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cardiometabolic traits in women
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Tabriz, Iran, 2Nutrition Research Center, Department of Biochemistry and Diet Therapy, Faculty of
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Background: Obesity, a multifactorial disorder with pandemic dimensions, is

conceded a major culprit of morbidity and mortality worldwide, necessitating

efficient therapeutic strategies. Nutraceuticals and functional foods are

considered promising adjuvant/complementary approaches for weight

management in individuals with obesity who have low adherence to

conventional treatments. Current literature supports the weight-reducing

efficacy of pro/pre/synbiotics or L-carnitine; however, the superiority of the

nutraceutical joint supplementation approach over common single therapies to

counter obesity and accompanying comorbidities is well documented. This

study was designed to assess the effects of L-carnitine single therapy

compared with L-carnitine and multistrain/multispecies synbiotic co-

supplementation on anthropometric and cardiometabolic indicators in women

with obesity.

Methods: The current placebo-controlled double-blind randomized clinical trial

was performed on 46 women with obesity, randomly allocated to either

concomitant supplementation [L-carnitine tartrate (2 × 500 mg/day) +

multistrain/multispecies synbiotic (1 capsule/day)] or monotherapy [L-carnitine

tartrate (2 × 500 mg/day) + maltodextrin (1 capsule/day)] groups for 8 weeks.

Participants in both groups received healthy eating dietary advice.

Results: Anthropometric, lipid, and glycemic indices significantly improved in

both intervention groups; however, L-carnitine + synbiotic co-administration

elicited a greater reduction in the anthropometric measures including bodymass

index (BMI), body weight, and neck, waist, and hip circumferences (p < 0.001,

<0.001, <0.001, = 0.012, and =0.030, respectively) after adjusting for probable

confounders. Moreover, L-carnitine + synbiotic joint supplementation resulted in

a greater reduction in fasting blood sugar (FBS), insulin (though marginal), and

homeostatic model assessment of insulin resistance (HOMA-IR) and more
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increment in quantitative insulin sensitivity check index (QUICKI; p = 0.014,

0.051, 0.024, and 0.019, respectively) compared with the L-carnitine + placebo

monosupplementation. No significant intergroup changes were found for the

lipid profile biomarkers, except for a greater increase in high-density lipoprotein-

cholesterol concentrations (HDL-C) in the L-carnitine + synbiotic group (p =

0.009).

Conclusion: L-carnitine + synbiotic co-supplementation was more beneficial in

ameliorating anthropometric indices as well as some cardiometabolic

parameters compared with L-carnitine single therapy, suggesting that it is a

promising adjuvant approach to ameliorate obesity or associated metabolic

complications through potential synergistic or complementary mechanisms.

Further longer duration clinical trials in a three-group design are demanded to

verify the complementary or synergistic mechanisms.

Clinical trial registration: www.irct.ir, Iranian Registry of Clinical Trials

IRCT20080904001197N13.
KEYWORDS
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Introduction

Obesity, a multifactorial relapsing chronic disease attributed to

the complicated interaction of behavioral, environmental, and

genetic factors (1), is well recognized as a prominent driver of

morbidity and preventable mortality worldwide (2, 3). The global

prevalence of obesity has dramatically amplified in recent decades,

reaching pandemic dimensions (4), warranting efficient therapeutic

approaches. Lifestyle and dietary modifications are the cornerstone

of therapeutic strategies for weight reduction (5); however,

adherence to weight-reducing programs or sustaining lifestyle

changes is a frustrating challenge for many people (6). Given the

adverse effects of anti-obesity medications, there has been a great

appeal in the consumption of weight loss supplements among

individuals suffering from obesity seeking a “magic bullet,” which

is less demanding than conventional weight management protocols

(7). Accordingly, the consumption of weight loss supplements,

particularly nutraceuticals/functional foods, as adjuvant/

complementary therapies has attracted great attention.

In this context, L-carnitine, a conditionally essential nutrient (8)

performing a crucial role in glucose and lipid metabolism (9, 10),

has been widely consumed as a popular over-the-counter (OTC)

weight loss supplement, due to its purported health-beneficial

properties including potential anti-obesity (11, 12), antidiabetic

(13), and lipid-improving effects (14, 15). Evidence has reported

the weight-reducing effects of L-carnitine (11, 12); additionally,

previous studies demonstrated the improving effects of L-carnitine

on cardiometabolic risk factors including lipid (14, 16) and

glycemic indexes (13, 17), possibly through contributing in fatty
02
acid ß-oxidation (8, 18); increasing energy expenditure via

modulating the acetyl-CoA/CoA ratio (19), thus improving

insulin sensitivity and activating the glycolytic pathway (8, 10); or

stimulating adipocyte lipolysis, as well as reducing adipogenesis in

adipocytes, through modulating lipolytic/adipogenic gene

expression (20, 21).

Furthermore, the crucial role of gut microbiota dysbiosis as an

underlying driver of obesity has attracted great concern (22–24).

According to evidence, metabolic disturbances including obesity

and related complications are correlated with alterations in gut

microbiota diversity and composition (23). Consequently, gut

microbiota is recognized as a promising therapeutic goal to

ameliorate dysbiosis-generated metabolic disorders specifically

obesity (25). Therefore, evaluating the efficiency of microbiota-

remodeling strategies, predominantly pro/pre/synbiotic therapy, on

obesity and metabolic comorbidities has come into focus (24, 25).

The weight-reducing effects of pro/synbiotic supplementation were

reported in a couple of meta-analyses (26, 27). Likewise, another

meta-analysis revealed an improved lipid profile following synbiotic

administration (28); also, synbiotic therapy diminished fasting

insulin and triglyceride concentrations (29). Several potential

mechanisms are proposed for the ameliorating impacts of pro/

pre/synbiotics on anthropometric/metabolic indices including, but

not limited to, modulating gut microbiota dysbiosis, thereby

decreasing adipogenesis and enhancing lipid oxidation (30);

augmenting the production of short-chain fatty acids (SCFAs)

production (31–33), thus amending energy homeostasis and fat

storage via boosting fatty acid oxidation (30); ameliorating glucose

homeostasis and mitigating insulin resistance (31, 33); and
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ultimately attenuating gut permeability and metabolic

endotoxemia, thereby hindering proinflammatory signaling

pathways (25, 31, 34, 35).

According to literature, multistrain synbiotics are reported to be

more beneficial in modulating gut microbiota than single-strain

synbiotics or pro/prebiotics individual therapy (36–38). Moreover,

existing evidence supports the advantage of the nutraceutical joint

supplementation approach to counteract obesity and accompanied

disorders, compared with conventional monotherapies (39).

Accordingly, previous studies have reported that co-administration

of L-carnitine concurrent with common pharmaceutical/

nutraceutical therapies (e.g., orlistat, sibutramine, genistein) might

confer greater improving effects on either weight/BMI, glycemic, or

lipid profile, vs. individual administration of each medication (40–

42), which has been ascribed to the additive or synergistic impacts of

combined therapy.

As mentioned, current data indicate the putative efficacy of both

L-carnitine (11–15) and pro/pre/synbiotics in ameliorating obesity

and associated metabolic (lipid/glycemic) indicators (26–29).

Furthermore, it has been supposed that L-carnitine combined

therapy might be more efficient in attenuating obesity and related

comorbidities compared with conventional monotherapies (40–42).

