to achieve dilution of toxic substances in

mitochondria and repolarization of membrane potential through

fusion for the purpose of maintaining genetic and biochemical

homogeneity (14). This function results in the selective fusion of

healthy and less healthy mitochondria, while depolarized unhealthy

mitochondria are rapidly become targets for decomposition (22,

23). Thus, in contrast to the active selection of fusion partners by

mitochondria, the cytoplasmic environment is perhaps the pivotal

determinant of fusion events, and a change in any one substance

would affect this process (11, 14).

The structure of the Mfn molecule mediating outer

mitochondrial membrane (OMM) fusion contains an GTPase

domain, two hydrophobic heptapeptide repeat helix regions (HR1

and HR2), with two transmembrane domains (TM) (24, 25). The

GTPase domain is essential for fusion activity and the TM is

required for OMM insertion (24, 26). Mfn mediated OMM

involves three steps, tethering, docking and merger (10). The two

mitochondria must be in close contact to begin fusion, and once

close contact is established, the OMM of the two mitochondria form

trans-homologous or heterologous complexes via the HR2 and

GTPase domains of Mfn, mediating OMM fusion (26–29). Mfn

undergoes local and global conformational changes during GTP

hydrolysis and forms a dimer through the GTPase domain to

complete the OMM tether. As the cycle of GTP hydrolysis

process continues, the mitochondria are continuously drawn

closer together, eventually achieving OMM fusion (Figure 1A)

(10, 29). Functionally, Mfn1 and Mfn2 are considered essential

for mitochondrial fusion, and both have not only a degree of

similarity as well as substantial differences (30). The tether

efficiency of Mfn1 on mitochondrial membrane is higher than

Mfn2, and the GTPase activity of purified Mfn1 is eight times

more than the one of Mfn2 (29). In addition, defects in either Mfn1

or Mfn2 will result in abnormal mitochondrial morphology and
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reduced fusion rates. In Mfn2 deficient fibroblasts mitochondria

appeared spherical or round with swelling, whereas Mfn1 deficient

mitochondria were significantly more brokenness (31).

After the OMM fusion, the IMM fusion must be followed up

quickly and efficiently to completion (27). The structural

composition of OPA1 is an mitochondrial targeting sequence

(MTS), a subsequent TM, a coiled coil domain (CC), a highly

conserved GTPase domain, an middle domain (MD) and a GTPase

effector domain (GED) (10, 32). IMM fusions are more complex

than OMM fusions in that the Opa1 gene coding has eight distinct

isoforms and three cleavage sites (S1, S2, S3) and requires partial

protein hydrolysis into two forms, L-Opa1 and S-Opa1, to

successfully complete the fusion reaction (33, 34). Some of these

researches suggest that L-Opa1 is integral to IMM and promotes

IMM fusion, whereas S-Opa1 does not mediate fusion (35).

However, Song and Ge et al. demonstrated that IMM fusion

requires the joint collaboration of S-Opa1 and L-Opa1 (36, 37).

Therefore, the exact mechanism of IMM fusion will have to be

confirmed by further research. Analogous with Mfn proteins, Opa1

also constitutes oligomeric structures that drive IMM fusion

through conformational changes driven by GTP hydrolysis

(Figure 1B) (38). In addition, Opa1 is involved in cristae shaping

and electron tomography has shown that Opa1 modulates the
Frontiers in Endocrinology 03
morphology of mitochondrial cristae, especially during

apoptosis (39).
2.2 Mitochondrial fission

Mitochondria can divide to produce one or more daughter

mitochondria, mainly mediated by Drp1, which has four different

structural domains, including the GTPase domain, MD, variable

domain and GED (11, 12). Drp1 in the cytoplasm need to be

translocate to the mitochondria carry out its divisive function (40).

The mitochondrial fission process undergoes three critical phases,

marking of the fission site, oligomerization of Drp1 at the fission

site and assembly into a helical superstructure, and contraction of

the Drp1 and severing of the mitochondria (14). The preliminary

step of mitochondrial fission is the initial contraction of the OMM,

which is produced by the endoplasmic reticulum (ER) and actin

filaments (41, 42). ER contacts mitochondria to formmitochondria-

associated ER membranes (MAMs) to mediate the forming of

mitochondrial fission sites, reducing the average mitochondrial

diameter through the polymerization of ER-associated inverted

formin 2 (INF2), myosin II, and Spire1C at the MAMs, which

contributes to the formation of a Drp1 oligomerization loop at the
A B

FIGURE 1

(A) OMM fusion. Mfn1 and Mfn2 tether mitochondria through oligomerization of HR2 and GTPase domain, and as GTP is hydrolyzed, mitochondria
move closer together, eventually leading to OMM fusion. (B) IMM fusion. Opa1 needs to be hydrolyzed to L-Opa1 and S-Opa1 to promote IMM
fusion. The figure shows two isoforms of Opa1, the mitochondrial targeting sequence (MTS) is first excised by MPP, and because isoform 1 lacks
exons 4b and 5b it will not be cut, resulting in L-Opa1. While isoform 8 is cleaved in the S1 site by Oma1 and in the S2 and S3 sites by Yme1L, giving
rise to S-Opa1. L-Opa1 then mediates IMM fusion either alone or in conjunction with S-Opa1.
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fission site (41, 43, 44). Then there is the Drp1 recruitment, which is

mainly accounted for by a class of small molecule proteins that are

mosaic on the OMM (45). These include Fis1, MFF, 49 kDa and 51

kDa of mitochondrial dynamics protein (MiD49 and MiD51), the

deletion of each of these molecules leads to significant stretching of

the mitochondria (45). Drp1 is translocated to the fission site of the

OMM in the cytoplasm and oligomerized, then assembles to a

helical superstructure (46). Finally, the mitochondrial conformation

is altered by hydrolysis of GTP, which continues to enhance

mitochondrial contraction until two mitochondria are created

(Figure 2) (11, 47). Following mitochondrial fission, Drp1 can be

returned to the cytoplasm for reuse (11).

