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Systemic lupus erythematosus is a debilitating autoimmune disease

characterized by uncontrolled activation of adaptive immunity, particularly B

cells, which predominantly affects women in a 9 to 1 ratio compared tomen. This

stark sex disparity strongly suggests a role for female sex hormones in the

disease’s onset and progression. Indeed, it is widely recognized that estradiol not

only enhances the survival of autoreactive B cells but also stimulates the

production of autoantibodies associated with systemic lupus erythematosus,

such as anti-nuclear antibodies and anti-dsDNA antibodies. Clinical

manifestations of systemic lupus erythematosus typically emerge after puberty

and persist throughout reproductive life. Furthermore, symptoms often

exacerbate during the premenstrual period and pregnancy, as increased levels

of estradiol can contribute to disease flares. Despite being fertile, women with

lupus face a heightened risk of pregnancy-related complications, including

pregnancy loss and stillbirth, which significantly surpass the rates observed in

the healthy population. Therefore, this review aims to summarize and discuss the

existing literature on the influence of female sex hormones on B-cell activation in

patients with systemic lupus erythematosus, with a particular emphasis on their

impact on pregnancy loss.
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1 Introduction

Recurrent pregnancy loss (RPL) is a distressing pregnancy disorder experienced by

~2.5% of women trying to conceive. It is defined as the spontaneous demise of two or more

clinically recognized pregnancies before the fetus reaches viability; RPL includes embryonic

and fetal losses from the time of conception until 24 weeks of gestation (1, 2).

Autoimmune disorders have been included along with chromosomal errors,

anatomical uterine defects, and endometrial dysfunction as the most common etiologies
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linked to RPL (3). Indeed, certain features commonly associated

with autoimmune diseases, such as inappropriate complement

activation (4–6) and the prevalence of specific autoantibodies (4,

7–11) show strong associations with RPL.

Furthermore, systemic autoimmune diseases, including systemic

lupus erythematosus (SLE), have been identified as significant risk

factors for RPL, similar to other autoimmune conditions (12).

SLE is a chronic autoimmune disease that predominantly affects

women of reproductive age compared to men and has the potential

to affect any organ in the body (13–15). The intricate clinical

presentation and pathogenesis of SLE make its definition

exceptionally challenging. According to the European League

Against Rheumatism (EULAR) and the American College of

Rheumatology (ACR), the classification criteria for SLE consist of

a mandatory entry criterion of positive anti-nuclear antibodies

(ANAs) at least once, followed by additive weighted criteria

grouped into seven clinical domains, namely, constitutional,

hematologic, neuropsychiatric, mucocutaneous, serosal,

musculoskeletal, and renal, and three immunological domains:

antiphospholipid antibodies (aPLs), complement proteins, and

SLE-specific antibodies (16). ANAs are a group of autoantibodies

that target components of the cell nucleus and can bind to proteins,

nucleic acids, and protein–nucleic acid complexes (17).

From an immunological perspective, the intricate interplay of

environmental, genetic, and hormonal factors results in

dysregulation and abnormal activation of the innate and adaptive

immune system. This leads to the generation of pathogenic

autoantibodies, such as ANAs, anti-double-stranded DNA

antibodies (anti-dsDNA), and aPLs, as well as the deposition of

immune complexes, ultimately causing tissue damage (18, 19).

Moreover, the impact of ANAs (20) and the presence of various

types of aPLs (21) significantly varies between women with RPL and

autoimmune diseases, in comparison to those without

autoimmunity (22). Indeed, the rate of pregnancy loss among

patients with SLE is substantially higher compared to the general

healthy population (3). Furthermore, the stage of SLE that the

patient is in at the moment of becoming pregnant, including disease

activity and renal involvement, not only impacts the health status of

the mother but may also influence fetal and neonatal outcomes (23,

24). In this regard, several studies have found that increased serum

levels of IL-6, IL-10, and INF-a in patients with SLE are associated

with disease activity (25, 26). Regarding disease activity at the time

of conception, numerous prospective studies have recently shown

that women with inactive SLE generally experience minimal flares

during pregnancy, while those with active SLE face an elevated risk

of adverse maternal and fetal outcomes (27–29). These findings are

consistent with previous reports, indicating that the rate of live

births is lower in patients with clinically active SLE in the 6 months

before conception compared to those with inactive disease prior to

conception (30). Furthermore, RPL among women with SLE

appears to be linked to a higher rate of fetal death, which is

associated with the presence of aPLs (31, 32). Furthermore, it is

well established that newborn babies born to mothers with SLE can

develop neonatal lupus, a rare condition that is not a form of SLE,

but rather a condition that affects the newborn due to the transfer of

maternal autoantibodies across the placenta during pregnancy (33).
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Considering the sex and age predisposition of SLE, female sex

hormones are undeniably involved in the pathogenesis of the disease

(34). Studies conducted on SLE-prone mice using gonadectomy/

hormone deprivation and hormone supplementation have

consistently confirmed this association, revealing that estrogen

exacerbates the disease, while its removal ameliorates the disease in

female subjects [reviewed in (35)]. In the context of pregnancy, the

increase in female sex hormone levels may influence or potentiate the

abnormal function of the immune cells in patients with SLE, thereby

exacerbating the disease symptoms and leading to pregnancy

complications, including RPL (36, 37).