Additionally, the possible synergistic/complementary impacts of L-

carnitine and pro/synbiotics (43) should be considered. Therefore,

the simultaneous supplementation of synbiotics and L-carnitine for

concurrent targeting of diverse metabolic pathways presents a

promising and reasonable approach to alleviate obesity. Hence,

we hypothesized that concomitant supplementation of multistrain/

multispecies synbiotics and L-carnitine may induce more

pronounced effects on weight or metabolic parameters.

Nevertheless, we found no previous reports on the metabolic

effects of synbiotics and L-carnitine co-administration in

individuals with obesity. Therefore, the present research was

conducted to assess the effects of concomitant supplementation of

L-carnitine and a multistrain/multispecies synbiotic compared with

L-carnitine single therapy on the anthropometric and

cardiometabolic indices in healthy women with obesity.
Materials and methods

Study design and participants

In this double-blind, controlled, randomized clinical trial

(RCT), implemented between February and August 2019 at the

Nutrition Research Center, Tabriz University of Medical Sciences

(TBZMED, Tabriz, Iran), 46 eligible volunteer women with obesity,

unwilling to follow weight-reducing diets, aged 19–49 years, and

body mass index (BMI) of 30–35 kg/m2 were recruited through

announcement and prescreened for enrollment via phone interview.

The exclusion criteria were as follows: pregnancy, lactation,

menopause; history of diabetes, hypertension, cardiovascular,

thyroid, renal, gastrointestinal, hepatic, or active infectious

diseases; physical disability; intestinal surgeries, vegetarianism or

veganism; vigorous physical activity; following weight loss diets,

taking weight-reducing supplements/medications, pro/pre/
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synbiotics, multivitamins, antacids, antibiotics, or laxative

medicines within the last 2 months; taking drugs influencing

glucose/lipid metabolism, i.e., antidiabetics, lipid-lowering agents,

glucocorticoids, contraceptives, non-steroidal anti-inflammatory

drugs (NSAIDs), b-blockers; steroids, immunosuppressive or

anticonvulsant medicines; and smoking or alcohol consumption.

At baseline, all participants were requested to sign a written

informed consent after a full explanation of the research process;

afterward, demographic, medical history, and physical activity

questionnaires were filled out for them. Subsequently,

anthropometric measurements and the 24-h recall interview were

conducted by a nutritionist.

This research was performed in accordance with the Declaration

of Helsinki principles, approved by the Ethics Committee of the

TBZMED (ethics-code: IR.TBZMED.REC.1396.747), and registered

with the Iranian-Registry-of-Clinical-Trials (http://www.irct.ir, id:

IRCT20080904001197N13).
Sample size

Considering 95% confidence level and 80% power in two-tailed

tests, based on changes in weight obtained from a previous pilot

clinical trial reporting a significant decrease in body weight (82.0 ±

2.2 vs. 80.9 ± 1.8 kg, p = 0.007) after carnitine supplementation for 4

weeks (44), a minimum sample size of 17 was determined for each

group, which was increased to 23, anticipating a dropout rate of

35%, using the Power Analysis and Sample Size Software (PASS;

NCSS, LLC, USA).
Randomization, blinding, and intervention

Following a 2-week run-in period, the participants were

randomly allocated to the “L-carnitine + synbiotic” or “L-

carnitine + placebo” groups via block randomization in a 1:1

ratio, in blocks of two, stratified by age, using the Random

Allocation Software (RAS). Intervention allocation was blinded

for the participants and researchers; to assure concealment,

participants ’ allocation was performed via consecutively

numbered, opaque, sealed envelopes, by an investigator not

involved in the study. The L-carnitine + synbiotic intervention

group received two L-carnitine tablets/day (500 mg of L-carnitine

tartrate/tablet, Karen Company, Iran) after the main meals, plus

multistrain/multispecies synbiotic [Probiotics International Ltd.

(Protexin®), Lopen Head, Somerset, UK] and one 250 mg

capsule/day after lunch containing 175 mg fructo-oligosaccharide

(FOS), plus 1 × 108 colony-forming unit (CFU)/capsule, freeze-

dried Protexin probiotics, including Bifidobacterium breve PXN 25,

Bifidobacterium longum PXN 30, Lactobacillus casei PXN 37,

Lactobacillus rhamnosus PXN 54, Lactobacillus acidophilus PXN

35, Lactobacillus bulgaricus PXN 39, and Streptococcus thermophilus

PXN 66, while those in the L-carnitine + placebo group received the

same amounts of L-carnitine and 250 mg maltodextrin capsule/day,

as the synbiotic placebo (FIC Co., China), for eight sequential

weeks. Furthermore, all participants received healthy-eating
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dietary advice according to the Food Guide Pyramid and the

National Heart, Lung, and Blood Institute (NHLBI) Obesity

Education Initiative Expert Panel guideline by a nutritionist (45).

Participants received the supplements/placebo in monthly

visits. Placebo and synbiotic capsules were identical in color,

shape, and size. To ensure adherence and discuss possible adverse

effects, subjects received twice weekly phone calls and were asked to

mention the side effects and to return the unused tablets/capsules.

Compliance, described as taking at least 90% of the supplements,

was assessed by the returned pill count (46), through which the

returned tablets/capsules were counted. Moreover, participants

were asked not to change routine dietary and physical activity

habits during the study to eliminate the probable confounding

impacts of dietary/physical activity alterations on the study results,

as well as not to use pro/pre/synbiotic-supplemented food products

during the intervention period.
Physical activity, dietary intake, and
anthropometric assessments

Physical activity level (PAL) and dietary intake were evaluated

at three time points: weeks 1 (baseline), 4, and 8. Anthropometric

measurements, including height, BMI, body weight, and neck, waist,

and hip circumferences (NC, WC, HC), were performed pre- and

post-intervention. Height and weight were measured to the nearest

0.1 cm and 0.1 kg in light clothing without shoes by a calibrated

stadiometer and scale (Seca, Hamburg, Germany). BMI was

calculated as weight/height2 (kg/m2). NC was measured at mid-

neck height, between the mid-cervical spine and mid-anterior neck

while sitting with a straight back, all to the nearest 0.1 cm; WC at

the narrowest horizontal girth between the costal and iliac crests

(47); and HC at the widest circumference over the greater

trochanters, using a flexible inelastic measuring tape. Waist/hip

ratio (WHR) was calculated as WC/HC. Dietary intake was

evaluated via three 24-h dietary recalls (two non-sequential days

and a weekend), analyzed using the Nutritionist IV software,

modified for Iranian foods (First Databank Inc, San Bruno, CA,

USA). The International Physical Activity Questionnaire-Short

Form (IPAQ-SF) was applied to assess PAL through in-person

interviews (48). Based on the IPAQ analysis guidelines, the

metabolic equivalent of tasks score (MET—min/week) was

calculated, classifying the participants as low (<600 MET),

moderate (600–3,000 MET), or severe active (≥3,000 MET) (48).

A nutritionist conducted the stated assessments.
Biochemical assays

Following a 12-h overnight fasting, venous blood (5 ml) was

obtained for biochemical analyses, pre- and post-intervention.