In addition, INF2mediated actin polymerization facilitates theCa2

+ liberation from theERat theMAMs, followedbyCa2+passes through

the mitochondrial calcium unidirectional transporter protein (MCU)

into the mitochondria leading to IMM contraction (48). As the S637

residue of Drp1 can be dephosphorylated by Ca2+ dependent

calcineurin, persistent elevated cytoplasmic Ca2+ levels further

promotes Drp1 aggregation in mitochondria, suggesting that IMM

fission is independent of, and precedes, OMM fission (48–50). More

interestingly, S-Opa1 produced by Opa1 hydrolysis has been found to

act in mitochondrial fission, where stress induced OMA1 hydrolyzes

all ofOpa1 intoa short isomers andS-Opa1 is able topartly co-position

with the MAMs, thereby inhibiting fusion and triggering

mitochondrial breakage (51).
Frontiers in Endocrinology 04
3 The role of mitochondrial
dynamics balance

Mitochondrial fusion and fission are engaged directly or

indirectly in mitochondrial maintenance, bioenergy production

and cell death, which is essential in the development of diabetes

mellitus and its complications (12, 13).
3.1 Mitochondrial dynamics influence
oxidative phosphorylation processes

ATPproducedbymitochondria through respiration andoxidative

phosphorylation (OXPHOS) is the main source of energy in cell and

alongwith the productionofROS (52, 53). ImpairedOXPHOS leads to

overproduction of ROS and gradually inhibit or deplete the body’s

antioxidant system, eventually lead to the disorder of the body’s redox

balance and result in OS and tissue damage (6, 54). As a vital

mechanism for the homeostatic modulation of mitochondria,

mitochondrial dynamics can be participated in the modification of

OXPHOS processes (5). It is suggest that mitochondrial morphology

may determine the level of intracellular ATP supply and the mode of

respiratorymetabolism(9, 55).Mitochondria in the fused state are rich

in internal cristae structure, with close connected with the electron

transport chain and high efficiency of OXPHOS. This is attributed to
FIGURE 2

The three steps of mitochondrial fission. First, ER contacts mitochondria, polymerizes with Spire1C on mitochondria to form a fission site through
INF2 and myosin II, and releases Ca2+ into mitochondria to mediate IMM fission. Drp1 is then recruited by Fis1, MFF, MiD49 and MiD50 to the
mitochondrial fission site and oligomerizes into a loop. Finally, through GTP hydrolysis, Drp1 continuously contracts mitochondria until fission.
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the fact that Opa1 and Mfn1/2 dependent mitochondrial fusion

preserves mtDNA mass to maintain the electronic respiratory chain

(ETC) complex and overall OXPHOS capacity (56, 57). In addition,

Mfn2 could bind to a glycolysis rate-limiting enzyme (pyruvate kinase)

to enhance mitochondrial OXPHOS and attenuate glycolysis (58).

When the level of Drp1 mediated mitochondrial fission is elevated,

OXPHOS capacity is reduced and the bioenergetic state is shifted to

glycolysis, with a concomitant decrease in mitochondrial membrane

potential and an increase in ROS production. By blocking Drp1

phosphorylation, mitochondrial fusion can be redirected and

OXPHOS can be activated (56, 57). However, excessive

mitochondrial fusion equally damages OXPHOS (57). Thus,

coordinated mitochondrial dynamics homeostasis is essential for

maintaining OXPHOS function and induces mitochondrial

OS (Figure 3A).
3.2 Mitochondrial dynamics
affect mitophagy

Mitochondria can maintain their homeostatic function by

selectively degrading excess or damaged mitochondria within the

cell, and this mechanism is called mitophagy (23, 59). Before

mitophagy, the damaged mitochondria require Drp1 for

mitochondrial fragments of appropriate size by mitochondrial
Frontiers in Endocrinology 05
fission (59). Moreover, Mfn1/2 and Opa1 in damaged mitochondria

are degraded to prevent greater damage caused by the fusion of

damaged mitochondria with healthy ones (23, 60). Mitophagy

mainly involves PTEN-induced putative kinase 1 (PINK1) and the

E3ubiquitin ligaseParkin (59).Whenmitochondriahavebeen injured,

PINK1 accumulates in the OMM via outer membrane translocases,

activating and recruiting Parkin, followed by ubiquitination of the

proteins VDAC1 and Mfn1/2 in the mitochondrial outer by Parkin

(61, 62). Subsequently, p62 accumulates on mitochondria, combines

with ubiquitinated mitochondria together with LC3 and is

phagocytosed by autophagosomes, which merge with lysosomes to

form autophagic lysosomes that degrade the contained mitochondria

(Figure3B) (63). Inaddition, severalmitochondrialLC3receptorshave

been described that are independent of PINK1 in ubiquitin-

independent autophagy, including BNIP3, Nix, FUNDC1 and

BCL2L13, which include LC3-interacting regions that bind directly

to LC3 and assemble damaged mitochondria to the autophagosome

(64, 65).Mitochondrialdynamics are inextricably linked tomitophagy.