Considering all the evidence, the objective of this review is to

examine the current state of knowledge regarding the impact of

preexisting SLE on the development of RPL, with particular focus

on the role of female sex hormones in B cell activation and

autoantibody production.
2 Pregnancy in patients with systemic
lupus erythematosus: the impact on
recurrent pregnancy loss

As mentioned earlier, SLE predominantly affects women during

their reproductive age, when individuals may seek to become

pregnant. However, while fertility is generally preserved in

women with SLE, pregnancy in these patients can be associated

with adverse maternal and fetal outcomes, including RPL (38). In a

recent meta-analysis of pregnancy studies published from 2017 to

2019, it was shown that patients with SLE had markedly increased

risk of stillbirth (risk ratio (RR) 16.49, 95% CI 2.95 to 92.13; p

=0 .001) and fetal loss (RR 7.55, 95% CI 4.75 to 11.99; p=0.00001)

compared to healthy pregnant women (39). Despite substantial

declines in rates of pregnancy loss among patients with SLE in

recent years, they remain higher compared to the healthy

population (40). Indeed, approximately 20% of pregnancies in

patients with SLE result in miscarriages (40).

Several biomarkers have been investigated as potential

predictors of pregnancy complications in women with SLE.

Notably, aPLs, including anticardiolipin antibodies and lupus

anticoagulants, have been associated with obstetric complications

such as RPL, recurrent implantation failure, pre-eclampsia, and

preterm birth (41, 42). Additionally, research has shown that low

levels of complement proteins, such as C3 and C4 during the first

trimester are associated with an increased risk of pregnancy loss

(43) in patients with SLE.

Although the causes behind poor pregnancy outcomes in

patients with SLE are diverse, there is a general consensus that

active disease, characterized by the activation of autoreactive B cells

and production of autoantibodies, at the time of conception and

during pregnancy significantly impacts maternal and fetal outcomes

(38). This is not surprising, given that a successful pregnancy relies

on a precisely regulated balance between maternal immune

activation and immune tolerance (44). Any disruptions or

imbalances in this delicate equilibrium can lead to pregnancy loss.

Conversely, during pregnancy, an increase in the levels of female sex
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hormones can promote B cell autoreactivity and exacerbate the

symptoms of SLE, creating a negative feedback loop. This

phenomenon leads to the activation of various immune

mechanisms, which can not only worsen the symptoms of SLE

but also contribute to pregnancy loss. Therefore, the hormonal

regulation of B cell activation during SLE and its implication in

pregnancy loss will be discussed in greater detail below.
3 The impact of female sex hormones
on B cell activation in patients with
systemic lupus erythematosus

B cells are essential components of the adaptive immune system

responsible for antibody production. They can be classified into

marginal zone (MZ), B1, and B2 B cells based on their phenotype,

localization, and functionality (45). While T cell activation relies on

antigen presentation by antigen-presenting cells (APCs), B cells, on

the other hand, can directly interact with antigens through their

receptor (B cell receptor, BCR) (46). However, apart from the signal

provided by antigens through BCR, B cells require a second signal

for proper activation, which can be delivered by toll-like receptors

(TLRs), BAFF-R, or BCR cross-linking in the case of MZ and B1 B

cells (47). On the other hand, upon antigen recognition, B2 B cells

migrate to the germinal center, where they receive a second signal

from follicular T-helper (Tfh) cells. Subsequently, they mature into

either antibody-producing plasma cells or memory B cells.

Female sex hormones play a significant role in the development

and activity of the immune system (48). Both innate and adaptive

immune cells bear receptors for sex hormones and respond to

hormonal cues (49). Women display higher frequencies of B cells

(50) along with enhanced B cell survival, maturation, and class

switching. They also demonstrate greater antibody responses and

higher basal levels of immunoglobulins (Igs) compared to men (51),

suggesting the involvement of female sex hormones in controlling

diverse B cell functions. Indeed, estrogen has been shown to reduce

the production of B cell precursors, impair B cell tolerance, and

increase the activation and survival of autoreactive B cells (52, 53).