Serum TC, TG, HDL-C, FBS, and insulin were measured by

colorimetric enzymatic methods, using commercial kits (Pars-

Azmoon Co, Tehran, Iran); low-density lipoprotein-cholesterol

(LDL-C) was calculated by the Friedewald formula. Insulin level
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was determined using the enzyme-linked immunosorbent assay

(ELISA) kit (Monobind, Lake Forest, CA, USA). Appropriate

formulas were used to calculate QUICKI and HOMA-IR (49, 50).
Statistical analysis

Statistical analysis was carried out using SPSS Release 23.0

software (SPSS Inc., Chicago, IL, USA). The Kolmogorov–

Smirnov test was applied to assess the normality of quantitative

variables distribution. Frequency (percentage) was presented for

categorical data and mean (SD) for normally distributed numerical

variables. Data analysis was conducted based on both per-protocol

and intention-to-treat (ITT) approaches (51), using the multiple

imputation procedure for missing values imputation as for the ITT

approach. Moreover, participants with an adherence rate of less

than 90% or those unwilling to continue the study were planned to

be excluded, concerning the per-protocol method. To compare

between-group baseline disparities, the independent samples t-test

was used for numerical variables, while the Pearson chi-square or

the trend chi-square test was used for categorical variables. To

assess within-group changes, paired-samples t-test or repeated-

measures analysis of variance was applied. The trend chi-square

test was applied to determine intragroup differences of qualitative

variables. To avoid potential bias in assessing intergroup post-

intervention differences, the analysis of covariance (ANCOVA)

test was applied while adjusting for possible confounding factors,

such as baseline values, age, changes in energy intake, physical

activity, and BMI. The relative effect size was expressed as percent of

changes (PC), calculated as follows: [(post-intervention value −

baseline value)/baseline value) × 100)]. To assess the clinical

effectiveness of the intervention, the number needed to treat

(NNT), an absolute measure of effectiveness, was calculated as the

inverse of absolute risk reduction (ARR) as an estimate of the

overall clinical impact (NNT = 1/ARR), considering the median of

weight reduction in the studied population (≥2.45 kg) as optimal.

Statistical significance was defined as p-value <0.05.
Results

General characteristics of the study

In total, of the 198 screened volunteers, 46 qualified participants

were recruited, among which 45 completed the study with one

participant in the placebo group discontinuing the study because of

pregnancy (Figure 1). Data analysis performed based on both per-

protocol (n = 45) and intention-to-treat (ITT) (n = 46) statistical

approaches showed comparable results (the complete set of ITT

analysis results are presented as Supplementary Material). No side

effects were stated, except for temporary, mild gastrointestinal

symptoms in one participant in the L-carnitine + synbiotic group.

According to the returned pill count method, mean compliance

rates were 93.93% and 94.40% for the L-carnitine + placebo group

vs. the L-carnitine + synbiotic group, respectively (46). No
fron
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significant intergroup differences were observed in the baseline

characteristics or PAL (Table 1).
Physical activity, dietary intake, and
anthropometric measurements

No significant disparities were observed in the physical activity

(METs) or dietary intake at baseline in either group (Table 2);

moreover, no significant within-/between-group disparities were

noted for the stated factors, even after adjustment for baseline

values or other potential confounders. Anthropometric indices were

not significantly different between the two study groups at baseline

(Table 3); nevertheless, BMI, body weight, NC, WC, HC, and WHR

reduced significantly in both groups after the intervention.

Additionally, the L-carnitine + synbiotic group indicated a larger

decrease in the above-stated parameters, except for WHR,

compared with the other group (p < 0.001, <0.001, <0.001, =

0.012, and =0.030, respectively), even after adjustment for the

baseline levels, changes in energy intake, and physical activity as

the potential confounders (Table 3). The percent of changes (PCs)

for weight were −5.03% and −1.09% in the L-carnitine + synbiotic

and L-carnitine + placebo groups, respectively (Figure 2A).
Frontiers in Endocrinology 05
Biochemical factors

Alterations in biochemical indices are shown in Table 4. No

significant differences were observed for the lipid or glycemic

indices between the two groups at baseline. Serum concentrations

of TG, TC, and LDL-C decreased, while HDL-C increased

significantly in the L-carnitine + synbiotic group compared with

the baseline (p < 0.001 for all), and the lipid profile changed

significantly in the L-carnitine + placebo group post-intervention

(p < 0.001, <0.001, = 0.030, respectively), except for TG (p = 0.077).

Moreover, there were no significant intergroup disparities for

neither of the lipid indicators post-intervention, even when

adjusted for the baseline levels and probable confounders, except

for HDL-C (p = 0.009). Moreover, a significant reduction in

glycemic indices (FBS, insulin, HOMA-IR, p < 0.001) and an

increase in QUICKI (p < 0.001) were noted in the L-carnitine +

synbiotic group in comparison to the baseline, except for FBS (p =

0.151), and alterations in glycemic indices were significant in the L-

carnitine + placebo group (p = 0.026, 0.016, 0.023, respectively).

Additionally, a profound decline in FBS, insulin, and HOMA-IR (p

= 0.014, 0.051, 0.024, respectively) and an increment in QUICKI (p

= 0.019) were observed in the L-carnitine + synbiotic group

compared with the L-carnitine + placebo group post-intervention,
FIGURE 1

The study flow diagram.
frontiersin.org

https://doi.org/10.3389/fendo.2023.1237882
https://www.frontiersin.org/journals/endocrinology
https://www.frontiersin.org


Fallah and Mahdavi 10.3389/fendo.2023.1237882
which remained significant after adjustment for the baseline levels

and possible confounding factors. PCs for the metabolic parameters

are presented in Figures 2B, C.
Clinical effectiveness of intervention

The clinical effectiveness of the intervention on body weight is

presented in Table 5. Out of 23 participants in the L-carnitine +

synbiotic group, 19 (82.6%) experienced optimal amelioration in

body weight post-intervention, defined as the median of weight

reduction in the studied population (≥2.45 kg), while only 5 of the

22 participants (22.7%) in the L-carnitine + placebo group

experienced the expected weight loss. ARR (95% CI) for the L-

carnitine + synbiotic vs. the L-carnitine + placebo group was 59.8%

(0.36–0.83), and the NNT to achieve the defined weight loss

throughout the 8-week intervention was calculated as 2, which

indicates that approximately one in every two participants in the L-

carnitine + synbiotic group will benefit from intervention.
Discussion

The present study evaluated the impacts of co-supplementing

L-carnitine with multistrain/multispecies synbiotic vs. L-carnitine

concomitant with placebo on anthropometric and metabolic

profiles in women with obesity. Both “L-carnitine + synbiotic”

and “L-carnitine + placebo” supplementation significantly

ameliorated the anthropometric indices, lipid profile, and glucose

homeostasis parameters, except for the reduction of TG and FBS in

the L-carnitine + placebo group. Importantly, L-carnitine +

synbiotic co-supplementation significantly alleviated the
Frontiers in Endocrinology 06
anthropometric and glycemic indices, compared with the L-

carnitine + placebo; nonetheless, no significant intergroup

disparities were detected for the lipid indices, except for HDL-C.

Overall, the intragroup findings of this study indicate that both L-

carnitine + synbiotic and L-carnitine + placebo supplementation

might have beneficial effects on obesity and related cardiometabolic

biomarkers. Nevertheless, according to the statistically significant

intergroup disparities revealed for the anthropometric (BMI,

weight, NC, WC, and HC) and glycemic indices (FBS, insulin,

HOMA-IR, QUICKI) and HDL-C, co-supplementation of L-

carnitine with synbiotic was more advantageous to improve these

parameters. Based on our in-depth search, there were no reports on

the L-carnitine + synbiotic joint supplementation effects on the

stated factors in individuals with obesity; therefore, we discussed

our findings based on the literature indicating the impacts of either

supplement separately. The conceivable mechanisms for the

ameliorating impacts of either synbiotics or L-carnitine on obesity

and glycemic/lipid indices are illustrated in Figures 3A, B.