FUNDC1 interactswithDrp1andOpa1, andunder normal conditions

FUNDC1 can bind toOpa1 to promotemitochondrial fusion,whereas

under stress conditions FUNDC1 detaches fromOpa1, enhancing the

recruitment of Drp1 by FUNDC1 at the MAMs and promoting

mitochondrial fission as well as mitochondrial autophagy (66, 67).

Whenmitophagy is impaired,mitochondrial dynamicswill likewise be

affected. PHB2 has been proved to be required for PINK1-mediated
A

B

C

FIGURE 3

(A) Mitochondrial dynamics regulate the OXPHOS process, with fusion promoting OXPHOS and fission inhibiting it. (B) The damaged mitochondria
first divide the damaged site through mitochondrial fission, and then degraded by mitophagy. (C) Mitochondrial fission mediates apoptosis through
the release of Cyt c.
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mitophagy, and PHB2 deletion causes selective absence of the long

isoformofOpa1,which results in abnormal cristaemorphogenesis and

mitochondrial fragmentation (68, 69). Abolishing mitophagy induced

byBNIP3LandFUNDC1duringcardiacprogenitor cell differentiation

will also result in consistent mitochondrial fission and donut-like

formation of damaged mitochondria (70). This shows a strong

association with mitochondrial dynamics and mitophagy.

3.3 Mitochondrial dynamics affect
apoptosis

Mitochondria as a vital regulator of apoptosis, which play a vital role

in the progression of apoptosis by liberating cytochrome c (Cyt c) and

other pro-apoptotic factors (71, 72). Drp1, an important mitochondrial

fission protein, not only affects mitochondrial morphology but also

participates in the regulation of apoptosis (73). Mitochondrial fission

itself does not lead to apoptosis, butmainly pro-apoptotic proteins (such

asBax) fromtheBcl-2 familymembersare co-expressedwithDrp1at the

fission site responsible for Cyt c release, an important early event in

caspase 3 activation that ultimately induces apoptosis (74, 75). During

apoptosis, recruitment of Drp1 is enhanced and Drp1 stimulates tBid-

triggered Bax oligomerization by promoting hemifusion of cardiolipin-

containing membranes and then initiates apoptosis by releasing Cyt c

through a membrane hemifusion intermediate formed during

mitochondrial fission (Figure 3C) (74, 75). Even in the absence of

apoptotic triggers, Drp1 can directly regulate the Bax pore to affect the

permeability activity of Bax to promote apoptosis. This is because theN-

terminal structural domain of Bax interacts specifically and directly with

Drp1 to form a homodimeric complex until cell death, and this

interaction is enhanced during apoptosis (74).Downregulation of Drp1

caused by RNAi not only retardsmitochondrial fission, but also inhibits

Cyt c release and cell death (76). Fis1 was also involved in the regulation

of apoptosis, and downregulation of Fis1 inhibited apoptosis to a

significantly greater extent than downregulation of Drp1 (77).

However, during cell differentiation, reduced levels of mitophagy

induced by decreased Drp1 activity promote the early stages of

apoptosis, whereas its overexpression prevents apoptosis, which

provides another important link between apoptosis and mitochondrial

dynamics (78). Furthermore, silencing of Mfn1 or Mfn2 will lead to

increased mitochondrial fragmentation and sensitivity to apoptotic

stimuli (79). Opa1 blocks the tBid-induced increase in Cyt c release

from the cristae into the membrane gap, and Opa1 deficiency will also

induce mitochondrial cristae abnormalities as well as spontaneous cell

apoptosis (79).Restorationofmitochondrial fusiondelaysBaxactivation

and Cyt c release and reduces cell damage/apoptosis.
4 The function of mitochondrial
dynamics in T2D and its complications

4.1 The effect of altered mitochondrial
dynamics on the development of T2D

T2D is mainly distinguished by mitochondrial dysfunction,

increased ROS content and decreased ATP levels (6). In T2D,

hyperglycemia induces excessive mitochondria division and
Frontiers in Endocrinology 06
fragmentation in different cell types, with excessive production of

ROS, reduced mitochondrial fusion and increased mitochondrial

fission eventually resulting in mitochondrial dysfunction (80, 81).

Under normal physiological conditions, damaged mitochondria are

eliminated by mitophagy before they lead to excessive ROS

production (81). In contrast, hyperglycemia in T2D inhibits the

expression of mitophagy-related genes (NIZ, PINK1, Parkin),

leading to impaired mitophagy (82). Reduced ATP levels due to

mitochondrial dysfunction can be compensated by mitochondrial

biogenesis, however, downregulation of a gene involved in

mitochondrial biogenesis (PGC-1a) was observed in T2D (83).

