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hyperglycemic drugs
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Provincial University Key Laboratory of Sport and Health Science, School of Physical Education and
Sport Sciences, Fujian Normal University, Fuzhou, China
Type 2 diabetes mellitus (T2DM) has become a major health problem,

threatening the quality of life of nearly 500 million patients worldwide. As a

typical multifactorial metabolic disease, T2DM involves the changes and

interactions of various metabolic pathways such as carbohydrates, amino acid,

and lipids. It has been suggested that metabolites are not only the endpoints of

upstream biochemical processes, but also play a critical role as regulators of

disease progression. For example, excess free fatty acids can lead to reduced

glucose utilization in skeletal muscle and induce insulin resistance; metabolism

disorder of branched-chain amino acids contributes to the accumulation of toxic

metabolic intermediates, and promotes the dysfunction of b-cell mitochondria,

stress signal transduction, and apoptosis. In this paper, we discuss the role of

metabolites in the pathogenesis of T2DM and their potential as biomarkers.

Finally, we list the effects of anti-hyperglycemic drugs on serum/plasma

metabolic profiles.
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1 Introduction

According to the latest statistics from the International Diabetes Federation (IDF), as of

2021, about 537 million adults worldwide had diabetes, and this number is expected to

increase to 783 million by 2045, causing 6.7 million deaths and high health costs every year

(1). T2DM is the most common type of diabetes mellitus, accounting for about 90% of the

total number of diabetes mellitus. It is of great significance to explore the pathogenesis of

T2DM and develop precise and reliable prevention and treatment strategies. T2DM is a

typical metabolic disease, usually accompanied by the disorder of systemic metabolic

networks including carbohydrates, lipids, and amino acids, which is very suitable for

metabolomics and lipidomics studies. Metabolites are not only ending products of genome

regulation and cellular energy transfer, reflecting biological situations that have occurred or

are occurring in the body, but also have multiple functions such as signaling molecules,
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immune regulation, and environmental sensors. Thus, the

exploration of metabolite changes can reflect the metabolic

phenotype of T2DM in a relatively comprehensive way. In

contrast to biopsies, blood sample collection is a minimally

invasive method with the advantages of rapid, economical and

high availability, and is essential for facilitating mapping of disease

metabolic profiles and prognostic diagnosis.
2 Metabolite profiles of T2DM

Metabolites are commonly recognized as end products of a wide

range of gene transcription and biochemical reactions, and there is

growing evidence that metabolites can be involved in disease

development as biomarkers (Figure 1) and regulators. When

acting as regulators, metabolites have an impact on the

pathogenesis of T2DM in at least the following aspects: (1)

Metabolites can regulate the downstream signaling pathway of

insulin and directly affect insulin sensitivity; (2) Accumulation of

harmful metabolic intermediates; (3) Cause organelle dysfunction;

(4) Directly or indirectly mediates the inflammatory response of

target tissues. A comprehensive understanding of metabolic

pathways may be a novel direction for the prevention and

treatment of T2DM.
2.1 Carbohydrate

Chronic hyperglycemia is not only a major feature of diabetes,

but also a key factor in accelerating its progression and inducing

complications. High glucose can damage the mitochondrial aerobic

metabolic flux of pancreatic b-cells and reduce insulin content,

which may be the pathological basis of the progressive decline of b-
cell function in patients with T2DM. Excess fructose can cause a

dramatic increase in hepatocyte carbohydrate response element

binding protein (ChREBP) activity, which not only mediates

changes in circulating triglycerides and high density lipoprotein

(HDL) levels, but also is an important upstream regulator of a key

enzyme in BCAA metabolism, branch chain ketoate dehydrogenase

kinase (BCKDK)/metal ion-dependent protein phosphatase

(PPM1K), integration affects BCAA oxidation and lipid
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metabolism (2). Evidence suggests that overproduction of the

subtype ChREBP-b mediates glucose toxicity and subsequent cell

death in b-cells. Overexpression of the different subtypes of

ChREBP-a enhances glucose-stimulated b-cell proliferation and

antagonizes Chrebp-b-cell death mediated by Nuclear factor

erythroid 2-related factor 2 (Nrf2) antioxidant pathway (3).

Single-cell sequencing results showed that genes related to

oxidative phosphorylation and ATP synthesis were significantly

downregulated in the islets of T2DM patients (4), and this

phenomenon was verified in animal models. Nearly all glycolytic

enzymes were significantly upregulated in the diabetic mouse islets.

In contrast, genes, proteins, and BCAA metabolic pathways

associated with mitochondrial oxidative phosphorylation were

significantly reduced (5, 6). Haythorne et al. have found that the

impairment of b-cell function by high glucose is not glucose per se,

but mediated by metabolic intermediates associated with increased

glycolysis flux, one or more metabolites located between

phosphofructokinase (PFK) and glyceraldehyde-3-phosphate

dehydrogenase (GAPDH). By stimulating mammalian rapamycin

complex 1 (mTORC1) and inhibiting AMPK activity, preventing

pyruvate from entering the TCA cycle, and the imbalance of

NADH/NAD+ in mitochondria and cytoplasm exacerbates the

accumulation of upstream metabolites of GAPDH, creating a

vicious cycle. This may partly explain the impaired oxidative

phosphorylation of mitochondria. More importantly, glucose

stimulation at 8mM appears to be sufficient to initiate this cycle,

suggesting that cumulative impairment of pancreatic function may

have already begun in patients with early impaired glucose

tolerance (7).

Impaired glucose oxidative phosphorylation metabolic

pathways and increased glycolysis flux are determinants of

increased lactate levels. In patients at high risk of CVD, plasma

lactate, pyruvate, glycerol-3 phosphate, and isocitrate were

significantly positively correlated with the risk of T2DM (23%-

44% higher for every 1 SD increase) (8, 9), and was associated with

various pathological phenomena of T2DM: (1) Increased blood

lactate concentration reflects decreased mitochondrial oxidation

capacity and is strongly positively correlated with IR index (10);

(2) Blood lactate level may reflect liver dysfunction in T2DM

patients (9); (3) Blood lactate levels may be indicative of

susceptibility to T2DM to some extent (11). However, the effect

of lactate as a signaling molecule on disease is complex and may

depend on exposure duration and specificity of tissue and organ

(Figure 2). Recent evidence suggests that lactate signaling is

involved in inflammatory response (12–14), cells proliferation

and migration (15), appetite regulation (16), redox homeostasis

regulation (17), histone modification (18), and vascular cells

damage (19–21). Diabetes is commonly accompanied by

oxidation and systemic chronic inflammation. Elevated lactate

levels can lead to an increase in NADH/NAD+ ratio, and

mitochondria actively oxidize lactate to produce additional ROS

accordingly. When antioxidants are out of balance, oxidative

damage may be caused. Lactate is one of the main fuels of TCA

cycle. Acute lactate exposure can stimulate mitochondrial coupling

efficiency and promote bioenergetics of mitochondria in heart,

skeletal muscle, and liver (22), while chronic hyper-lactate
FIGURE 1

BCAA, branched-chain amino acids; AAA, aromatic amino acids;
LPC, lysophosphatidylcholine; BAs, bile acids.
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exposure may negatively affect mitochondrial respiration rate,

reduced metabolic flexibility (23).

Chronic hyperglycemia can also trigger the activation of

collateral glucose metabolic pathways, such as polyol,

hexosamine, and AGE, resulting in oxidative stress, promoting

the transcription of pro-inflammatory factors and apoptosis, and

thus contribute to the occurrence and development of diabetes

mellitus and its complications. AGE, cytokines and ROS can

promote the production of triose phosphate, an intermediate of

glucose metabolism, and increase de novo synthesis of diacylglycerol

(DAG), the activator of protein kinase C (PKC) (24). In the polyol

pathway, aldose reductase activated by hyperglycemia reduces

glucose to sorbitol, which is further metabolized to fructose by

sorbitol dehydrogenase. An increase in plasma fructose

concentration is positively correlated with the development of

T2DM and can lead to liver insulin resistance (IR) and non-

alcoholic fatty liver disease development (25–28). In tissues such

as nerves, sorbitol cannot easily cross the cell membrane, so the

accumulation of sorbitol and fructose can increase the osmotic

pressure in the cytoplasm and cause the leakage of myoinositol, a

deficiency of which can lead to the production of DAG. On the

other hand, the activation of the polyol pathway leads to the

consumption of NADPH and promotes the conversion of NAD+

to NADH, which may not only reduce the production of the

antioxidant glutathione, resulting in oxidative stress (29), but also

competitively inhibit GAPDH, down-regulate glycolytic flux, and

promote the transfer of more glucose to non-traditional metabolic

pathways (such as hexosamine), thus aggravating glucotoxicity (30,

31). As the hexosamine biosynthesis pathway is also activated in
Frontiers in Endocrinology 03
diabetes, fructose-6-phosphate is detached from glycolysis and