Although preclinical investigations have implied the efficiency

of L-carnitine in weight reduction (52), clinical evidence regarding

its anti-obesity effects is contradictory. The present study

demonstrated that L-carnitine + synbiotic joint administration

significantly reduced BMI, body weight, NC, WC, and HC

compared with L-carnitine + placebo. Additionally, post-

intervention intragroup differences for these variables were also

significant in both groups. Our findings regarding the ameliorating

impacts of L-carnitine on anthropometric measures were in line

with the findings of recent meta-analyses, which concluded that L-

carnitine prescription could amend anthropometric measures

(11, 12).

Multiple plausible mechanisms are suggested for the beneficial

effects of carnitine on increasing energy expenditure and
TABLE 1 Baseline characteristics of the participants.

Variable L-carnitine + synbiotic (n = 23) L-carnitine + placebo (n = 22) p

Age (years) 38.39 (6.30) 38.00 (7.47) 0.850a

Weight (kg) 84.04 (8.67) 85.01 (7.88) 0.697a

Height (cm) 160.56 (6.02) 159.95 (6.79) 0.751a

BMI (kg/m2) 32.59 (2.02) 33.22 (1.75) 0.273a

PAL (MET—min/week) 776.95 (276.83) 733.09 (294.83) 0.609a

Marital status, n (%)
Single
Married
Divorced or widow

3 (13.00)
19 (82.6)
1 (4.3)

4 (18.2)
18 (81.8)
0 (0.0)

0.483b

Education, n (%)
Illiterate
Up to high school
University degree

0 (0.0)
11 (47.8)
12 (52.2)

1 (4.5)
12 (54.5)
9 (40.9)

0.414b

Occupation, n (%)
Housewife
Employee
Other

11 (47.8)
11 (47.8)
1 (4.4)

16 (72.7)
6 (27.3)
0 (0.0)

0.098b
frontie
Numerical data are expressed as mean (SD) and categorical variables as number (%).
ap-value based on the independent samples t-test.
bp-value based on the chi-square test.
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subsequent weight loss. Carnitine plays a pivotal role in fatty acid ß-

oxidation, through facilitating the translocation of long-chain fatty

acids across the mitochondrial membrane (8, 18). Moreover, it may

increase energy expenditure by modulating the mitochondrial

acetyl-CoA/CoA ratio (19), thus activating the pyruvate

dehydrogenase complex (PDHC) (8, 19), leading to the activation

of the glycolytic pathway (8, 10). In addition, L-carnitine might

protect against the decrease in metabolic rate during the weight

reduction period through enhancing the resting energy expenditure

(REE) (52). Furthermore, the anti-obesity properties of carnitine

might be attributed to its potential role in stimulating adipocyte

lipolysis, through upregulating lipolytic gene expression, namely,

hormone-sensitive lipase (HSL) (21), carnitine palmitoyl

transferase Ia (CPT-Ia) (21), and acyl coenzyme A oxidase (ACO)

(21), as well as attenuating adipogenesis in adipocytes through
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suppression of adipogenic gene expression, including peroxisome

proliferator-activated receptor gamma (PPAR-g) and adipose-

specific fatty acid-binding protein (aP2) in adipose tissue (21).

Finally, it has been reported that modulation of CPT-1 might

have an improving effect on food intake and energy

metabolism (20).

According to the evidence demonstrating altered gut

microbiota diversity or composition in obesity (53), remodeling

the gut microbiota through pro/pre/synbiotic supplementation is

speculated as a promising preventive/therapeutic strategy in obesity

(24, 25). It has been suggested that multistrain probiotic/synbiotic

therapy might induce complementary or synergistic effects in

metabolic disorders (38), compared with single-strain probiotics

or pre/probiotics monotherapy (25). Our findings regarding

anthropometric indices were consistent with the findings of a
TABLE 2 Dietary intake and physical activity of the participants throughout the study.

Variable L-carnitine + synbiotic
(n = 23)

L-carnitine + placebo
(n = 22)

MD (95% CI)
(between groups)

p

Energy (kcal)

Baseline
After 4 weeks
After 8 weeks
pa

2,390.21 (660.67)
2,322.78 (590.99)
2,300.91 (541.14)
0.161

2,086.31 (461.49)
1,974.22 (456.78)
1,950.72 (385.79)
0.188

303.89 (−40.18, 647.98)
75.26 (−24.10, 174.62)f

144.72 (−39.33, 328.79)f

0.082b

0.134c

0.120c

Protein (g)

Baseline
After 4 weeks
After 8 weeks
pa

72.41 (17.43)
69.66 (13.59)
73.47 (14.91)
0.377

69.35 (20.00)
62.76 (13.86)
64.23 (22.33)
0.228

3.06 (−8.20, 14.33)
4.67 (−1.88, 11.24)f

8.06 (−1.05, 17.17)f

0.586b

0.158d

0.081d

Carbohydrate (g)

Baseline
After 4 weeks
After 8 weeks
pa

313.25 (104.96)
302.84 (94.28)
298.59 (117.49)
0.249

263.47 (80.94)
243.93 (64.86)
250.08 (68.13)
0.150

49.78 (−6.75, 106.31)
10.34 (−10.21, 30.91)f

1.23 (−28.51, 30.98)f

0.083b

0.315d

0.934d

Fat (g)

Baseline
After 4 weeks
After 8 weeks
pa

90.04 (24.25)
87.48 (18.11)
88.21 (23.24)
0.694

88.16 (27.71)
81.15 (18.37)
77.89 (24.30)
0.211

1.88 (−13.75, 17.52)
4.90 (−0.96, 10.77)f

7.44 (−2.28, 17.17)f

0.809b

0.099d

0.130d

Dietary fiber (g)

Baseline
After 4 weeks
After 8 weeks
pa

11.66 (4.74)
11.85 (4.60)
10.83 (4.74)
0.268

10.12 (4.08)
11.66 (2.63)
10.90 (5.48)
0.264

1.53 (−1.12, 4.20)
−0.82 (−2.53, 0.88)f

−1.24 (−3.93, 1.43)f

0.251b

0.334d

0.353d

Physical activity (METs)

Baseline
After 4 weeks
After 8 weeks
pa

776.95 (276.83)
803.47 (256.76)
784.56 (282.65)
0.230

733.09 (294.83)
732.27 (322.86)
734.36 (311.91)
0.970

43.86 (−127.99, 215.73)
27.40 (−7.26, 62.07)f

5.70 (−34.61, 46.02)f

0.609b

0.118e

0.777e
frontie
Data are presented as mean (SD) and mean difference (95% CI).
METs, metabolic equivalents (MET—min/week); MD, mean difference; CI, confidence interval.
ap-value based on repeated-measures analysis of variance (RM-ANOVA) (comparison of data with more than two measurements within the groups post-intervention).
bp-value based on the independent samples t-test (comparison of data between the groups at baseline).
cp-value based on analysis of covariance (ANCOVA) (comparison of data between the groups post-intervention, adjusted for baseline values and changes in physical activity).
dp-value based on analysis of covariance (ANCOVA) (comparison of data between the groups post-intervention, adjusted for baseline values, changes in physical activity, and energy intake).
ep-value based on ANCOVA (comparison of data between the groups post-intervention, adjusted for baseline values).
fAbsolute effect size (95% CI) based on the mentioned ANCOVA models; bold values indicate statistically significant differences (p < 0.05).
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meta-analysis, indicating that multistrain probiotic administration

markedly diminished body weight and BMI (54). Moreover, a

recent meta-analysis illustrated a significant reduction in weight

andWC due to synbiotic supplementation (55). Notably, in a recent

umbrella review of 14 meta-analyses, assessing pro/synbiotics on

weight changes, most studies revealed a decrease in BMI and/or

weight, favoring pro/synbiotics compared with placebo (26).