Abnormal mitochondrial biogenesis leads to energy dysregulation

and accelerates ROS production, thereby aggravating the

pathological pathway of diabetes development (84). Thus,

abnormal mitochondrial dynamics induced by hyperglycemia

may be the pathogenesis and common basis for the genesis of

chronic complications of diabetes mellitus (Figure 4).
4.2 The effect of altered mitochondrial
dynamics on the development of diabetic
nephropathy (DN)

The kidney is a highly metabolic, energy-consuming and

mitochondria-rich organ second only to the myocardium. In the

diabetic state, the impairment of mitochondrial dynamics resulting

in reduced mitochondrial quantity and capacity, and the

accumulation of ROS are also considered to be a critical link the

pathogenesis and evolution of DN, leading to a large number of

cytokines and inflammatory mediators are released and

downstream signaling pathways such as protein kinase C are

activated, which further destroys the intrinsic cells of the kidney

(podocytes, glomerular endothelial cells, thylakoid cells and tubular

epithelial cells) and promotes the genesis and evolution of DN (15,

85–87).

Studies of renal cells in the diabetic setting showed altered renal

mitochondrial dynamics, with increased mitochondrial Drp1

expression and decreased Mfn2 expression, suggesting that

mitochondria tend to undergo fission and that the fusion process

is inhibited (88). Disturbances in renal mitochondrial dynamics

lead to histological and renal parameter abnormalities, Drp1

overexpression can lead to membrane matrix expansion,

basement membrane thickening, podocyte damage and

albuminuria (89). The associated proteins participating in

mitochondrial fission and fusion are altered during the various

stages of DN, and genetic modification of them can alleviate the

symptoms of DN (88, 90). For example, DN mice specifically

overexpressing Mfn2 or deletion of Drp1 can significantly

improve kidney injury and mitochondrial ROS accumulation

(91). Ultrastructural analysis showed that diabetic mice

specifically deficient in Drp1 had reduced proteinuria and

significantly improved membrane matrix expansion and foot cell

morphology as well as mitochondrial structure compared with

wild-type diabetic mice (91). Additionally, in Rho-associated

kinase 1 (ROCK1) transgenic mice, it was observed that

hyperglycemia phosphorylated Drp1 serine residues via ROCK1,
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thereby promoting the recruitment of Drp1 into mitochondria and

ultimately inducing mitochondrial fission, while knockdown of

ROCK1 reduced glomerular apoptosis and mitochondrial ROS

production, decreased proteinuria and reduced podocyte shedding

(92). Administration of Mdivi1, a pharmacological inhibitor of

Drp1, significantly attenuated mitochondrial fission in mice and

salvaged critical pathological characteristics of DN (93).

Asiatic acid was recently found to reduce tubular injury in DN

by decreasing the expression of Drp1 and increasing the expression

of Mfn1/2 via the Nrf-2 pathway (94). Existing studies have

identified a variety of drugs that can modulate mitochondrial

dynamics to alleviate the symptoms of DN, as shown in Table 1.

In addition to alleviating the symptoms of DN, the modulation of

mitochondrial dynamics may further exacerbate the damage of DN.

When diabetic rats are administered Crocodile Oil, it will further

increase Drp1 expression and decrease Mfn2 levels (95). Crocodile

Oil use exacerbates diabetic kidney injury with a significant increase

in mitochondrial ROS production and a decrease in mitochondrial

membrane potential (MMP) compared to diabetic rats that do not

receive Crocodile Oil (101). Therefore, by targeting and regulating

mitochondrial fusion division-associated protein expression will

influence the progression of DN. In addition, mitophagy, which is

closely related to mitochondrial dynamics, is also expected to serve
Frontiers in Endocrinology 07
as a new target for the treatment of DN. PACS-2 promotes

mitophagy and plays an important role in ameliorating tubular

injury in diabetes (95).
4.3 The effect of altered mitochondrial
dynamics on the development of diabetic
cardiomyopathy (DCM)

DCM is a nonischemic and nonhypertensive cardiomyopathy

caused by diabetes-related metabolic disorders and represents one

of the common diabetic complications (102). Deficiency of

myocardial energy is highly associated with the development and

evolution of various cardiac pathologies (103). Under normal

physiological conditions, mitochondrial OXPHOS accounts for

the vast majority of cardiac ATP requirements; however, in the

presence with insulin resistance, myocardial use of insulin-

stimulated glucose uptake and glucose utilization is reduced and

fatty acid uptake and oxidation rates are increased, and this altered

substrate preference plays an essential role in the pathophysiology

of DCM (103–105). When fatty acid intake in the heart increases, it

can cause mitochondrial structural remodeling, significantly reduce

the minimum diameter, and regulate Opa1 and Drp1 post-
FIGURE 4

Hyperglycemia induces mitochondrial dysfunction ultimately leading to diabetic complications.
frontiersin.org

https://doi.org/10.3389/fendo.2023.1230168
https://www.frontiersin.org/journals/endocrinology
https://www.frontiersin.org


Wang et al. 10.3389/fendo.2023.1230168
translational modifications, thereby promoting mitochondrial

fission (106).

DCM is initially marked by myocardial fibrosis, left ventricular

hypertrophy and diastolic dysfunction, which later manifests as

systolic dysfunction and eventually clinical heart failure (102, 104,

107). Heart failure is distinguished by altered redox regulation of

the myocardium, mainly in the form of OS, and increased ROS

have been described in animal models of heart failure (107–109).