subsequently catalyzed to glucosamine 6-phosphate by fructose 6-

phosphate aminotransferase. Glucosamine 6-phosphate forms the

end product uridine diphosphate-N-acetylglucosamine through

acetylation and isomerization. It then serves as the basic

substrates for the formation of glycosyl side chains in post-

translational modifications of proteins and lipids (32). This post-

translational modification can aggravate glucotoxicity by regulating

target protein stability, activity and subcellular localization, which

can promote liver gluconeogenesis, lead to impaired insulin

signaling and pancreatic b-cell function (33), and is directly

involved in the pathogenesis of several diabetic complications,

especially in cardiovascular disease and kidney dysfunction (34).
2.2 Amino acid

Since Felig et al. found in the 1970s that the increased

concentration of circulating amino acids in obese people is

associated with decreased insulin sensitivity (35), a large number

of studies have confirmed the value of amino acids in the early

identification and risk stratification of diabetes and its

complications (36–40). Among the known and relatively clear

amino acid biomarkers, plasma branched-chain amino acids

(BCAA) and aromatic amino acids (AAA) increased significantly

(Table 1), while glycine and glutamine decreased in diabetes and

prediabetes (25, 41–43, 52–56).

BCAA is most closely related to homeostasis model assessment

for insulin resistance (HOMA-IR) and blood glucose (46, 57, 58).
FIGURE 2

Lactate is involved in physiological and pathological processes of various tissues, including cardiovascular disease, immune response, fatty acid
metabolism, cognitive function, and tumor cell angiogenesis. OXPHOS, oxidative phosphorylation; VSMC, vascular smooth muscle cell.
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The results of large sample size genome-wide association studies

(GWAS) show that BCAA contributes to the increase of the

incidence of IR and T2DM (59). Under physiological conditions,

BCAA promotes protein synthesis or inhibits its breakdown by

activating the mTOR signaling pathway, a catalytic subunit of two

distinct structural and functional complexes mTORC1 and

mTORC2. mTORC1 promotes protein synthesis and regulates

autophagy, and mTORC2 is a classic insulin/PI3K signaling

pathway effector (60). BCAA supplementation alone did not

significantly affect skeletal muscle mass and glycemic control in

patients with T2DM (61), nor worsen diet-induced insulin

resistance and glucose intolerance in obese mice (62). Whereas

HFD combined with BCAA supplementation caused chronic

activation of mTORC1, p70-S6 kinase (p70S6K), and

phosphorylation of insulin receptor substrate 1 (IRS1) serine,

promoting the accumulation of multiple acylcarnitines in muscle,

decreased insulin sensitivity (37), which can be reversed by the

mTOR inhibitor rapamycin (63). Reducing dietary BCAA intake

rapidly reduced diet-induced obesity, improved glucose tolerance,

reversed fatty acyl-coA accumulation in skeletal muscle, normalized
Frontiers in Endocrinology 04
glycine content, and improved skeletal muscle insulin sensitivity

(64, 65). In leucine-incubated skeletal muscle, AMPK activity

decreased by more than 50%, phosphorylation of mTOR and

p70S6K was concentration-dependent, phosphorylation of

insulin-stimulated Akt was impaired, and AMPK agonist was

used to inhibit these changes (66).

Paradoxically, Leucine has also been suggested to increase

GLUT4-mediated glucose uptake, stimulate insulin-dependent

PI3K and protein kinase C (PKC) signaling cascades, and increase

mitochondrial biogenesis and substrate oxidation capacity (67, 68).

Leucine supplementation has been shown to reduce body weight by

32% and improve insulin sensitivity, plasma total cholesterol, and

low-density lipoprotein cholesterol (LDL) levels in mice (69). This

may be related to the insulinotropic properties of BCAA (especially

Leu), short-term (4 weeks) BCAA-restricted diet decreased

postprandial insulin secretion, increased postprandial insulin

sensitivity and mitochondrial metabolism efficiency in adipose

tissue (70). On the other hand, Long-term (60 weeks)

supplementation with amino acids has also been shown to

improve glycemic control and insulin sensitivity in older non-
TABLE 1 Association of amino acids profiles with T2DM in cohort studies.

Sample size
(incident
cases)

Duration of follow-up
(years)

Platform Metabolites End point OR/
HR
(95%
CI)

Ref

769 6 NMR BCAA, phenylalanine, alanine, tyrosine↑
Glutamine↓

HOMA-IR 2.09a

(Men)
(36)

189 12 LC-MS BCAA, tyrosine, phenylalanine↑ Diabetes 1.70-
2.42a

(40)

91 2 LC-MS Glycine↓ T2DM 0.85a (41)

76 5 MS-MS BCAA, phenylalanine, alanine, glutamine and
glutamate↑

Aspartate/asparagine, glycine↓

T2DM 1.56-
2.22a

0.42-
0.58a

(42)

340 19 NMR BCAA, alanine, isoleucine, phenylalanine,
tyrosine↑
Glycine↓

Diabetes 1.27-
1.48a

0.77a

(43)

9180 5.7 LC-MS Tryptophan↑ T2DM — (44)

251 3.8 LC-MS Tryptophan↑ T2DM 1.29b (45)

17 1.5 LC-MS/MS BCAA↑ HOMA-IR — (46)

70 5.5 MS-MS Aspartic acid/asparagine, phenylalanine↑
Histidine↓

Prediabetes 2.39-
2.72a

0.89-
0.90a

(47)

540 — NMR isoleucine, alanine↑ Liver/muscle
HOMA-IR

— (48)

152 1-3 LC-MS isoleucine, alanine, proline↑
glycine, arginine↓

HOMA-IR — (49)

151 9.5 UHPLC-MS/
MS

BCAA, alanine, glutamate, arginine↑
glycine↓

T2DM — (50)

16 2.3 NMR BCAA↑ IR — (51)
frontier
HOMA-IR, homeostasis model assessment for insulin resistance; IR, insulin resistance; NMR, nuclear magnetic resonance; LC-MS, liquid chromatography-mass spectrometry; MS-MS, tandem
mass spectrometry; GC-MS, gas chromatography-mass spectrometry; IGT, impaired glucose tolerance; BCAA, branched-chain amino acids; T2DM, type 2 diabetes mellitus; SDMA, symmetric
dimethylarginine; ↑, increased; ↓, decreased; —, not available, a, odd ratio (OR), b, hazard ratio (HR).
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obese (BMI within 19∼23) T2DM patients (71). Since protein

degradation is commonly increased in populations with poor IR

and T2DM control (72), and the provision of additional BCAAs in

the diet can mitigate protein degradation (73), it is necessary to

tailor nutritional programs to different populations. In addition,

valine and isoleucine are major contributors to the production of

cyclic odd-chain FA (74), among which valine not only promotes a
oxidation by activating PPARa, but also promotes odd-chain FA

production by providing PrCoA as a substrate (75).

Different organs also show differences in amino acid profiles,

liver but not muscle IR was associated with increased levels of

leucine and tyrosine, leucine deprivation enhances insulin

sensitivity by increasing AMPK phosphorylation and inhibiting

the mTOR/S6K pathway in the mouse liver (76), while both showed

higher levels of isoleucine and alanine and lower levels of glycine

(48). In the liver, BCAA supplementation activates mTORC1 and

suppresses mTORC2, b locks insu l in-media ted Akt2

phosphorylation, and promotes its ubiquitination and

degradation, negative regulation of Akt2 increases FoxO1-

mediated gluconeogenesis and inhibits liver lipogenesis mediated

by the sterol-regulatory element binding protein (SREBP)1/

INSIG2a signaling pathway (77). It is believed that when FA are

excessive, the accumulation of metabolic intermediates of BCAA

(rather than BCAA itself) can competitively “block” FA b oxidation

flux, resulting in the accumulation of BCAA and incomplete

oxidation products of FA, leading to a corresponding decrease in

glucose utilization (37). All of these suggest that the increase of

BCAA in T2DM is likely to be a downstream effect caused by

obesity and IR, and then plays a further mediating role in disease

development (37).

Studies have suggested that increased IR leads to increased

levels of circulating fasting BCAA and inflammation (78, 79).