Several possible mechanisms have been conceived for the

favorable impacts of synbiotics supplementation on anthropometric

indices, mediated through the complementary/synergistic effects of

their pro- and prebiotic compartments (24, 38). Collectively, the

weight-reducing properties of synbiotics could be ascribed to their

possible contribution in modulating energy homeostasis, elevating

anorexigenic hormones (30), blunting appetite (30), and alleviating

systemic inflammation (56, 57). Accordingly, the probable

mechanisms could be discussed in four main approaches, namely,

modulation of gut microbiota dysbiosis, production of SCFAs,
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reduction of gut permeability and metabolic endotoxemia, and

regulation of bile acid metabolism (32, 35, 36).

Evidence has intimated that synbiotics might reverse the

detrimental effects of microbiota dysbiosis, promoting weight loss

and maintenance via restoring healthy gut microbiota composition

and/or function (35, 36). According to literature, gut microbiota

modulation might lead to a decline in fat storage in adipocytes due

to incrementing fasting-induced adipose factor (FIAF) levels, a

suppressor of lipoprotein lipase (LPL) (30), and foster lipid

oxidation in the liver and muscles via amplified activity of

adenosine monophosphate-activated protein kinase (AMPK) (30).

Growing evidence has depicted that gut microbiota

modification leads to augmented SCFA production, which

underlies most of the aforementioned beneficial impacts (32). It

has been indicated that SCFAs may improve energy homeostasis

and fat storage via boosting fatty acid oxidation and thermogenesis

through upregulating the expression of peroxisome proliferator-
TABLE 3 Changes in anthropometric indices of the participants throughout the study.

Variable L-carnitine + synbiotic
(n = 23)

L-carnitine + placebo
(n = 22)

MD (95% CI)
(between groups)

P

Weight (kg)

Baseline
After 8 weeks
MD (95% CI) (within groups)
pa

84.04 (8.67)
79.81 (7.42)
−4.23 (−5.18, −3.26)
<0.001

85.01 (7.88)
84.09 (7.46)
−0.92 (−1.56, −0.27)
0.007

−0.97 (−5.96, 4.02)
−3.41 (−4.35, −2.47)d

0.697b

<0.001c

BMI (kg/m2)

Baseline
After 8 weeks
MD (95% CI) (within groups)
pa

32.59 (2.02)
30.98 (1.88)
−1.61 (−1.94, −1.28)
<0.001

33.22 (1.75)
32.87 (1.59)
−0.35 (−0.60, −0.11)
0.007

−0.63 (−1.76, 0.51)
−1.33 (−1.70, −0.95)d

0.273b

<0.001c

WC (cm)

Baseline
After 8 weeks
MD (95% CI) (within groups)
pa

101.39 (8.82)
92.97 (7.37)
−8.41 (−10.87, −5.94)
<0.001

103.95 (8.02)
97.86 (6.47)
−6.09 (−7.45, −4.73)
<0.001

−2.56 (−7.63, 2.51)
−3.04 (−5.38, −0.70)d

0.314b

0.012c

HC (cm)

Baseline
After 8 weeks
MD (95% CI) (within groups)
pa

116.30 (5.77)
110.04 (4.70)
−6.26 (−7.14, −5.37)
<0.001

117.54 (6.03)
112.65 (5.52)
−4.88 (−6.47, −3.29)
<0.001

−1.24 (−4.79, 2.30)
−1.70 (−3.23, −0.17)d

0.485b

0.030c

WHR

Baseline
After 8 weeks
MD (95% CI) (within groups)
pa

0.87 (0.06)
0.84 (0.06)
−0.02 (−0.04, −0.009)
0.006

0.88 (0.06)
0.87 (0.06)
−0.01 (−0.02, −0.003)
0.014

−0.01 (−0.05, 0.02)
−0.01 (−0.03, 0.007)d

0.489b

0.165c

NC

Baseline
After 8 weeks
MD (95% CI) (within groups)
pa

38.33 (1.62)
36.75 (1.57)
−1.58 (−1.88, −1.28)
<0.001

38.81 (1.28)
38.43 (1.07)
−0.38 (−0.62, −0.13)
0.004

−0.47 (−1.35, 0.40)
−1.27 (−1.63, −0.91)d

0.283b

<0.001c
front
Data are presented as mean (SD) and mean difference (95% CI).
BMI, body mass index; WC, waist circumference; HC, hip circumference; WHR, waist to hip ratio; NC, neck circumference; MD, mean difference; CI, confidence interval.
ap-value based on the paired samples t-test (comparison of data within the groups post-intervention).
bp-value based on the independent samples t-test (comparison of data between the groups at the baseline).
cp-value based on analysis of covariance (ANCOVA) (comparison of data between the groups post-intervention, adjusted for baseline values, changes in physical activity, and energy intake).
dAbsolute effect size (95% CI) based on the mentioned ANCOVA models; bold values indicate statistically significant differences (p < 0.05).
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activated receptor gamma coactivator-1a (PGC-1a) and AMPK in

the muscle and liver tissues. Moreover, SCFAs might induce

thermogenesis in brown adipose tissue (BAT), through

upregulating mitochondrial uncoupling protein-1 (UCP-1), and

white adipose tissue (WAT) browning (37, 58). Furthermore,

SCFAs might regulate energy homeostasis through binding to the

G protein-coupled receptors (GPCRs), GPR41 and GPR43, on

intestinal epithelial cells (53), resulting in enhanced production

and secretion of gut hormones (25, 32, 56), namely, peptide YY

(PYY) (59) and glucagon-like peptides 1 and 2 (GLP-1 and GLP-2)

(60). PYY and GLP-1 might delay gastric emptying (61), enhance

satiety (25, 32, 62), and decrease fat mass (62), whereas GLP-2

contributes to the reduced permeability of the intestinal wall and

metabolic endotoxemia (63) due to diminished entrance of

lipopolysaccharide (LPS), a gram-negative bacteria cell wall

component, into systemic circulation (63). Furthermore,

probiotics might be involved in bile acid metabolism, via

producing bile salt hydrolase (BSH) (64), through activating

farnesoid X receptor (FXR) and Takeda G-protein-coupled bile

acid receptor 5 (TGR5), thereby regulating energy expenditure (65).

Finally, prebiotics might be implicated in diminishing adipogenesis,

via inhibiting the endocannabinoid system in the gut and adipose

tissue (60, 66).