While B cells express both estrogen receptor (ER) a and b, it is ERa
that predominantly regulates BCR signal strength (54). Elevated

levels of estrogen and ERa engagement result in reduced BCR signal

strength and modulation of survival regulators such as Bcl-2, CD22,

and SH2-containing protein tyrosine phosphatase (SHP)-2, thereby

suppressing apoptosis (52). Moreover, elevated estrogen levels

result in increased serum BAFF levels, which, together with

reduced BCR signal strength, promote the survival of autoreactive

B cells that would otherwise be eliminated from the naive repertoire.

Consequently, these autoreactive B cells gain entry into the mature

B cell pool (55, 56). In such circumstances, heightened estrogen

stimulation on B cells triggers a breakdown of tolerance and

uncontrolled proliferation and enhances the survival of high-

affinity DNA-reactive B cells, which may potentially lead to

autoimmunity (54).

A significant proportion of autoreactive B cells originates from

the B2 B cell pool, which requires second signals provided by
Frontiers in Endocrinology 03
follicular T helper cells to complete their activation. The

significance of these pathways in promoting autoantibody

production has been demonstrated in genetically modified lupus-

prone mice and using blocking antibodies against various

costimulatory molecules, such as inducible costimulatory ligand

(ICOS-L) and CD40 ligand. Consequently, T helper cells play a

crucial role in the development and progression of SLE disease (57).

Furthermore, Tfh cells not only express estrogen receptors, but it

has also been demonstrated that estradiol promotes the expansion

of Tfh cells and, consequently, enhances the humoral immune

response (58). Therefore, in the context of SLE, estradiol appears to

exert its effects on the Tfh/B2 B cell axis, promoting the

development and survival of autoreactive B cells.

The fact that 90% of patients with SLE are women clearly

highlights a strong sex bias in this autoimmune disease. Several

hypotheses have been proposed to explain this phenomenon, with

the influence of female sex hormones being the most widely

accepted (59). In this regard, it is known that the clinical

manifestation of the disease typically appears after puberty,

affecting women between the ages of 20 to 50, a period during

which levels of estradiol and progesterone significantly rise (59).

The strongest evidence supporting the role of female sex hormones

in SLE comes from the observation that patients with SLE

experience disease exacerbation during the premenstrual period

and in pregnancy (35, 59). Interestingly, a case report demonstrated

that administering cross-gender hormones to a transgender female

resulted in lupus nephritis, and the withdrawal of estradiol

supplementation upon admission prevented the worsening of

symptoms. This provides further support for the role of estradiol

in driving SLE (60). Animal studies also provide support for the role

of estrogen in SLE. Ovariectomized lupus-prone mice showed

ameliorated disease, while estrogen supplementation in castrated

male mice worsened the symptoms [reviewed in (35)]. Moreover,

targeted deletion of ERa specifically in B cells has been shown to

reduce the production of pathogenic autoantibodies and the

development of nephritis in lupus-prone mice (61). Additionally,

tamoxifen treatment significantly reduced autoantibody production

and improved the course of SLE in SLE-prone mice (62).

In pregnant SLE patients, estrogen levels and ERa expression

not only mediate the increase in anti-dsDNA but also alter the B-

cell repertoire, leading to the expansion of autoreactive clones (63,

64). As a result, hormone levels during pregnancy have a substantial

impact on the function of autoreactive B cells, intensifying SLE

symptoms and contributing to adverse pregnancy outcomes,

including RPL (36, 37). In fact, E2 has been demonstrated to

decrease B-cell lymphopoiesis in the bone marrow at the pro–B-

cell stages in mice and to alter transitional 2 (T2) B cell maturation,

both during pregnancy and in patients with SLE (53, 65). Under

SLE conditions, elevated BAFF levels and reduced BCR signal

strength can lead to the maturation of transitional B cells into a

marginal zone (MZ) B cell expansion. Under specific conditions,

marginal zone (MZ) B cells can serve as precursors of unswitched

memory B cells without T cell help (66). It has been previously

demonstrated that during pregnancy, there is a bias toward the

development of marginal zone (MZ) B cells (67). This, along with

the abnormal differentiation of unswitched memory B cells
frontiersin.org
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observed in patients with SLE (68) may pose a risk to the successful

development of pregnancy in patients with SLE. In fact, an increase

in unswitched memory B cells is observed in patients with a history

of RPL and obstetric complications (69, 70).