We have previously described the association between

mitochondria l dynamics and OS, and al terat ions in

mitochondrial dynamics are observed in all pathological changes

in DCM, as shown in Table 2. Disturbed mitochondrial dynamics

in cardiomyocytes, followed by mitochondrial OXPHOS and

mitochondrial respiratory chain dysfunction, lead to reduced

ATP production and excessive ROS production, ultimately
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leading to cardiomyocyte death (112). Hu’s study indicated that

the reduced expression of Mfn2 in DCM could be partly attributed

to the result of reduced expression of peroxisome proliferator-

activated receptor a (PPARa) (112). Mfn2 deficiency not only

leads to impaired glucose tolerance, the progression of

hyperinsulinemia and insulin resistance, but also affects the

normal development of cardiac muscle cells (117). Mitophagy

has been shown to be critical in protecting cardiac function

during DCM, and Mfn2 may have a pivotal role in cardiac

autophagy by facilitating fusion between autophagic vesicles and

lysosomes (118, 119). Parkin-mediated mitophagy protects against

high-fat diet-induced cardiac invasion of hypertrophy, lipid

accumulation and diastolic dysfunction in the heart, and when

mitophagy is impaired, mitochondrial dysfunction and lipid

accumulation are induced, thereby exacerbating DCM (118).
TABLE 1 Drugs targeting mitochondrial dynamics in the treatment of DN.

Medicine Signal
pathway Mitochondrial dynamic change Curative effect Ref

HIF-1a HO-1
Mfn1, Mfn2 expression ↑, Drp1, Fis1

expression ↓
Renal tubular injury ↓ (87)

Empagliflozin
AMPK/

SP1/PGAM5
Inhibition of Drp1 dephosphorylation in

S637 and translocation
Renal tubular injury ↓ (15)

PACS-2 – Mfn2 expression ↑, Drp1, Fis1 expression ↓ Renal tubular injury ↓ (95)

Formononetin Sirt1/PGC-1a Mfn2 expression ↑, Drp1, Fis1 expression ↓ Albuminuria and renal tubular cell apoptosis ↓ (96)

Berberine –
Drp1, Fis1, MFF, Mid49, Mid51 expression

↓
Podocyte injury ↓, basement membrane thickening ↓, mesangial

dilatation and glomerulosclerosis ↓
(89)

DUSP1
DUSP1-
JNK-MFF

MFF expression ↓ Glomerular apoptosis and renal fibrosis ↓ (97)

Melatonin –
Mfn2, Opa1 expression ↑, Drp1 expression

↓
Proteinuria ↓and creatinine clearance ↑ (98)

Sitagliptin
SDF3a/
CXCR1

Mfn2, Opa1 expression ↑, Drp1 expression
↓

Glomerular and tubulointerstitial injury ↓ (99)

Asiatic acid Nrf-2
Mfn1, Mfn2 expression ↑, Drp1 expression

↓
Renal function and tubular injury ↓ (94)

Mitochondria-Targeted
Peptide SS31

– Mfn1 expression ↑, Drp1 expression ↓
Renal tubulointerstitial injury ↓, serum creatinine and

microalbuminuria levels ↓
(93)

Polydatin – Drp1 expression ↓ Podocyte injury ↓ (100)
frontier
Note, ↑ mean rise, ↓ mean decrease.
TABLE 2 Mitochondrial dynamics and morphology under DCM in different species.

Species Functional disorder Mitochondrial dynamic change Mitochondrial morphology Ref

Mouse

Diastolic dysfunction Drp1 phosphorylation ↑ and Mfn2 expression ↓ Mitochondrial fragmentation (110)

Heart failure L-Opa1 missed Mitochondrial fragmentation (111)

Cardiac hypertrophy and fibrosis Mfn2 expression ↓ – (112)

Rat
Cardiomyocyte hypertrophy Drp1 expression ↑ Mitochondrial fragmentation (113)

Myocardial fibrosis Drp1 expression ↑, Mfn1, Mfn2 expression ↓ – (114)

Human
Myocardial contractility decreased Mfn1 expression ↓ Mitochondrial network fragmentation (115)

Heart failure Opa1 expression ↓ Mitochondria are small and broken (116)
Note, ↑ mean rise, ↓ mean decrease.
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Calcineurin (CaN) is an important regulator of cardiac

hypertrophy and heart failure, and CaN is activated in response

to increased calcium concentrations in cells (120, 121). High

glucose stimulation induces upregulation of Orai1 (Ca2+ release-

activated calcium channel protein 1) expression, and Orai1 is able to

mediate calcium inward flow to bind CaN and calmodulin (CaM).

CaM then binds to CaN to form an active phosphatase that

catalyzes subunit A (CnA) and phosphorylates- extracellular

signal-regulated kinase (p-ERK1/2) as targets to suppress Drp1

phosphorylation at S637 and induce Drp1 phosphorylation at S616,

respectively, facilitating mitochondrial fission and speeding up

cardiac hypertrophy induced by high glucose (113, 122).

Suppression of the Orai1-Ca2+-CnA or ERK-Drp1 prevents high

glucose induced cardiomyocyte hypertrophy (113). Excessive

mitochondrial fission in DCM patients and administration of the

mitochondrial fusion promoter M1 dramatically enhanced

mitochondrial fusion and increased Opa1 expression levels in

diabetic hearts, improving myocardial fibrosis and OS in

cardiomyocytes (123). Melatonin supplementation also inhibited

Drp1 mediated fission further reducing OS and promoting

cardiomyocyte survival during hyperglycemic stress (124).