Regarding the lipid profile, despite the significant intragroup

amelioration in lipid indices, except for TG in the L-carnitine +
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placebo group, no significant disparities were found for the lipid

parameters among the groups, except for HDL-C. Our failure to

find significant intergroup differences in lipid profile could be due to

the fact that both carnitine and synbiotics might induce beneficial

effects on lipid profile (15, 28); consequently, both groups

experienced a comparable decline in lipid parameters, which

resulted in the insignificant intergroup differences. Furthermore,

this might probably be the consequence of the within-normal range

of primary levels of these indicators, a rather short period of

intervention, or possibly the inadequate dose of synbiotics to

convince more advantageous modifications in the joint-

supplemented group. Meanwhile, the significant intergroup

disparity for HDL-C could be ascribed to the possible

complementary/synergetic properties of synbiotic and L-carnitine

compared with L-carnitine alone or possibly due to the greater

alterations in anthropometric indices in the joint-supplemented

group (67). Finally, the significant intragroup reduction of TG in

the L-carnitine + synbiotic group (p < 0.001), which was not found

in the other group (p = 0.077), might be rationalized by the

complementary/synergistic effects of synbiotic and L-carnitine in

declining TG levels or could have been intervened via the greater

weight reduction in the L-carnitine + synbiotic group (68).

Our results regarding the hypolipidemic properties of L-

carnitine were in accordance with the findings of recent meta-

analyses, addressing the ameliorating effects of L-carnitine on TG,
A

B

C

FIGURE 2

Percent changes for anthropometric (A), lipid profile (B), and glycemic indices (C). Data expressed as mean (SD). BMI, body mass index; WC, waist
circumference; HC, hip circumference; WHR, waist to hip ratio; TG, triglyceride; TC, total cholesterol; LDL-C, low-density lipoprotein-cholesterol;
HDL-C, high-density lipoprotein-cholesterol; FBS, fasting blood sugar; HOMA-IR, homeostasis model assessment of insulin resistance.
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TC, LDL-C, and HDL-C (14, 15). The suggested mechanisms for

the beneficial impacts of L-carnitine on lipid profile include

reducing the conversion of free fatty acids (FFAs) to triglycerides

(14); decreasing insulin resistance (69); stimulating apolipoprotein-

A1 production, which is the major apolipoprotein of HDL-C (14);
Frontiers in Endocrinology 10
and blunting cholesterol synthesis via prohibiting the

hydroxymethylglutaryl CoA reductase (HMG-CoA) activity (70),

being implicated in weight reduction and consequently lipid profile

improvement (68). Moreover, alleviating adipogenesis via

downregulating adipogenic gene expression (21) and amplifying
TABLE 4 Changes in lipid profile and glycemic indices of the participants throughout the study.

Variable L-carnitine + synbiotic
(n = 23)

L-carnitine + placebo
(n = 22)

MD (95% CI)
(between groups)

p

TG (mg/dl)

Baseline
After 8 weeks
MD (95% CI) (within groups)
pa

124.73 (39.21)
101.30 (26.26)
−23.43 (−35.01, −11.85)
<0.001

111.54 (35.87)
101.81 (28.79)
−9.72 (−20.61, 1.16)
0.077

13.19 (−9.43, 35.81)
−7.82 (−24.20, 8.56)d

0.246b

0.340c

TC (mg/dl)

Baseline
After 8 weeks
MD (95% CI) (within groups)
pa

189.34 (25.38)
145.47 (18.08)
−43.86 (−53.62, −34.11)
<0.001

191.50 (39.18)
153.86 (28.18)
−37.63 (−49.76, −25.50)
<0.001

−2.15 (−22.21, 17.90)
−5.17 (−21.11, 10.77)d

0.829b

0.516c

LDL-C (mg/dl)

Baseline
After 8 weeks
MD (95% CI) (within groups)
pa

112.17 (22.98)
84.08 (15.27)
−28.08 (−36.61, −19.55)
<0.001

125.54 (31.50)
92.63 (24.66)
−32.90 (−43.03, -22.78)
<0.001

−13.37 (−29.89, 3.15)
−0.39 (−14.73, 13.94)d

0.110b

0.956c

HDL-C (mg/dl)

Baseline
After 8 weeks
MD (95% CI) (within groups)
pa

41.08 (8.65)
51.69 (11.10)
10.60 (8.19, 13.01)
<0.001

40.86 (7.15)
43.72 (7.42)
2.86 (0.30, 5.42)
0.030

0.22 (−4.56, 5.01)
6.75 (1.75, 11.74)d

0.925b

0.009c

FBS (mg/dl)

Baseline
After 8 weeks
MD (95% CI) (within groups)
pa

89.95 (8.88)
75.65 (4.75)
−14.30 (−17.06, −11.54)
< 0.001

85.81 (11.54)
81.72 (8.67)
−4.09 (−9.80, 1.62)
0.151

4.13 (−2.04, 10.31)
−7.57 (−13.54, −1.60)d

0.184b

0.014c

Insulin (µIU/ml)

Baseline
After 8 weeks
MD (95% CI) (within groups)
pa

19.83 (12.69)
10.50 (3.19)
−9.32 (−14.46, −4.18)
<0.001

20.00 (9.88)
14.34 (5.28)
−5.66 (−10.56, −0.75)
0.026

−0.17 (−7.03, 6.69)
−3.56 (−7.15, 0.01)d

0.960b

0.051c

HOMA-IR

Baseline
After 8 weeks
MD (95% CI) (within groups)
pa

4.37 (2.79)
1.97 (0.66)
−2.40 (−3.52, −1.27)
<0.001

4.38 (2.47)
2.93 (1.17)
−1.44 (−2.59, −0.29)
0.016

−0.007 (−1.59, 1.58)
−0.89 (−1.66, −1.28)d

0.993b

0.024c

QUICKI

Baseline
After 8 weeks
MD (95% CI) (within groups)
pa

0.31 (0.03)
0.34 (0.01)
0.02 (0.01, 0.04)
<0.001

0.31 (0.02)
0.32 (0.01)
0.01 (0.001, 0.023)
0.023

0.003 (−0.01, 0.02)
0.01 (0.003, 0.031)d

0.725b

0.019c
frontie
Data are presented as mean (SD) and mean difference (95% CI).
TG, triglyceride; TC, total cholesterol; LDL-C, low-density lipoprotein-cholesterol; HDL-C, high-density lipoprotein-cholesterol; FBS, fasting blood sugar; HOMA-IR, homeostasis model
assessment of insulin resistance; QUICKI, quantitative insulin sensitivity check index; MD, mean difference; CI, confidence interval.
ap-value based on the paired samples t-test (comparison of data within the groups post-intervention).
bp-value based on the independent samples t-test (comparison of data between the groups at baseline).
cp-value based on analysis of covariance (ANCOVA) (comparison of data between the groups post-intervention, adjusted for baseline values, changes in physical activity, energy intake, and
BMI).
dAbsolute effect size (95% CI) based on the mentioned ANCOVA models; bold values indicate statistically significant differences (p < 0.05).
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lipolysis via stimulating the expression of lipolytic genes (21) are the

other possible mechanisms reported for the hypolipidemic

properties of L-carnitine.