Obesity and T2DM reduce the activity of metabolic enzymes

involved in BCAA catabolism, leading to BCAA accumulation

(80). BCAA catabolism involves the first transamination of BCAA

aminotransferase (BCAT) to branch alpha-ketoic acid (BCKA),

followed by decarboxylation of BCKA by BCKA dehydrogenase

complex (BCKDC), which is activated by dephosphorylation of

PPM1K phosphatase and deactivated by phosphorylation of BCKD

kinase. The expression of BCAT and BCKDC is relatively low in the

liver, where adipose tissue and skeletal muscle are major sites of

BCAA oxidative metabolism (81, 82). In human and animal models

of metabolic syndrome, hypoxia, inflammation, and ER stress in

adipose tissue can lead to a significant decrease in the level of BCAA

catabolic enzyme (83, 84), and the accumulation of BCAA directly

inhibits the activity of pyruvate dehydrogenase (PDH) and reduces

the oxidative metabolism of glucose and FA (85). Another study

suggested that reduced oxygenation in adipose tissue inhibited

BCAA catabolism (86). Oxygen partial pressure in subcutaneous

adipose tissue was negatively correlated with the expression of

markers of inflammation and fibrosis. Meanwhile, hypoxia

inhibited the catabolism and oxidation of BCAA, resulting in

increased plasma BCAA concentration, thus promoting IR.

Surgical weight loss interventions can reverse the increase in

plasma concentrations by improving BCAA metabolism in
Frontiers in Endocrinology
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adipose tissue, suggesting that changes in plasma BCAA reflect IR

or relative insulin deficiency in obesity (87). Muscle biopsies in

patients with T2DM also showed decreased expression of two

enzymes necessary for valine and isoleucine metabolism (88). In

contrast, increased BCAA catabolism effectively reduced plasma

BCAA levels in T2DM patients, significantly improved peripheral

glucose utilization, and increased pyruvate mitochondrial oxidation

flux by 10% in muscle (89).

In addition to BCAA and AAA, multiple additional amino acids

and derivatives are associated with diabetes progression (49, 90, 91).

Studies have shown that glutamate is significantly increased in

people with T2DM, while glutamine and glycine are associated with

a 15% and 11% reduction in diabetes risk, respectively (52). After

adjusting for BMI, concentrations of aspartic acid, asparagine, and

histidine were strongly correlated with the incidence of prediabetes.

For every 1 standard deviation increase in baseline aspartic acid and

asparagine levels, the risk of prediabetes increased by 2.72 times,

while for every 1 standard deviation increase in baseline histidin

level, the risk of prediabetes decreased by 10% (47). This may be

related to histidine’s role in regulating gluconeogenesis and anti-

inflammatory (92).

Studies have shown that alanine, tryptophan, and trytophan-

related metabolic intermediates are associated with a higher risk of

T2DM and prediabetes (40, 43, 44, 93), and that kynurenine is the

main metabolic intermediate of tryptophan, chronic inflammatory

can induce activation of the tryptophan/kynurenine metabolic

pathway (94), and may mediate the increased mortality associated

with inflammation in T2DM (95). Circulating kynurenine levels are

also affected by dietary tryptophan intake. As a result, it has been

suggested that the ratio of kynurenine/tryptophan can reflect the

metabolic status of tryptophan further than that of tryptophan or

kynurenine concentration alone (96). This partly explains why the

level of tryptophan increases at the beginning of T2DM and reverses

as the disease progresses (45), and why there is no significant

association between the plasma kynurenine/tryptophan ratio and

T2DM risk, but the urine kynurenine/tryptophan rate is strongly

associated with T2DM risk (96). In addition, indolepropionate, a

tryptophan-breaking metabolite derived from the gut microbiome,

was negatively associated with T2DM risk, while increased

indolelactate was associated with higher T2DM risk (44, 53).

Elevated levels of lysine and its metabolic intermediate 2-

aminoadipic acid were associated with an increased risk of

T2DM. 2-aminoadipic acid metabolism occurs primarily in

mitochondria and is broken down into acetyl-CoA before

entering the (tricarboxylic acid, TCA) cycle. Plasma 2-

Aminoadipic acid level increases by 47% in obesity and is

positively correlated with IR (97). As a novel biomarker to predict

the risk of T2DM, 2-aminoadipic acid, independent of common

BCAA and AAA, has been shown to increase in concentration 12

years before the onset of diabetes symptoms (98), and as a

biomarker to predict childhood obesity and related metabolic

disorders 2 years later (99). In addition, the level of circulating 2-

Aminoadipic acid is significantly negatively correlated with HDL,

which is closely associated with cardiovascular complications such

as atherosclerosis and coronary artery calcification (100, 101).
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2.3 Lipids and acylcarnitines

Elevated blood levels of triacylglycerols (TAGs) are traditional

risk indicators for T2DM (48, 102, 103). Free fatty acids (FFA) are

non-esterified fatty acids in the serum that comes primarily from

the breakdown of TAG. When caloric intake exceeds the normal

storage and consumption capacity of lipids, fatty acids “spillover”

will result in increased FFA (104). Elevated fasting FFA is associated

with a three-fold increased risk of impaired glucose tolerance or

T2DM over the next 5∼8 years (105). After clinical intervention, the
level of FFA can also serve as an effective prognostic evaluation

index (106). FFA can be divided into saturated fatty acids (SFA),

monounsaturated fatty acids (MUFA), and polyunsaturated fatty

acids (PUFA) according to the difference of hydrocarbon

saturation. Serum FFA variations of different types are generally

suggestive of hyperglycemia or T2DM (Table 2). Specifically,

increased levels of partial n-6, n-7 and n-9 were significantly

positively correlated with elevated blood glucose, while some n-3

PUFA was significantly inversely correlated with T2DM (107, 108,

113, 116). In addition, different chain lengths of SFA have particular

metabolic and biological effects. Increased circulating

concentrations of C15:0, C17:0 and C24:0 and very long chain of

SFA are associated with lower risk of T2DM (114, 117), while C14:0,

C16:0, C16:1, and C18:0 are positively correlated with T2DM risk

(109, 111).

Increased FFA release and oxidation rate can antagonize

glucose oxidation, resulting in the disturbance of pyruvate

metabolism and impaired insulin sensitivity (118, 119), and this

damage to glucose homeostasis by FFA is commonly referred to as

lipotoxicity. Extensive evidence has demonstrated the role of

lipotoxicity in IR and pancreatic b-cell injury (120, 121). Elevated

plasma FFA levels are also known to cause TAG and DAG

deposition in a variety of tissues and organs, gradually

accumulating DAG enhances NADPH oxidase activity through

the PKC pathway, exacerbates oxidative stress and cytokine

transcription, and promotes cell differentiation, proliferation, and

apoptosis. Activation of the PKC pathway is a critical mechanism

leading to diabetes cardiovascular disease (122). Thus, lipid

management is absolutely recommended for the prevention and

treatment of vascular complications of T2DM.

The inflammatory response mediated by SFA is an essential

cause of IR and b-cel l damage (Figure 3) . SFA and

lipopolysaccharide synergistically amplifies the effects of decreased

b-cell viability, increased apoptosis, and decreased basal insulin

secretion, and significantly alleviates lipid-induced b-cell damage by

blocking toll-like receptor 4 (TLR4) or overexpressing neutral

ceramidase (NCDase) activity (123, 124). Palmitate (C16:00) is

the most abundant SFA in dietary and plasma, palmitate can

enhance the interaction between TLR and myeloid differentiation

primary response protein MyD88, mediating b-cell death (125). On

the one hand, it directly inhibits insulin signal transduction by

activating the phosphorylation of Jun N-terminal kinase (JNK) and

the inhibitor of nuclear factor-kB (NF-kB) kinas (IKKb). On the

other hand, degradation of inhibitor of NF-kB (IkB) leads to

nuclear translocation of NF-kB, this increases cytokine

transcription and exacerbates inflammation. TLR4, IKKb, or JNK
Frontiers in Endocrinology 06
knockout inhibited the expression of inflammatory cytokines in

adipocytes and macrophages and protected mice against lipid-

induced IR (126–128). In contrast, some PUFA such as

docosahexaenoic acid (DHA) inhibit the production of TLR4-

induced inflammatory cytokines (129), improve insulin sensitivity

and insulin secretion capacity to some extent, and reduce the risk of

T2DM (128, 130).