Furthermore, by regulating the upstream factors of mitochondrial

dynamics might be a new pathway for the treatment of DCM.

Paeonol and Brain natriuretic peptide promotes Opa1-mediated

mitochondrial fusion in the DCM to maintain cardiac

mitochondrial function through activation of the CK2a-Stat3
pathway and PKG-STAT1 pathway, respectively (125, 126).

Nicotinamide riboside promotes Mfn2-mediated mitochondrial

fusion via the SIRT2-PGC1a-PPARa pathway, reduces diabetes-

induced cardiomyocyte apoptosis, and prevents diabetes-induced

cardiac insufficiency (127). Aldehyde dehydrogenase 2 (ALDH2)

regulates mitochondrial fusion and fission through the PI3K/AKT/

mTOR pathway in DCM patients and attenuates ischemia and

reperfusion injury (128). Similarly, secreted frizzled related-protein

2 (SFRP2) and andrographolide have been successively reported to

alleviate DCM in recent years by regulating the balance of

mitochondrial dynamics (129, 130). Therefore, maintaining the

myocardial mitochondrial fusion and fission balance is key to

maintaining myocardial mitochondrial function, and targeting

mitochondrial dynamics is a target for potentially intervening in

metabolic disorder-related myocardial diseases such as diabetic

cardiomyopathy and obesity cardiomyopathy.
4.4 The effect of altered mitochondrial
dynamics on diabetic peripheral
neuropathy (DPN)

DPN is a frequent neurological complication of diabetes,

manifested by sensory, motor or autonomic disorders (131).

Hyperglycemia and hyperlipidemia in diabetic patients facilitate

the pathogenesis of neuropathy (132). The increase in long-chain

saturated fatty acids due to dyslipidemia will induce mitochondrial

depolarization and impair axonal mitochondrial transport, thereby

impairing the mitochondrial dynamics of sensory neurons and
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ultimately ATP loss and neuronal apoptosis (132, 133). The

excess glucose associated with hyperglycemia triggers nutrient

overload in neurons, overloading glycolysis and the tricarboxylic

acid cycle, leading to impaired OXPHOS processes, depolarization

of MPP, inhibition of the rate of electron transfer and reduced ATP

production (132, 134). These alterations in neuronal bioenergetics

are accompanied by an increase in intracellular OS (135). To

compensate for this reduction in bioenergy, neurons increase

mitochondrial mass in response to OS through the division of

existing mitochondria (136). However, excess glucose enhances the

expression of the pro-apoptotic proteins Bim and Bax as well as

Drp1, activating and localizing and thus promoting pro-apoptotic

fission in mitochondria (137).

Painful diabetic neuropathy (PDN) is a clinical manifestation of

DPN that includes small fiber degeneration and neuropathic pain,

manifested by pathological pain and overexcitation of dorsal root

ganglion (DRG) neurons (138). In a high fat diet induced PDN

mouse model, mitochondria in DRG injurious neurons have a

broken morphology after 2 weeks, prior to episodes of

mechanically abnormal pain and small fiber degeneration (139).

This indicates that overly fission and fragmented mitochondrial

morphology may be the basis for PDN axon degeneration. DRG

injured neurons also show elevated calcium levels, which may be the

result of mitochondrial dysfunction (139). Decreased ATP levels

reduce Na+-K+ ATPase function, elevate intracellular Na+, and

reverse Na+-Ca2+ exchange, leading to elevated calcium levels in

neuronal cell axons and mediating increased calcium-dependent

mitochondrial fission (140). Persistent elevation of Ca2+ has been

shown to be a critical ingredient of the signaling pathway causing

axonal degeneration in the central and peripheral nervous system

(141, 142). Through the specific removal of mitochondrial calcium

transporters to prevent calcium from entering the mitochondria,

normal mitochondrial morphology can be restored and axonal

degeneration can be prevented (139). Furthermore, sensory

neurons with downregulated Mfn2 expression showed delayed

transport of mitochondria to distal axons and reduced frequency

of mitochondrial motility (143). This transport defect interrupts the

correct positioning of mitochondria, disrupts axonal and synaptic

dysfunction, and may eventually lead to axonal degeneration

(144, 145).

Tang Luo Ning, a traditional Chinese compound prescription,

significantly reduced the expression of mitochondrial fission

protein in sciatic nerve Schwann cells, significantly increased the

expression levels of Mfn1/2 and Opa1, and ameliorated nerve

sheath disease in DPN rats (146). Isoliquiritigenin promotes

mitochondrial biogenesis by mediating SIRT1 activation and

regulates mitochondrial dynamics homeostasis to attenuate

damage under diabetic neuropathy (147). Currently, studies

targeting mitochondrial dynamics for the treatment of DPN are

in their preliminary stages, it is evident that in diabetes,

abnormalities in mitochondrial dynamics can lead to

mitochondrial dysfunction resulting in neuronal damage and loss,

and ultimately diabetic neuropathy. Therefore, by targeting

mitochondrial dynamics possibly a promising approach for

disease treatment in patients suffering from diabetic neuropathy.
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4.5 The effect of altered mitochondrial
dynamics on diabetic retinopathy (DR)

DR is one of the typical complications of diabetes and diabetic

optic neurodegeneration is an early stage of DR pathogenesis and

may be associated with the development of microvascular

abnormalities (148, 149). Microvascular abnormalities within the

retina include retinal vascular leakage and decellularized capillaries

(149). In the pathogenesis of DR, accelerated capillary apoptosis by

mitochondrial dysfunction is prior to the development of the

histopathological features of DR (150, 151).