A very recent meta-analysis concluded that synbiotic

supplementation could significantly amend TG, TC, LDL-C, and

HDL-C (28). The potential mechanisms for the lipid-ameliorating

effects of synbiotics have been reported to be predominantly

mediated through their gut microbiota-modulating effects (24,

25), leading to augmented SCFA production and improvement of

gut barrier function (25). In this regard, various mechanisms are

anticipated, including diminishing cholesterol synthesis via

hindering the activity of HMG-CoA reductase (71), reducing

intestinal cholesterol absorption concomitant with augmented

fecal emission (72), enzymatic deconjugation of bile salts and

higher excretion of bile acids (73), and competing with

cholesterol for intestinal absorption (74). Based on evidence,

synbiotics may confer their hypotriglyceridemic effects through

impeding triglyceride absorption from the gut, via stimulating

GLP-1 levels (75), stimulating the secretion of FIAF, by which

inhibiting endothelial LPL, which may lead to decreased release of

triglycerides from circulating chylomicrons and very-low-density

lipoprotein (VLDL) (76), and lowering TG levels through reducing

hepatic de novo lipogenesis, induced by carbohydrate-responsive

element-binding protein (ChREBP) and sterol regulatory element-

binding protein (SREBP) (76). Also, hindering pro-inflammatory

pathways triggered by Toll-like receptor-LPS (TLR-LPS) and

prohibiting Toll-like-receptor-4 (TLR4) activation (28, 29),

decreasing inflammatory cytokine production and consequently

reducing hepatic triglyceride synthesis through attenuating insulin

resistance (29), are reported as potential mechanisms.

The present study showed that L-carnitine + synbiotic co-

supplementation resulted in a significant amelioration in all

glycemic parameters including FBS, insulin, HOMA-IR, and

QUICKI, compared with L-carnitine + placebo monotherapy,

even when adjusted for possible confounding factors.

Additionally, either L-carnitine + synbiotic or L-carnitine +

placebo supplementation led to a remarkable intragroup

amendment in glycemic parameters, except for FBS in the L-

carnitine + placebo group. Considering that both carnitine and

synbiotics are perceived to induce beneficial effects on glycemic

indices (10, 77), hence, significant intergroup differences in

glycemic parameters might have been mediated through the

plausible complementary or cumulative effects of L-carnitine +

synbiotic co-administration, which led to a greater amelioration

in glycemic indices in the co-supplemented arm, or conceivably,
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could be attributed to the greater weight reduction in the co-

supplemented group (78).

Various clinical trials have demonstrated the promising effects

of L-carnitine on insulin sensitivity and/or glucose tolerance (10).

Our findings were in accordance with the results of a recent meta-

analysis, implying the ameliorating impacts of L-carnitine on

insulin, FBG, and HOMA-IR (13). Additionally, another meta-

analysis of 24 RCTs in patients having cardiovascular risk factors

implied the beneficial impacts of L-carnitine on FBG and HOMA-

IR (16).

Several mechanisms are suggested for the beneficial impacts of

L-carnitine on glucose homeostasis, including improving insulin

sensitivity, enhancing glucose utilization, modulating the

gluconeogenic and glycolytic enzymes expression, altering the

insulin signaling cascade gene expression, and stimulating

the insulin-like growth factor 1 (IGF-1) axis and IGF-1 signaling

cascade (10). L-carnitine is reported to enhance insulin sensitivity,

through augmenting long-chain acyl-CoA ß-oxidation (79), since

within cellular aggregation of acyl-CoA derivates is stated to be

involved in impairing insulin signaling, inducing insulin resistance

in the heart and skeletal muscle (10, 17). Additionally, L-carnitine is

supposed to participate in increasing glucose consumption via

upregulating PDHC activity (10, 79), also modulating the

intramitochondrial acetyl-CoA/CoA ratio (10). Furthermore, L-

carnitine may also positively contribute to glucose homeostasis,

through downregulating the gluconeogenic enzymes expression,

including phosphoenolpyruvate carboxykinase (PCK1) and

fructose-1,6-bisphosphatase isozyme 2 (FBP2), while upregulating

the glycolytic enzymes expression, e.g., pyruvate kinase and

glucokinase (10). Finally, modification of the expression of genes

involved in the insulin signaling cascade and activation of the IGF-1

signaling pathway have been suggested as putative mechanisms for

improving glucose tolerance (10).

It has been clarified in several clinical trials that pro/pre/

synbiotics might improve glucose homeostasis features (77, 80).

Synbiotic supplementation in metabolic syndrome patients

significantly improved insulin, FBS, QUICKI, and HOMA-IR

(80). Moreover, a meta-analysis on diabetic patients, indicated

that synbiotic supplementation markedly ameliorated FPG,

insulin, HOMA-IR, and QUICKI, supporting our findings as well

(81). However, another meta-analysis revealed that synbiotic

supplementation in individuals with overweight or obesity merely

decreased fasting insulin without any significant effects on other

glycemic indices (29). Perhaps, the discrepancy in the results could

be due to the diversity in formulations, dosages, or duration of
TABLE 5 Clinical effectiveness of the intervention for body weight reduction.

Optimal reduction in
body weight

Intervention group Number of participants with improvement, n (%) ARR (95% CI) NNT

≥2.45 (kg)

L-carnitine + synbiotic
(n = 23)

19 (82.6%)

0.59 (0.036–0.83) 2
L-carnitine + placebo
(n = 22)

5 (22.7%)
frontie
Median of weight loss in the studied population (≥2.45 kg) was defined as optimal weight reduction.
ARR, absolute risk reduction; CI, confidence interval; NNT, number needed to treat.
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supplementation, as well as different health conditions or the ethnic

groups of the subjects (82).

The putative mechanisms for the ameliorating effects of

synbiotics on glycemic status principally mediated through

amplifying SCFA production could be considered as four

principal issues, namely, ameliorating glucose homeostasis,
Frontiers in Endocrinology 12
attenuating insulin resistance, amending gut integrity, and

hindering proinflammatory signaling pathways (31, 33, 34). An

emerging body of evidence supports the impact of SCFAs on

improving glucose homeostasis, predominantly signaled through

GPCRs, mainly GPR43 (FFAR2) and GPR41 (FFAR3) (31, 33). It

has been reported that SCFAs might regulate hepatic glucose
A

B

FIGURE 3

Potential mechanisms for the improving effects of L-carnitine/synbiotics on obesity, lipid profile, and glycemic indices (A, B). Acetyl-CoA, acetyl
coenzyme-A; ACO, acyl-coenzyme-A oxidase; AMPK, adenosine monophosphate-activated protein kinase; aP2, adipose-specific fatty acid-binding
protein; BSH, bile salt hydrolase; Chol, cholesterol; CO-A, coenzyme A; CPT-I(a), carnitine palmitoyltransferase I(a); Exp, expression; FAs, fatty acids;
FBP2, fructose-1, 6-bisphosphatase isozyme 2; FFAs, free fatty acids; FIAF, fasting-induced adipose factor; FXR, farnesoid X receptor; GPR41, G protein-
coupled receptor 41; GPR43, G protein-coupled receptor 43; GLP-1, glucagon-like peptide-1; GLP-2, glucagon-like peptide 2; HSL, hormone-sensitive
lipase; HMG-CoA, hydroxymethylglutaryl CoA reductase; IGF-1, insulin-like growth factor 1; LPL, lipoprotein lipase; LPS, lipopolysaccharide; NF-kB,
nuclear factor kappa B; PCK1, phosphoenolpyruvate carboxykinase; PDHC, pyruvate dehydrogenase complex; PPAR-g, peroxisome proliferator-activated
receptor-gamma; PYY, peptide YY; SCFAs, short-chain fatty acids; TG, triglyceride; TGR5, Takeda G-protein-coupled bile acid receptor 5; TLR4-LPS,
Toll-like receptor 4-LPS; UCP-1, uncoupling protein-1.
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homeostasis, through activating AMPK, involving PPAR-g-
mediated effects on gluconeogenesis (31). Furthermore, SCFAs

might increase anorectic gut hormone secretion, PYY and GLP-1,

which may enhance glucose disposal and decrease insulin resistance

(25). Based on evidence, SCFAs might suspend gastric emptying,

probably via PYY, leading to hindered glucose release into the

bloodstream and reduced postprandial glucose concentrations (61).