In specific lipids and derivatives, baseline lysophosphatidylcholine

(LPC), phosphatidylcholine (PC), sphingomyelin, and cholesterol esters

were inversely associated with T2DM risk (112). LPC were strongly

associated with IR and b-cell dysfunction (50). Decreased

concentrations of LPC18:2 and 16:0 are associated with the onset of

T2DM (41, 131), and increased levels of PCO-16:1/0:0, (O-18:1/0:0)/(P-

18:0/0:0) and LPC 20:2 can increase the 10-year risk of T2DM by 29%

(132). Diacylphosphatidylcholine C32:1, C36:1, C38:3 and C40:5 were

positively associated with T2DM risk. PC O-20:0/O-20:0, 22:6/20:4,

LPC18:0, sphingomyelin C16:1 and acyl-alkyl-phosphatidylcholine

C34:3, C40:6, C42:5, C44:4 and C44:5 were negatively correlated with

T2DM risk (133–135). In the early stages of dysglycemia and IR, fasting

concentration of linoleoylglycerophosphocholine is decreased,

independent of classical predictors, as an indicator of worsening

glucose tolerance (50).

Ceramide is a relatively minor component of the total cellular

lipidome with a particularly low abundance, and increased

ceramide content has been shown to be positively correlated with

HOMA-IR, fasting glucose, and cardiovascular diseases (136, 137).

Elevated ceramides are key lipotoxic species in skeletal muscle, liver,

adipose tissue, and vascular cells, and contribute to disease

progression by interfering with insulin signaling, stimulating lipid

uptake, and enhancing inflammatory cytokines (138–142). Of the

different types of sphingolipids, C16 ceramides and C18 ceramides

are more damaging to adipose and liver function. C16:0 ceramides

can impair mitochondrial oxidative phosphorylation by inhibiting

mitochondrial complex II and promoting mitochondrial fission,

reduce mitochondrial respiration, and promote the release of

cytochrome c to induce apoptosis by increasing the permeability

of mitochondrial outer membrane (139, 143). Inhibition of

ceramide synthesis can improve insulin sensitivity and prevent

obesity-induced diabetes (144). It also increases brown adipocyte

numbers, mitochondrial activity, and promotes the polarization of

adipose tissue macrophages towards the M2 anti-inflammatory

phenotype (145).

Acylcarnitines, metabolites of FA, play crucial roles in cellular

energy metabolism and are gradually considered as influential

biomarkers of metabolic disorders in metabolic syndrome,

diabetes, cardiovascular diseases and other diseases. For example,

C2, C3DC-CH3, C4, C5, C7 and C26 have been observed to be

associated with HOMA-IR (49). In cross-sectional studies,

acylcarnitines were elevated in IGT and diabetic individuals (146),

reflecting incomplete fatty acid beta oxidation in the organism, but

acetylcarnitine C2 did not predict IGT or T2DM years before onset,

so it is more likely to be a quick-acting event (41).

Recently, FFA ligand-specific G-protein-coupled receptor

(GPR) including GPR40 (also known as FFA1), GPR43 (FFA2),

GPR41 (FFA3), GPR120 (FFA4) has been extensively studied. In

HFD-fed mice, FFA2 function is more mediated by Gi/o and
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activated by short-chain FA, which inhibit insulin signaling in

adipose tissue, increasing energy expenditure and improving

insulin sensitivity in different tissues, including liver and muscle

(147, 148). Propionic acid (C3) and valeric acid (C5) can increase

basal glucose uptake in adipocytes and muscle cells by activating

FFA3, while this effect is decreased after FFA3 inhibition (149).
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FFA1 and FFA4, as long chain FFA receptors, are expressed in a

variety of tissues and cells, such as adipocytes, macrophages, and

pancreatic b-cells. FFA1 activation alone or synergistically amplifies

glucose-dependent insulin secretion by affecting cellular Ca2+

signaling and increasing intracellular Ca2+ concentration (150,

151), which is critical for maintaining the homeostasis of glucose
TABLE 2 Association of lipids profiles with T2DM in cohort studies.

Sample
size

(incident
cases)

Duration of
follow-up(years)

Platform Metabolites End
point

OR/
HR/
RR
(95%
CI)

Ref

91 2 LC-MS LPC18:2↓ T2DM 0.69a (41)

151 9.5 UHPLC-
MS/MS

linoleoyl-glycerophosphocholine↓ T2DM 0.67a (50)

540 — NMR TAG↑ HOMA-
IR

— (48)

152 1-3 LC-MS Carnitine (C3, C4, C5)↑
LPC (18:1, 22:6), SM16:0, Carnitines (C9, C10:2, C18, C18:1OH, C18:2),

LPE16:0, lysophosphatidylethanolamine C16:0, acetylcholine↓

HOMA-
IR

— (49)

189 12 LC-MS
MS-MS

TAG (44:1, 46:1, 48:0, 48:1, 50:0, 52:1), PC (34:2, 26:2), LPE18:2↑
TAG (56:9, 58:10, 60:12), PC38:6, LPC22:6↓

T2DM 1.35-
1.94a

0.67-
0.78a

(102)

189/364 4.4/3.8 HPLC-
MRM

LPl16:1, PC34:3, TAG50:2(16:2), TAG51:0(17:0), TAG54:7(22:6) ↑
PE38:4p(18:0p/20:4) ↓

T2DM — (103)

12132 16 GC n-3 (EPA20:5), n-6 (GLA18:3, DGLA20:3, AA20:4, DTA22:4, DPA22:5)↑
n-3 (ALA18:3, DPA22:5, DHA22:6), n-6 (LA18:2)↓

T2DM 1.02-
1.46b

0.80-
0.95b

(107)

276 4.5 NMR Glycerol, FFAs, total TAG, MUFAs, SFA (n-7, n-9)↑
n-6 FAs↓

T2DM 1.09-
1.26a

0.92a

(108)

12132 16 GC SFA (14:0, 16:0, 18:0)↑
SFA (15:0, 17:0, 20:0, 22:0, 23:0, 24:0)↓

T2DM 1.06-
1.26b

0.58-
0.92b

(109)

507 6 LC-MS Carnitine (C0, C3DC, C8:1, C10, C14OH, C14:1OH), acylcarnitines
(C16:1, C16:2, C18, C18OH, C18:1, C18:2, C20, C20:4)↑

3-dehydroxycarnitine, 3-dehydrocarnitine, dicarboxylic (C10DC, C12DC),
acylcarnitines (C12, C12OH, C12:1) ↓

T2DM 2.48-
9.41c

(models)

(110)

703 11 GC C16:0, C16:1↑ T2DM 1.15-
1.24b

(111)

250 3.8 LC-MS TAG, DAG, PE↑
LP, PC-PL, SM, CE↓

T2DM 1.45-
1.58b

0.67-
0.78b

(112)

71 5.9 GC-MS C20:3n-6↑ T2DM 1.53b (113)

284 10 GC-MS SFA (C20:0, 22:0, 24:0)↓ Diabetes 0.68-
0.99b

(114)

251 3.8 LC-MS Carnitine C4OH T2DM 1.44b (115)
frontier
T2DM, Type 2 diabetes mellitus; GC, gas chromatography; GLA, g-linolenic acid; DGLA, dihomo-g-linolenic acid; DTA, docosatetraenoic acid; n-6 DPA, docosapentaenoic acid; ALA, a-
linolenic acid; SFA, saturated fatty acid; LC-MRM, liquid chromatography multiple reaction monitoring; HPLC, high-performance liquid chromatography; MS-MS, tandem mass spectrometry;
CE, cholesteryl ester; PC, phosphatidylcholine; LPl, lyso-phosphatidylinositol; PPPE, polyunsaturated plasmalogen phosphatidylethanolamine; LPE, lysophosphatidylethanolamines; LPC,
lysophosphatidylcholines; SM, sphingomyelin; TAG, triacylglycerol; DAG, diacylglycerol; PE, phosphatidylethanolamine; LP, lysophospholipid; PC-PL, phosphatidylcholine-plasmalogen; CE,
cholesterol ester; ↑, increased; ↓, decreased; —, not available, a, odd ratio (OR); b, hazard ratio (HR); c, relative risk (RR).
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and lipid metabolism in IR individuals, making it an attractive

research target for the regulation of glucose and lipid metabolism

(152, 153). However, the exact mechanism of FFA1 in b-cells is still
under debate. Although FFA1 mediates insulin secretion in