Therefore, the presence of autoreactive B cells, along with

increased B cell activation and autoantibody production in

patients with SLE, poses significant challenges when it comes to

achieving a full-term pregnancy.
4 B-cell activation and autoantibody
production in lupus: impact on
pregnancy well-being

Upon activation, B cells undergo a series of tightly regulated

processes that culminate in the differentiation of highly specialized

cells capable of producing antibodies, as well as memory B cells (45). In

addition to antibodies, activated B cells can produce a wide range of

cytokines, especially when their activation goes through their BCR

together with BAFF-R (71). Signaling through the BAFF-R activates

several downstream pathways, including NF-KB, ERK, and MAPK,

which regulate the survival functions of immature, transitional, and

mature B cells (72, 73). Interestingly, it has been demonstrated that B

cells from pregnant women show downregulation of transcripts

associated with these pathways (74) along with reduced levels of

BAFF in serum as pregnancy progresses (75), suggesting that B cells

are less susceptible to being activated during pregnancy. Indeed, a

transcriptomic analysis performed on B cells isolated from pregnant

mice confirmed that several B cell activation pathways, including BCR,
Frontiers in Endocrinology 04
TLR, and BAFF-R, are significantly diminished compared to B cells

from non-pregnant control animals (44). Furthermore, a study by

Valeff et al. (44) found that B cells isolated from pregnant women in the

first trimester of pregnancy produced significantly lower levels of

inflammatory cytokines when activated through their BCR and TLRs

compared to B cells from non-pregnant women, reinforcing the notion

of B cells being less susceptible to activation, at least during the early

stages of pregnancy.

In the context of SLE, aberrant B-cell activation plays a significant

role in the pathogenesis of the disease. Dysregulation of BCR and BAFF-

R pathways are common and dominant factors involved in this aberrant

B-cell activation (76). Furthermore, patients with SLE exhibit elevated

levels of BAFF in their serum (77–79), strongly indicating the

involvement of the BAFF-R pathway in B cells as a key component

of SLE pathology. Indeed, mice overexpressing BAFF develop a lupus-

like disease characterized by the production of ANAs and anti-

dsDNA (80).

In the context of pregnancy, while the production of natural and

protective antibodies is related to pregnancy success (81, 82), the

presence of autoantibodies is associated with RPL (8). There is

growing evidence suggesting that ANAs can play a role in both early

pregnancy complications, such as embryo implantation, and pregnancy

loss (83). While low titers of ANAs are common in healthy women,

those with RPL often exhibit high titers of ANAs (>1:160) (83).

Moreover, ANAs have been suggested to have a direct effect on the

quality and development of oocytes and embryos, leading to reduced

implantation rates (84). In the fetal-maternal interface, ANAs can

induce the precipitation of immune complexes, attributed to elevated

C3 levels, resulting in T cell activation and increased production of

inflammatory cytokine (IFN-a), which in turn stimulates the humoral
FIGURE 1

Schematic representation showing the potential effect of pregnancy-associated hormones, in particular estrogen, in B cell functions both, in healthy
pregnancy and lupus pregnancy. BCR (B cell receptor), TLR (Toll-Like Receptor), BAFF (B Cell-Activating Factor), ANAs (anti-Nuclear Antibodies),
aPLs (anti-Phospholipid Antibodies). The Figure was partly generated using Servier Medical Art, provided by Servier, licensed under a Creative
Commons Attribution 3.0 Unported License (https://creativecommons.org/licenses/by/3.0/)
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immune response (85, 86). Complement activation rapidly increases

the production of the pro-inflammatory cytokine TNF, which in turn

recruits inflammatory cells into the placenta, ultimately contributing to

pregnancy loss (87).

It is well known that imbalances toward a pro-inflammatorymilieu

are associated with poor pregnancy outcomes (88). Moreover, the

TNF/IL-10 ratio in serum is used as an indicator or predictor of

pregnancy loss (89). In line with this, the production of IL-10 by B cells

is considered essential for successful pregnancies (90). Interestingly, in

patients with SLE, there is a significant decrease in IL-10 production by

B cells (91). Even though, the elevated serum levels of IL-10 observed in

pregnant women with SLE compared to controls (25) would be an

advantage in normal pregnancy conditions, the immunosuppressive

and anti-inflammatory effects of this cytokine are impaired in patients

with SLE compared to healthy individuals (92).

Therefore, it is reasonable to speculate that uncontrolled B cell

activation in patients with SLE during gestation may lead to the

production of pro-inflammatory cytokines and harmful antibodies,

which could potentially compromise the well-being of the pregnancy.

In conclusion, maintaining a balanced B-cell activation is

essential for a successful pregnancy. In women with preexisting

SLE, hormonal changes may disrupt this balance, leading to the

production of inflammatory cytokines and autoantibodies. This

dysregulation can exacerbate disease symptoms and contribute to

pregnancy complications, including RPL. Therefore, understanding

the impact of B-cell activation and its relationship with hormonal

changes during gestation is crucial for managing SLE and

optimizing pregnancy outcomes (Figure 1).
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