Moreover, synbiotics have been reported to improve gut integrity

via SCFA production, by which inhibiting the TLR4–LPS complex-

triggered proinflammatory cascade, hampering proinflammatory

cytokine signaling pathways, such as nuclear factor kappa B (NF-

kB), thereby decreasing insulin resistance (31, 34).

Collectively, mounting data support the ameliorating impacts of

either synbiotics or L-carnitine on obesity, lipid profile, or glycemic

markers althoughdistinctions inmetabolicmodifying agents, such as

the participants’ ethnic group, genotype, health condition, dietary

intake, physical activity, and baseline values of biological markers,

along with formulation, dose, and supplementation length, might

have resulted in diverse reports. Furthermore, given the

aforementioned purported mechanisms for the improving effects

of L-carnitine/synbiotics on weight ormetabolic parameters, it could

be conceived that concomitant supplementation of L-carnitine and

synbioticsmay confermore pronounced impacts on these indicators,

potentially through simultaneous modulation of energy homeostasis

(8, 30), increasing fatty acid oxidation (8, 30), reducing adipogenesis

or stimulating adipocyte lipolysis (21, 30), alleviating insulin

resistance and glucose homeostasis (10, 31, 33), or attenuating

systemic inflammation (56, 57), in a complementary or synergistic

manner probably mediated through concurrent targeting of

metabolic/inflammatory signaling pathways including CPT-Ia (20,

21), PDHC (8, 19), PPAR-g (21, 31, 37), AMPK (30, 37), or NF-kB
(31, 34).
Strengths and limitations

As far as we know, this clinical trial appears to be the first to

compare the impacts of co-supplementation of L-carnitine + synbiotic

vs. L-carnitine single prescription on the anthropometric and

metabolic responses among women with obesity. The major strength

of the present study was the participants’ recruitment criteria, as it was

performed on non-menopause, healthy women with obesity, not

taking any medications, thus eliminating the possible confounding

factor effects. Moreover, supplementation with a multistrain/

multispecies synbiotic might be the other privilege of this research;

based on evidence, multistrain pro- or synbiotics appear to be more

efficient compared with single strains, due to the plausible synergistic

or complementary interactivity among diverse species/strains (25, 81).

Also, a small dropout rate and a high level of participants’ adherence

(over 90%) were the other positive points.

Nevertheless, this study had some limitations, including a

relatively short intervention duration. Furthermore, not including

a third intervention group receiving synbiotic plus placebo, could be

considered as the other limitation of this study. Further longer

duration studies evaluating the gut microbiota composition in a

three-group setting are recommended.
Frontiers in Endocrinology 13
Conclusion

Collectively, the current study implied that supplementation of

multistrain/multispecies synbiotic (250 mg/day) concomitant with

L-carnitine (2 × 500 mg/day) for 8 weeks resulted in greater

amendment in anthropometric and glycemic indices, and HDL-C

in healthy female individuals with obesity without any severe side

effects, indicating that L-carnitine + synbiotic co-supplementation

seems to be more beneficial to ameliorate the mentioned

parameters, compared with L-carnitine individual therapy.

In conclusion, our findings suggest that co-administration of L-

carnitine and synbiotic may be an encouraging therapeutic strategy

for obesity and related cardiometabolic complications, possibly due to

simultaneous targeting of multiple metabolic pathways, augmenting

their bioavailability/function through potential complementary or

synergistic mechanisms. Moreover, co-encapsulation of synbiotics

and L-carnitine as a single microcapsule could be considered as a

conceivable delivery system to enhance the stability and efficacy of

synbiotics as well as to reduce the cost of the final product.

Further mechanistic investigations are warranted to clarify the

exact mechanisms mediating the synergistic effect of L-carnitine and

synbiotic combined therapy on weight and metabolic parameters.
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Glossary

ACO acyl coenzyme A oxidase

AMPK adenosine monophosphate-activated protein kinase

ANCOVA analysis of covariance

aP2 adipose-specific fatty acid-binding protein

ARR absolute risk reduction

BAT brown adipose tissue

BMI body mass index

BSH bile salt hydrolase

CFU colony-forming unit

Chol cholesterol

ChREBP carbohydrate-responsive element-binding protein

CI confidence interval

CPT-Ia carnitine palmitoyltransferase Ia

ELISA enzyme-linked immunosorbent assay

FBG fasting blood glucose

FBS fasting blood sugar

FBP2 fructose-1,6-bisphosphatase isozyme 2

FFAs free fatty acids

FFAR3 free fatty acid receptor 3

FFAR2 free fatty acid receptor 2

FIAF fasting-induced adipose factor

FOS fructo-oligosaccharide

FXR farnesoid X receptor

GLP-1 glucagon-like peptide-1

GLP-2 glucagon-like peptide-2

GPR41 G protein-coupled receptor 41

GPR43 G protein-coupled receptor 43

GPCRs G protein-coupled receptors

HC hip circumference

HDL-C high-density lipoprotein-cholesterol

HMG-CoA hydroxymethylglutaryl CoA reductase

HOMA-IR homeostatic model assessment of insulin resistance

HSL hormone-sensitive lipase

IGF-1 insulin-like growth factor 1

IPAQ-SF International Physical Activity Questionnaire-Short Form

ITT intention-to-treat

LDL-C low-density lipoprotein-cholesterol

LPL lipoprotein lipase

(Continued)
Continued

LPS lipopolysaccharide

METs metabolic equivalent of tasks

NF-kB nuclear factor kappa B

NHLBI National Heart, Lung, and Blood Institute

NNT number needed to treat

NSAIDs non-steroidal anti-inflammatory drugs

OTC over the counter

PC percent of changes

PCK1 phosphoenolpyruvate carboxykinase

PDHC pyruvate dehydrogenase complex

PPAR-g peroxisome proliferator-activated receptor-gamma

PGC-1a peroxisome proliferator-activated receptor-gamma coactivator 1a

PYY peptide YY

QUICKI quantitative insulin sensitivity check index

RAS random allocation software

RCT randomized clinical trial

REE resting energy expenditure

SCFAs short-chain fatty acids

SD standard deviation

SREBP sterol regulatory element-binding protein

TC total cholesterol

TG triglyceride

TGR5 Takeda G protein-coupled bile acid receptor 5

TLR-LPS Toll-like receptor-LPS

TLR4 Toll-like receptor 4

UCP-1 uncoupling protein-1

VLDL very low-density lipoprotein

WAT white adipose tissue

WC waist circumference

WHR waist to hip ratio


	Ameliorating effects of L-carnitine and synbiotic co-supplementation on anthropometric measures and cardiometabolic traits in women with obesity: a randomized controlled clinical trial
	Introduction
	Materials and methods
	Study design and participants
	Sample size
	Randomization, blinding, and intervention
	Physical activity, dietary intake, and anthropometric assessments
	Biochemical assays
	Statistical analysis

	Results
	General characteristics of the study
	Physical activity, dietary intake, and anthropometric measurements
	Biochemical factors
	Clinical effectiveness of intervention

	Discussion
	Strengths and limitations

	Conclusion
	Data availability statement
	Ethics statement
	Author contributions
	Funding
	Acknowledgments
	Supplementary material
	References
	Glossary