response to acute FFA exposure, long-term activation of FFA1 is

also involved in lipotoxicity to b-cells. The diversity of FFAs may

partly explain the difference in efficacy, for example, palmitate

increases endoplasmic reticulum stress and mitochondrial

dysfunction through FFA1 activation (154–157), resulting in

increased apoptosis and decreased insulin secretion. In addition,

FFAR1 also responds to trans isomers of conjugated linoleic acid or

arachidonic acid (158), regulating the crosstalk between Akt/mTOR

and IRS-1 signaling in b-cells under lipotoxicity conditions,

promoting the progression of IR and T2DM (159). Oleic acid can

inhibit the activation of JNK and NF-kB, inhibit inflammatory

cytokine secretion, and improve insulin sensitivity (160), while

palmitoleic acid can reverse the HFD-induced proinflammatory

polarization of macrophages by activating AMPK and FFA4 (161,

162), independently of the PPAR-a mechanism (163). n-3 PUFA

activates FFA4, which inhibits inflammation and increases insulin

sensitivity (162). This is at least in part through the regulation of

NOD-like receptor family pyrin domain-containing 3 (NLRP3)

inflammasome and macrophage conversion to the M2 anti-

inflammatory standard (164), and FFA4 also mediates a variety of

effects such as glucagon-like peptide-1 (GLP-1) secretion, islet

function, and appetite control (165, 166).
2.4 Others

a-hydroxybutyrate (a-HB) is an organic acid derived from a-
ketobutyrate, a by-product of amino acids such as methionine and

threonine catabolism and glutathione synthesis (167). Increasing
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evidence has shown that a-HB is an early predictor of IR and

impaired glucose tolerance (168, 169), the combination of a-HB

and L-glycerophosphate choline showed similar accuracy to glucose

in OGTT assay, and the plasma level of a-HB was negatively

correlated with insulin sensitivity (Table 3). It has also been

shown to be associated with b-cell dysfunction in statistical and

mechanism studies (50, 51, 170). Since glutathione is a vital

antioxidant, which can inhibit oxidative damage caused by an

imbalance of lipid peroxides and free radicals in cells, the

potential mechanism of increased a-HB may be a compensatory

increase in liver glutathione synthesis flux after body REDOX

dysplasia (169).

3-Hydroxyisobutyrate (3-HIB), an intermediate product of

valine decomposition, is considered a higher sensitive biomarker

of T2DM than valine. Impaired valine catabolism increases 3-HIB

production, leading to increased lipid oxidation and acylcarnitine

accumulation. Currently, 3-HIB is believed to mediate the

occurrence of IR by affecting FA uptake in endothelial cells, and

3-HIB treatment has a regulatory effect on mitochondrial

metabolism in white and brown adipocytes (171). Recent studies

have shown that changes in the gut microbiome are involved in the

metabolic disorders of T2DM, where imidazole propionate (ImP) is

a product of histidine microbial metabolism. Serum ImP expression

is upregulated in T2DM patients due to changes in microbial

metabolism rather than histidine intake per se (172). It affects

insulin receptor substrates and inflammatory signals by activating

p38g/MAPK/p62/mTORC1 signals, leading to impaired glucose

metabolism (173). In addition, ImP (but not the precursor

histidine) also showed a significant association with diastolic

blood pressure in the overweight/obesity population, showing a

possible role in CVD complications (174).

Serum concentrations of 3-carboxy-4-methyl-5-propyl-2-furan

propionic acid (CMPF), the main endogenous metabolite of furan
FIGURE 3

Palmitate cooperated with LPS to amplify TLR4-related signaling pathways, directly or indirectly inhibited insulin signaling, and caused b-cell
apoptosis in islets. The activation of FFA4 by certain PUFAs such as oleic acid, DHA and EPA can competitively bind TAB1 through the recruitment of
b-arrestin-2, inhibit the phosphorylation and activation of TAK1, inhibit the pro-inflammatory response, and promote the release of insulin and GLP-
1. LPS, lipopolysaccharide; IRS-1, insulin receptor substrate 1; TLR4, toll-like receptor 4; AKT, protein kinase B; GLUT, glucose transporter; ROS,
reactive oxygen species; IKK-b, inhibitor kappa B kinase-b; JNK, Jun N-terminal kinase; DHA, docosahexaenoic acid; EPA, eicosapentaenoic acid;
FFA, free fatty acid receptor; TAB1, TAK1 binding protein 1; b-ARR2, b-arrestin-2; GLP-1, glucagon-like peptide-1.
frontiersin.org

https://doi.org/10.3389/fendo.2023.1237934
https://www.frontiersin.org/journals/endocrinology
https://www.frontiersin.org


Liu et al. 10.3389/fendo.2023.1237934
FA, are elevated in patients with impaired glucose tolerance and

T2DM, and can directly act on pancreatic b-cells to lead to impaired

insulin secretion (175–177). However, one study showed the

opposite result: compared with the control group, the

concentration of serum CMPF in the T2DM group was lower and

was negatively correlated with the changes in serum TAG (178),

although this study was limited by the small sample size, it still

suggested that the metabolism of CMPF might be affected by race,

diet and other factors. Supplementation of n-3 FA can increase the

level of CMPF, and there is a positive correlation between

docosahexaenoic acid (DPA) and DHA levels and CMPF, but no

significant relationship between eicosapentaenoic acid (EPA) (179).

It should be noted that although exogenous n-3 FA intake (e.g. fish)

can significantly increase circulating CMPF concentration, it is still

far below the level of T2DM and low doses of CMPF do not have a

significant effect on glucose metabolism (180).

Bile acids (BAs) can act as signaling regulators for lipids and

glucose metabolism, and the concentration of BAs changed has

been linked to metabolic disorders such as IR. Studies have shown

that after adjusting for age, sex, BMI, waist circumference, and

fasting blood glucose, increased circulating 12a-hydroxylated BAs

concentration is significantly associated with increased HOMA-IR

and fasting blood glucose (132, 181), but it cannot be used as an

effective predictor of diabetes (182, 183). This may be because

decreased insulin sensitivity and impaired glucose tolerance occur

before the rise in BAs. The increase in circulating BAs is not the

factor that causes the change in glucose metabolism, but its

downstream effect (184). Recent study has also confirmed that the

increase of circulating BAs in T2DM individuals is positively

correlated with fasting blood glucose, HbA1c, and HOMA-IR,

which may be due to insulin signaling dysfunction. However,

insulin treatment did not significantly affect the total level of BAs.

Therefore, more studies are needed on the composition of BAs and

its role as a regulator in metabolic disorders (185).
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3 Effects of anti-hyperglycemic
medications on metabolites

Many of commonly used anti-hyperglycemic medications can

also have pleiotropic effects on the metabolite profile, which may

positively affect T2DM and complications. In the following, we

summarize the therapeutic effects of current mainstream

hypoglycemic drugs on metabolites associated with different

diabetes risks.
3.1 Metformin

Metformin is a common drug for T2DM management. In

randomized controlled trials, taking metformin was associated

with increased levels of betaine, alanine, histidine, leucine/

isoleucine and decreased levels of carnitine, phenylalanine,

tyrosine and valine (186, 187). In terms of blood lipids,

metformin was associated with an increase in TAG of higher

carbon numbers (188), and elevated levels of the latter seemed to

predict a reduced risk of T2DM (102), and very-low-density

lipoprotein (VLDL)-triglyceride levels were significantly reduced

(189). In another small sample size study, T2DM patients treated

with metformin had increased serum trimethylamine-N-oxide, a-
HB, and tryptophan, while acetoacetic acid, phenylalanine, and LPC

(16:0, 18:0, and 18:2) were decreased (190).
3.2 Thiazolidinedione

Compared with metformin, pioglitazone increased myocardial

glucose uptake and decreased hepatic TAG content (191, 192), but

did not show any effect on subcutaneous fat volume. Compared
TABLE 3 Association of metabolic intermediate profiles with T2DM in cohort studies.