Mitochondrial disruption within diabetic retinal capillaries is partly

related to the decreased expression of Opa1 induced by diabetes (152).

The research has demonstrated that Opa1 expression were remarkably

inhibited in the retinas of diabetic mice, where the proportion of S-

Opa1 to L-Opa1 was also reduced (153). Opa1 reduction results in

mitochondrial fragmentation through the development of

mitochondrial swelling and local mitochondrial contraction (154). In

addition, increased Bax expression and Cyt c release promote apoptosis

of retinal endothelial cells (REC) and lead to increased acellular

capillaries (AC) and pericyte loss (PL) which are features of DR

pathogenesis (152, 153). These phenomena were more severe in

diabetic mice with Opa1 gene deletion (153).

Reduced expression of Mfn2 and overexpression of Drp1 and Fis1

were also found in the retinal choroidal system of animals and humans

with DR, while Mfn1 levels remained unchanged (155, 156). Decreased

Mfn2 expressionmay be due toDNAhypermethylation of its promoter

in a hyperglycemic environment, leading to reduced binding of

transcription factors and consequent inhibition of gene transcription

(157). Regulation of Mfn2, Drp1 and Fis1 expression may protect

mitochondrial homeostasis and suppress diabetic retinopathy. For

example, reducing hyperglycemia-induced aberrant overexpression of

Drp1 and Fis1 by combined siRNA approaches can effectively prevent

mitochondrial breakage, improve mitochondrial respiration function

and inhibit the apoptosis of RECs (156, 158, 159).

In summary, the bothMfn2 and Opa1 were downregulated under

high glucose conditions is coincident with the upregulation of Drp1

and Fis1. However, even if hyperglycemia is reversed to normal blood

sugar levels, mitochondrial dynamics will still be impaired (160).

Reduced fusion and increased fission of mitochondria eventually

stimulate the discharge of Cyt c, inducing apoptosis in retinal cells

like RECs and Müller cells (151). Thus, maintaining mitochondrial

quality control and interferingwithmetabolicmemory phenomena by

directly regulating mitochondrial dynamics prevents further

progression of DR (161). In recent years drugs that would prevent

excessive mitochondrial fission have received much attention in the

treatment of DR. Melatonin can guard the blood-retinal barrier by

maintaining mitochondrial homeostasis. The mechanism is to

upregulate the expression of genes linked to mitochondrial

biogenesis (e.g., PGC-1a, NRF2 and PPAR-g) and downregulate the

expression of genes linked to mitochondrial fission (e.g., Drp1 and

Fis1) (162). Drp1 can be de-SUMO-ized by SUMO-specific proteinase

3 (SENP3).Activation of de-SUMO-izedDrp1disruptsmitochondrial

dynamics, and increasing SUMO-ized Drp1 levels in retinal

microvascular endothelial cells by inhibiting SENP3 expression
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reduces hyperglycemia-induced mitochondrial damage and

apoptosis, thereby attenuating retinal permeability and increasing

DR (163). Metformin prevents retinal ischaemia/reperfusion injury

by increasing Mfn2 and Opa1-mediated mitochondrial fusion via

AMPK (164). Current drugs and approaches that can be used to treat

DR by targeting mitochondrial dynamics are shown in Table 3.

In addition, retinal cells could preserve themselves in a high

glucose environment through mitophagy. Thioredoxin-interacting

protein (TXNIP) is upregulated in a high glucose environment,

inducing nitroso-modification of Drp1 and subsequently promoting

TXNIP translocation to the mitochondria, mediating autophagy in a

variety of pathways to maintain healthy mitochondria (168). The

degree of hyperglycemia determines the level of mitochondrial

autophagy; when the glucose concentration reaches 50 mM,

mitophagy is inhibited, causing excessive mitochondrial fission and a

tendency toward apoptosis (169, 170). Mitophagy has the potential to

be a new therapeutic approach for DR.

5 Treatment of T2D and its
complications through
targeted modulation of
mitochondrial dynamics

During the previous years, research on the exploitation of drugs

or methods for mitochondrial fusion and fission has increased each

year. One of the more thoroughly investigated drugs for excessive

mitochondrial fission under hyperglycemic conditions is mdivi-1.

In addition to repressing Drp1 activity in cells, mdivi-1 reduces OS

and inflammation and increase insulin sensitivity in diabetic mice

under insulin-resistant conditions (171, 172). However, when

administered for more than 24 hours mdivi-1 will reduce the

number of mitochondria and induce apoptosis (173). SGLT-2

inhibitors such as Dapagliflozin and Empagliflozin can reduce

glucose by lowering the glucose uptake threshold and promoting

the excretion of glucose from the urine (174). Not only that, SGLT-2

inhibitors also prevent mitochondrial swelling and enhance

mitochondrial restoration and regeneration, and can improve

mitochondrial dysfunction by inhibiting abnormal mitochondrial

fission through AMPK (15, 175, 176). In addition, the use of SGLT-

2 inhibitor drugs increases the risk of diabetic ketoacidosis (177).