Sample size
(incident
cases)

Duration of
follow-up
(years)

Platform Metabolites End
point

OR/
HR
(95%
CI)

Ref

9180 5.7 LC-MS Kynurenine, kynurenate, xanthurenate, quinolinate, indolelactate↑
indolepropionate↓

T2DM — (44)

251 3.8 LC-MS Quinolinic acid↑ T2DM 1.39b (45)

350 12 LC-MS/MS 2-aminoadipic acid↑ T2DM 1.59a (98)

16 2 NMR a-Hydroxybutyrate↑ IR — (51)

151 9.5 HPLC-MS/
MS

a-Hydroxybutyrate↑ T2DM 1.26a (50)

152 1-3 LC-MS N-acetyl-tryptophan, methyladenosine, N-acetyl-leucine, dimethylglycine,
hypoxanthine, thiamin↑

Betaine, guanidoacetic acid, b-Amino-isobutyric acid↓

HOMA-
IR

— (49)
frontier
T2DM, type 2 diabetes mellitus; IR, insulin resistance; LC-MS, liquid chromatography-mass spectrometry; HOMA-IR, homeostasis model assessment for insulin resistance; HPLC, high-
performance liquid chromatography; MS/MS, tandem mass spectrometry; NMR, nuclear magnetic resonance; ↑, increased; ↓, decreased;—, not available, a, odd ratio (OR); b, hazard ratio (HR).
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with rosiglitazone, pioglitazone has a smaller increase in LDL and a

larger increase in HDL, and promotes the transformation of VLDL

to larger LDL by reducing asymmetric dimethylarginine levels (193,

194), which has a protective effect on cardiovascular diseases.
3.3 GLP−1 receptor agonist

Treatment with liraglutide can significantly reduce serum

tyrosine, valine and isoleucine levels in obese people, but has no

significant effect on T2DM patients (195, 196). After liraglutide

treatment, ceramides, phospholipids, hexocyl-ceramides, LPC,

sphingolipids, and TAG were significantly deregulated in T2DM

patients, demonstrating the cardiovascular system benefits of

liraglutide (197–200). Exenatide treatment for 6 months was

effective in reducing body weight, cysteine, and FFA

concentration, while levels of aminoisobutyric acid, anandamide,

and sarcosine tended to increase (201, 202). The efficacy of

duraglutide was also associated with a significant reduction in 2-

hydroxybutyric acid and a significant upregulation of threonine

compared to placebo (203). In addition, high doses of trusted

downregulated BCAA, glutamate, 3-hydroxyisobutyrate,

branched-chain ketoacids, and 2-hydroxybutyrate (204).
3.4 DPP-4 inhibitor

Studies have shown that 6 months of vildagliptin treatment can

reduce the level of asymmetric dimethylarginine in T2DM patients

(205), but has no significant effects on FFA, glycerol, lactic acid and

pyruvate (206, 207).
3.5 Concomitant drugs

The present investigation shows that 3 months of metformin

plus pioglitazone can significantly reduce the levels of

phenylalanine/tyrosine, citrulline/arginine, and lysine/a-
aminoadipic acid in T2DM and obese adults (208). Compared

with treatment alone, the combination of pioglitazone and

exenatide reduced hepatic fat and plasma TAG more

significantly (209).

At present, the effects of hypoglycemic drugs on serum

metabolites in patients with T2DM are more focused on the

effects of lipids and lipoproteins, but the number of studies on

amino acids and metabolic derivatives are limited. GLP-1 agonists

have shown relatively better effects on lipid and amino acid

metabolites, and improvements in metabolites associated with

cardiovascular risk have been observed in short-term trials, but

long-term follow-up evidence is still lacking. An anti-hyperglycemic

drug’s effect on blood metabolites needs more prospective,

intervention and randomized clinical trial studies to confirm the

molecular mechanism of further metabolites.
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4 Perspective

As a typical metabolic disease, exploring changes in metabolites

and their regulatory mechanisms is closer to the essence of T2DM.

Among the promising metabolites, blood concentrations of hexose,

BCAA, AAA, TAG, phospholipids and sphingomyelins were

significantly and positively associated with T2DM incidence,

while glycine and glutamine were negatively associated with

T2DM risk. However, using only one metabolite type as a

biomarker has many limitations in terms of disease duration,

race, or diet, so a comprehensive judgment of multiple metabolite

prediction models is necessary. Understanding the metabolism of

metabolites in specific tissues and the influence of the regulation of

corresponding receptors on immune response and biological

efficacy, as well as verifying causality through mechanism studies,

is key to metabolite research. Finally, while we have an initial

understanding of the functions of metabolites as regulators, the

results of dietary interventions do not completely match our

expectations. How dietary nutrients cause changes in metabolic

pathways and certain protein signaling pathways, as well as the role

of gut flora in metabolite synthesis and downstream regulation, will

be attractive topics.
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Salvadó J, et al. Metabolomics in prediabetes and diabetes: A systematic review and
meta-analysis. Diabetes Care (2016) 39(5):833–46. doi: 10.2337/dc15-2251

53. Morze J, Wittenbecher C, Schwingshackl L, Danielewicz A, Rynkiewicz A, Hu
FB, et al. Metabolomics and type 2 diabetes risk: an updated systematic review and
meta-analysis of prospective cohort studies. Diabetes Care (2022) 45(4):1013–24.
doi: 10.2337/dc21-1705

54. Xu F, Tavintharan S, Sum CF, Woon K, Lim SC, Ong CN. Metabolic signature
shift in type 2 diabetes mellitus revealed by mass spectrometry-based metabolomics. J
Clin Endocrinol Metab (2013) 98(6):E1060–5. doi: 10.1210/jc.2012-4132

55. Tai ES, Tan ML, Stevens RD, Low YL, Muehlbauer MJ, Goh DL, et al. Insulin
resistance is associated with a metabolic profile of altered protein metabolism in
Chinese and Asian-Indian men. Diabetologia (2010) 53(4):757–67. doi: 10.1007/
s00125-009-1637-8

56. Zhang X, Wang Y, Hao F, Zhou X, Han X, Tang H, et al. Human serum
metabonomic analysis reveals progression axes for glucose intolerance and insulin
resistance statuses. J Proteome Res (2009) 8(11):5188–95. doi: 10.1021/pr900524z

57. Menni C, Fauman E, Erte I, Perry JR, Kastenmüller G, Shin SY, et al. Biomarkers
for type 2 diabetes and impaired fasting glucose using a nontargeted metabolomics
approach. Diabetes (2013) 62(12):4270–6. doi: 10.2337/db13-0570

58. Würtz P, Wang Q, Kangas AJ, Richmond RC, Skarp J, Tiainen M, et al.
Metabolic signatures of adiposity in young adults: Mendelian randomization analysis
and effects of weight change. PloS Med (2014) 11(12):e1001765. doi: 10.1371/
journal.pmed.1001765

59. Lotta LA, Scott RA, Sharp SJ, Burgess S, Luan J, Tillin T, et al. Genetic
predisposition to an impaired metabolism of the branched-chain amino acids and
risk of type 2 diabetes: A mendelian randomization analysis. PloS Med (2016) 13(11):
e1002179. doi: 10.1371/journal.pmed.1002179

60. Saxton RA, Sabatini DM. mTOR signaling in growth, metabolism, and disease.
Cell (2017) 168(6):960–76. doi: 10.1016/j.cell.2017.03.035

61. Matsuda T, Suzuki H, Sugano Y, Suzuki Y, Yamanaka D, Araki R, et al. Effects of
branched-chain amino acids on skeletal muscle, glycemic control, and neuropsychological
performance in elderly persons with type 2 diabetes mellitus: an exploratory randomized
controlled trial. Nutrients (2022) 14(19):3917. doi: 10.3390/nu14193917

62. Lee J, Vijayakumar A, White PJ, Xu Y, Ilkayeva O, Lynch CJ, et al. BCAA
supplementation in mice with diet-induced obesity alters the metabolome without
impairing glucose homeostasis. Endocrinology (2021) 162(7):bqab062. doi: 10.1210/endocr/
bqab062

63. Newgard CB, An J, Bain JR, Muehlbauer MJ, Stevens RD, Lien LF, et al. A
branched-chain amino acid-related metabolic signature that differentiates obese and
lean humans and contributes to insulin resistance. Cell Metab (2009) 9(4):311–26.
doi: 10.1016/j.cmet.2009.02.002

64. White PJ, Lapworth AL, An J, Wang L, McGarrah RW, Stevens RD, et al.
Branched-chain amino acid restriction in Zucker-fatty rats improves muscle insulin
sensitivity by enhancing efficiency of fatty acid oxidation and acyl-glycine export. Mol
Metab (2016) 5(7):538–51. doi: 10.1016/j.molmet.2016.04.006

65. Cummings NE, Williams EM, Kasza I, Konon EN, Schaid MD, Schmidt BA,
et al. Restoration of metabolic health by decreased consumption of branched-chain
amino acids. J Physiol (2018) 596(4):623–45. doi: 10.1113/JP275075

66. Saha AK, Xu XJ, Lawson E, Deoliveira R, Brandon AE, Kraegen EW, et al.
Downregulation of AMPK accompanies leucine- and glucose-induced increases in
protein synthesis and insulin resistance in rat skeletal muscle. Diabetes (2010) 59
(10):2426–34. doi: 10.2337/db09-1870

67. Schnuck JK, Sunderland KL, Gannon NP, Kuennen MR, Vaughan RA. Leucine
stimulates PPARb/d-dependent mitochondrial biogenesis and oxidative metabolism
Frontiers in Endocrinology 12
with enhanced GLUT4 content and glucose uptake in myotubes. Biochimie (2016) 128-
129:1–7. doi: 10.1016/j.biochi.2016.06.009

68. Nishitani S, Matsumura T, Fujitani S, Sonaka I, Miura Y, Yagasaki K. Leucine
promotes glucose uptake in skeletal muscles of rats. Biochem Biophys Res Commun
(2002) 299(5):693–6. doi: 10.1016/s0006-291x(02)02717-1

69. Zhang Y, Guo K, LeBlanc RE, Loh D, Schwartz GJ, Yu YH. Increasing dietary
leucine intake reduces diet-induced obesity and improves glucose and cholesterol
metabolism in mice via multimechanisms. Diabetes (2007) 56(6):1647–54.
doi: 10.2337/db07-0123

70. Karusheva Y, Koessler T, Strassburger K, Markgraf D, Mastrototaro L, Jelenik T,
et al. Short-term dietary reduction of branched-chain amino acids reduces meal-
induced insulin secretion and modifies microbiome composition in type 2 diabetes: a
randomized controlled crossover trial. Am J Clin Nutr (2019) 110(5):1098–107.
doi: 10.1093/ajcn/nqz191

71. Solerte SB, Fioravanti M, Locatelli E, Bonacasa R, Zamboni M, Basso C, et al.
Improvement of blood glucose control and insulin sensitivity during a long-term (60
weeks) randomized study with amino acid dietary supplements in elderly subjects with
type 2 diabetes mellitus. Am J Cardiol (2008) 101(11a):82e–8e. doi: 10.1016/
j.amjcard.2008.03.006

72. Nair KS, Garrow JS, Ford C, Mahler RF, Halliday D. Effect of poor diabetic
control and obesity on whole body protein metabolism in man. Diabetologia (1983) 25
(5):400–3. doi: 10.1007/BF00282518

73. Louard RJ, Barrett EJ, Gelfand RA. Overnight branched-chain amino acid
infusion causes sustained suppression of muscle proteolysis. Metabolism: Clin
experimental (1995) 44(4):424–9. doi: 10.1016/0026-0495(95)90047-0

74. Crown SB, Marze N, Antoniewicz MR. Catabolism of branched chain amino
acids contributes significantly to synthesis of odd-chain and even-chain fatty acids in
3T3-L1 adipocytes. PloS One (2015) 10(12) :e0145850. doi : 10.1371/
journal.pone.0145850

75. Bishop CA, Schulze MB, Klaus S, Weitkunat K. The branched-chain amino acids
valine and leucine have differential effects on hepatic lipid metabolism. FASEB J (2020)
34(7):9727–39. doi: 10.1096/fj.202000195R

76. Xiao F, Huang Z, Li H, Yu J, Wang C, Chen S, et al. Leucine deprivation increases
hepatic insulin sensitivity via GCN2/mTOR/S6K1 and AMPK pathways. Diabetes
(2011) 60(3):746–56. doi: 10.2337/db10-1246

77. Zhao H, Zhang F, Sun D, Wang X, Zhang X, Zhang J, et al. Branched-chain
amino acids exacerbate obesity-related hepatic glucose and lipid metabolic disorders
via attenuating akt2 signaling. Diabetes (2020) 69(6):1164–77. doi: 10.2337/db19-0920

78. Mahendran Y, Jonsson A, Have CT, Allin KH, Witte DR, Jørgensen ME, et al.
Genetic evidence of a causal effect of insulin resistance on branched-chain amino acid
levels. Diabetologia (2017) 60(5):873–8. doi: 10.1007/s00125-017-4222-6

79. Wang Q, Holmes MV, Davey Smith G, Ala-Korpela M. Genetic support for a
causal role of insulin resistance on circulating branched-chain amino acids and
inflammation. Diabetes Care (2017) 40(12):1779–86. doi: 10.2337/dc17-1642

80. Vanweert F, de Ligt M, Hoeks J, Hesselink MKC, Schrauwen P, Phielix E.
Elevated plasma branched-chain amino acid levels correlate with type 2 diabetes-
related metabolic disturbances. J Clin Endocrinol Metab (2021) 106(4):e1827–e36.
doi: 10.1210/clinem/dgaa751

81. Herman MA, She P, Peroni OD, Lynch CJ, Kahn BB. Adipose tissue branched
chain amino acid (BCAA) metabolism modulates circulating BCAA levels. J Biol Chem
(2010) 285(15):11348–56. doi: 10.1074/jbc.M109.075184

82. Suryawan A, Hawes JW, Harris RA, Shimomura Y, Jenkins AE, Hutson SM. A
molecular model of human branched-chain amino acid metabolism. Am J Clin Nutr
(1998) 68(1):72–81. doi: 10.1093/ajcn/68.1.72

83. Lackey DE, Lynch CJ, Olson KC, Mostaedi R, Ali M, SmithWH, et al. Regulation
of adipose branched-chain amino acid catabolism enzyme expression and cross-
adipose amino acid flux in human obesity. Am J Physiol Endocrinol Metab (2013)
304(11):E1175–87. doi: 10.1152/ajpendo.00630.2012

84. Burrill JS, Long EK, Reilly B, Deng Y, Armitage IM, Scherer PE, et al.
Inflammation and ER stress regulate branched-chain amino acid uptake and
metabolism in adipocytes. Mol Endocrinol (Baltimore Md) (2015) 29(3):411–20.
doi: 10.1210/me.2014-1275

85. Li T, Zhang Z, Kolwicz SCJr., Abell L, Roe ND, KimM, et al. Defective branched-
chain amino acid catabolism disrupts glucose metabolism and sensitizes the heart to
ischemia-reperfusion injury. Cell Metab (2017) 25(2):374–85. doi: 10.1016/
j.cmet.2016.11.005

86. Cifarelli V, Beeman SC, Smith GI, Yoshino J, Morozov D, Beals JW, et al.
Decreased adipose tissue oxygenation associates with insulin resistance in individuals
with obesity. J Clin Invest (2020) 130(12):6688–99. doi: 10.1172/JCI141828

87. She P, Van Horn C, Reid T, Hutson SM, Cooney RN, Lynch CJ. Obesity-related
elevations in plasma leucine are associated with alterations in enzymes involved in
branched-chain amino acid metabolism. Am J Physiol Endocrinol Metab (2007) 293(6):
E1552–63. doi: 10.1152/ajpendo.00134.2007

88. Lefort N, Glancy B, Bowen B, Willis WT, Bailowitz Z, De Filippis EA, et al.
Increased reactive oxygen species production and lower abundance of complex I
subunits and carnitine palmitoyltransferase 1B protein despite normal mitochondrial
respiration in insulin-resistant human skeletal muscle. Diabetes (2010) 59(10):2444–52.
doi: 10.2337/db10-0174
frontiersin.org

https://doi.org/10.1111/j.2047-6310.2012.00087.x
https://doi.org/10.1016/j.metabol.2019.06.011
https://doi.org/10.1038/s41366-020-0565-z
https://doi.org/10.1093/ajcn/nqy262
https://doi.org/10.2337/db12-0707
https://doi.org/10.1210/jc.2017-00475
https://doi.org/10.2337/dc15-2251
https://doi.org/10.2337/dc21-1705
https://doi.org/10.1210/jc.2012-4132
https://doi.org/10.1007/s00125-009-1637-8
https://doi.org/10.1007/s00125-009-1637-8
https://doi.org/10.1021/pr900524z
https://doi.org/10.2337/db13-0570
https://doi.org/10.1371/journal.pmed.1001765
https://doi.org/10.1371/journal.pmed.1001765
https://doi.org/10.1371/journal.pmed.1002179
https://doi.org/10.1016/j.cell.2017.03.035
https://doi.org/10.3390/nu14193917
https://doi.org/10.1210/endocr/bqab062
https://doi.org/10.1210/endocr/bqab062
https://doi.org/10.1016/j.cmet.2009.02.002
https://doi.org/10.1016/j.molmet.2016.04.006
https://doi.org/10.1113/JP275075
https://doi.org/10.2337/db09-1870
https://doi.org/10.1016/j.biochi.2016.06.009
https://doi.org/10.1016/s0006-291x(02)02717-1
https://doi.org/10.2337/db07-0123
https://doi.org/10.1093/ajcn/nqz191
https://doi.org/10.1016/j.amjcard.2008.03.006
https://doi.org/10.1016/j.amjcard.2008.03.006
https://doi.org/10.1007/BF00282518
https://doi.org/10.1016/0026-0495(95)90047-0
https://doi.org/10.1371/journal.pone.0145850
https://doi.org/10.1371/journal.pone.0145850
https://doi.org/10.1096/fj.202000195R
https://doi.org/10.2337/db10-1246
https://doi.org/10.2337/db19-0920
https://doi.org/10.1007/s00125-017-4222-6
https://doi.org/10.2337/dc17-1642
https://doi.org/10.1210/clinem/dgaa751
https://doi.org/10.1074/jbc.M109.075184
https://doi.org/10.1093/ajcn/68.1.72
https://doi.org/10.1152/ajpendo.00630.2012
https://doi.org/10.1210/me.2014-1275
https://doi.org/10.1016/j.cmet.2016.11.005
https://doi.org/10.1016/j.cmet.2016.11.005
https://doi.org/10.1172/JCI141828
https://doi.org/10.1152/ajpendo.00134.2007
https://doi.org/10.2337/db10-0174
https://doi.org/10.3389/fendo.2023.1237934
https://www.frontiersin.org/journals/endocrinology
https://www.frontiersin.org