In addition to drugs that broadly modulate mitochondrial

dynamics, drugs applied to mitochondria in specific conditions have

also been reported successively. For example, HIF-1a is a hypoxia-

inducible factor that is expressed primarily in renal tubular cells and

predisposes renal tubules to hypoxia (171, 172). It has been suggested

that proximal renal tubule cells are the initiator and key therapy target

of DN. HIF-1a can improve mitochondrial dynamics and limit

mitochondria-dependent apoptosis in DN renal tubular cells through

the HO-1 pathway (87, 172). This change may have occurred through

the HO-1/CO pathway (87). The HO-1/CO pathway has been well

characterized for its antioxidant and anti-inflammatory effects in in

vivo and in vitro stress models, but its potential in regulating altered

mitochondrial dynamics needs further investigation (178–180). While

the potential benefits of these drugs with the ability to modulate
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mitochondrial dynamics are well documented, the adverse effects

resulting from long-term use cannot be ignored (6).

In addition, MAMs is a new target for the treatment of diabetes

and is involved in various physiological processes such as

mitochondrial dynamics, mitochondrial autophagy, Ca2+ signaling

and lipid metabolism (181, 182). In diabetes, hyperglycemia

promotes excessive formation of MAMs in the body, leading to a

range of mitochondrial dysfunctions (183). Fundc1 is a key

molecule involved in MAMs formation, and by inhibiting its

expression it can reduce the excessive formation of MAMs and

effectively ameliorate diabetes and its complications, such as TRPV1

and SIRT3 (183–185). However, several other studies have

contradicted this, indicating that mitochondrial dysfunction,
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apoptosis, and tissue damage in the diabetic setting are associated

with disruption of MAMs integrity and a reduction in its formation

(95, 186, 187). Further in-depth studies are still needed for the use of

MAMs in diabetes and its complications.
6 Conclusion and future perspectives

Mitochondria are organelles with high dynamic changes in

eukaryotic cells, and are one of the most important organelles in

maintaining homeostasis in the body. It adapts to changes in the

external environment, maintaining the function of tissues and organs

through mitochondrial dynamics, and participating in various
TABLE 3 Drugs and methods for targeting mitochondrial dynamics in the treatment of DR.

Medicine or
treatment

Experimental
subject Mitochondrial dynamics target Curative effect Ref

Melatonin
Human retinal pigment

epithelial cells
Mitochondrial fission-related genes expression ↓;

mitochondrial biogenesis-related genes expression ↑
Apoptosis of retinal pigment epithelial cells ↓,

protection of the blood-retinal barrier
(162)

SENP3-siRNA
Murine retinal

microvascular endothelial
cell

deSUMOylation of Drp1 cause mitochondrial fission ↓
Blood-retinal barrier function and retinal tissue

damage ↓
(163)

Tanshinone IIa
Bovine retinal endothelial

cells
Mitochondrial overfitting ↓, mRNA levels of Mfn1 and

Opa1 ↑
Oxidative stress and apoptosis of retinal

endothelial cells ↓
(165)

Penicillamine
Human retinal pigment

epithelial cell
Mfn2 levels and restoration of mitochondrial biogenesis ↑

Endoplasmic reticulum stress and inflammation
↓, cell vitality ↑

(166)

TGR5
Human retinal vascular

endothelial cells
Excessive mitochondrial fission mediated by the PKCd/

Drp1-HK2 ↓
Apoptosis of retinal vascular endothelial cells ↓ (167)

Mdivi-1
Human retinal vascular

endothelial cells
Excessive mitochondrial fission mediated by the PKCd/

Drp1-HK2 ↓
Retinal vascular leakage and acellular capillaries

↓
(159)
frontier
Note, ↑ mean rise, ↓ mean decrease.
FIGURE 5

Improving the progression of diabetes and its complications by targeting mitochondrial dynamics.
sin.org

https://doi.org/10.3389/fendo.2023.1230168
https://www.frontiersin.org/journals/endocrinology
https://www.frontiersin.org


Wang et al. 10.3389/fendo.2023.1230168
physiological procedures such as intracellular energy metabolism,

autophagy and apoptosis, during which mis-regulation can lead to

disease states, making their function vital to life. In the diabetic state,

mitochondrial morphology is fragmented, and imbalance of

mitochondrial dynamics causes disturbance in cellular energy

metabolism and damage to pancreatic b-cells and peripheral tissues

and organs, thus promoting the progression of diabetic complications.

Targeting mitochondrial dynamic balance can effectively improve the

progression of diabetes and its complications (Figure 5). The

contribution of mitochondrial dynamics in chronic complications

such as DN and DCM is gradually being explored, but a holistic

picture is lacking and the specific molecular mechanisms and pathways

of action are yet to be elucidated. There have been significant

breakthroughs in recent years in the therapy of type II diabetes and

its complications through targeted modulation of mitochondrial

dynamics. The development of new therapeutic drugs based on the

idea of adjusting the homeostasis of mitochondrial dynamics is expected

to bring new light to the treatment of T2D and its comorbidities.
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