Liu et al. 10.3389/fendo.2023.1237934
89. Vanweert F, Neinast M, Tapia EE, van de Weijer T, Hoeks J, Schrauwen-
Hinderling VB, et al. A randomized placebo-controlled clinical trial for
pharmacological activation of BCAA catabolism in patients with type 2 diabetes. Nat
Commun (2022) 13(1):3508. doi: 10.1038/s41467-022-31249-9

90. Zsuga J, Török J, Magyar MT, Valikovics A, Gesztelyi R, Lenkei A, et al.
Dimethylarginines at the crossroad of insulin resistance and atherosclerosis.
Metabolism: Clin experimental (2007) 56(3):394–9. doi: 10.1016/j.metabol.2006.10.023

91. Schutte AE, Schutte R, Huisman HW, van Rooyen JM, Fourie CM,Malan L, et al.
Dimethylarginines: their vascular and metabolic roles in Africans and Caucasians. Eur J
endocrinol (2010) 162(3):525–33. doi: 10.1530/EJE-09-0865

92. DiNicolantonio JJ, McCarty MF, OKeefe JH. Role of dietary histidine in the
prevention of obesity and metabolic syndrome. Open heart (2018) 5(2):e000676.
doi: 10.1136/openhrt-2017-000676

93. Fikri AM, Smyth R, Kumar V, Al-Abadla Z, Abusnana S, Munday MR. Pre-
diagnostic biomarkers of type 2 diabetes identified in the UAE’s obese national
population using targeted metabolomics. Sci Rep (2020) 10(1):17616. doi: 10.1038/
s41598-020-73384-7

94. Oxenkrug GF. Metabolic syndrome, age-associated neuroendocrine disorders,
and dysregulation of tryptophan-kynurenine metabolism. Ann New York Acad Sci
(2010) 1199:1–14. doi: 10.1111/j.1749-6632.2009.05356.x

95. Scarale MG, Mastroianno M, Prehn C, Copetti M, Salvemini L, Adamski J, et al.
Circulating metabolites associate with and improve the prediction of all-cause mortality
in type 2 diabetes. Diabetes (2022) 71(6):1363–70. doi: 10.2337/db22-0095

96. Rebnord EW, Strand E, Midttun Ø, Svingen GFT, Christensen MHE, Ueland
PM, et al. The kynurenine:tryptophan ratio as a predictor of incident type 2 diabetes
mellitus in individuals with coronary artery disease.Diabetologia (2017) 60(9):1712–21.
doi: 10.1007/s00125-017-4329-9

97. Short KR, Chadwick JQ, Teague AM, Tullier MA, Wolbert L, Coleman C, et al.
Effect of obesity and exercise training on plasma amino acids and amino metabolites in
american Indian adolescents. J Clin Endocrinol Metab (2019) 104(8):3249–61.
doi: 10.1210/jc.2018-02698

98. Wang TJ, Ngo D, Psychogios N, Dejam A, Larson MG, Vasan RS, et al. 2-
Aminoadipic acid is a biomarker for diabetes risk. J Clin Invest (2013) 123(10):4309–17.
doi: 10.1172/JCI64801

99. Lee HJ, Jang HB, Kim WH, Park KJ, Kim KY, Park SI, et al. 2-Aminoadipic acid
(2-AAA) as a potential biomarker for insulin resistance in childhood obesity. Sci Rep
(2019) 9(1):13610. doi: 10.1038/s41598-019-49578-z

100. Shi M, Wang C, Mei H, Temprosa M, Florez JC, Tripputi M, et al. Genetic
architecture of plasma alpha-aminoadipic acid reveals a relationship with high-density
lipoprotein cholesterol. J Am Heart Assoc (2022) 11(11):e024388. doi: 10.1161/
JAHA.121.024388

101. Saremi A, Howell S, Schwenke DC, Bahn G, Beisswenger PJ, Reaven PD.
Advanced glycation end products, oxidation products, and the extent of atherosclerosis
during the VA diabetes trial and follow-up study. Diabetes Care (2017) 40(4):591–8.
doi: 10.2337/dc16-1875

102. Rhee EP, Cheng S, Larson MG, Walford GA, Lewis GD, McCabe E, et al. Lipid
profiling identifies a triacylglycerol signature of insulin resistance and improves
diabetes prediction in humans. J Clin Invest (2011) 121(4):1402–11. doi: 10.1172/
JCI44442

103. Lu J, Lam SM, Wan Q, Shi L, Huo Y, Chen L, et al. High-coverage targeted
lipidomics reveals novel serum lipid predictors and lipid pathway dysregulation
antecedent to type 2 diabetes onset in normoglycemic chinese adults. Diabetes Care
(2019) 42(11):2117–26. doi: 10.2337/dc19-0100

104. Fabbrini E, Sullivan S, Klein S. Obesity and nonalcoholic fatty liver disease:
biochemical, metabolic, and clinical implications. Hepatol (Baltimore Md) (2010) 51
(2):679–89. doi: 10.1002/hep.23280

105. Salgin B, Ong KK, Thankamony A, Emmett P, Wareham NJ, Dunger DB.
Higher fasting plasma free fatty acid levels are associated with lower insulin secretion in
children and adults and a higher incidence of type 2 diabetes. J Clin Endocrinol Metab
(2012) 97(9):3302–9. doi: 10.1210/jc.2012-1428

106. Ni Y, Zhao L, Yu H, Ma X, Bao Y, Rajani C, et al. Circulating unsaturated fatty
acids delineate the metabolic status of obese individuals. EBioMedicine (2015) 2
(10):1513–22. doi: 10.1016/j.ebiom.2015.09.004

107. Forouhi NG, Imamura F, Sharp SJ, Koulman A, Schulze MB, Zheng J, et al.
Association of Plasma Phospholipid n-3 and n-6 Polyunsaturated Fatty Acids with
Type 2 Diabetes: The EPIC-InterAct Case-Cohort Study. PloS Med (2016) 13(7):
e1002094. doi: 10.1371/journal.pmed.1002094

108. Mahendran Y, Cederberg H, Vangipurapu J, Kangas AJ, Soininen P, Kuusisto J,
et al. Glycerol and fatty acids in serum predict the development of hyperglycemia and
type 2 diabetes in Finnish men.Diabetes Care (2013) 36(11):3732–8. doi: 10.2337/dc13-
0800

109. Forouhi NG, Koulman A, Sharp SJ, Imamura F, Kröger J, Schulze MB, et al.
Differences in the prospective association between individual plasma phospholipid
saturated fatty acids and incident type 2 diabetes: the EPIC-InterAct case-cohort study.
Lancet Diabetes endocrinol (2014) 2(10):810–8. doi: 10.1016/S2213-8587(14)70146-9

110. Sun L, Liang L, Gao X, Zhang H, Yao P, Hu Y, et al. Early prediction of
developing type 2 diabetes by plasma acylcarnitines: A population-based study.
Diabetes Care (2016) 39(9):1563–70. doi: 10.2337/dc16-0232
Frontiers in Endocrinology 13
111. Harris WS, Luo J, Pottala JV, Margolis KL, Espeland MA, Robinson JG. Red
blood cell fatty acids and incident diabetes mellitus in the women’s health initiative
memory study. PloS One (2016) 11(2):e0147894. doi: 10.1371/journal.pone.0147894

112. Razquin C, Toledo E, Clish CB, Ruiz-Canela M, Dennis C, Corella D, et al.
Plasma lipidomic profiling and risk of type 2 diabetes in the PREDIMED trial. Diabetes
Care (2018) 41(12):2617–24. doi: 10.2337/dc18-0840
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115. Guasch-Ferré M, Ruiz-Canela M, Li J, Zheng Y, Bulló M, Wang DD, et al.
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