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LncRNA H19: a novel player
in the regulation of diabetic
kidney disease

Qinrui Wu and Fengjuan Huang*

Department of Endocrinology and Metabolism, The First Affiliated Hospital of Zhengzhou University,
Zhengzhou, China
Diabetic kidney disease (DKD), one of the most severe complications of diabetes

mellitus (DM), has received considerable attention owing to its increasing

prevalence and contribution to chronic kidney disease (CKD) and end-stage

kidney disease (ESRD). However, the use of drugs targeting DKD remains limited.

Recent data suggest that long non-coding RNAs (lncRNAs) play a vital role in the

development of DKD. The lncRNA H19 is the first imprinted gene, which is

expressed in the embryo and down-regulated at birth, and its role in tumors has

long been a subject of controversy, however, in recent years, it has received

increasing attention in kidney disease. The LncRNA H19 is engaged in the

pathological progression of DKD, including glomerulosclerosis and

tubulointerstitial fibrosis via the induction of inflammatory responses,

apoptosis, ferroptosis, pyroptosis, autophagy, and oxidative damage. In this

review, we highlight the most recent research on the molecular mechanism

and regulatory forms of lncRNA H19 in DKD, including epigenetic, post-

transcriptional, and post-translational regulation, providing a new predictive

marker and therapeutic target for the management of DKD.

KEYWORDS
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1 Introduction

Diabetes mellitus (DM) is a heterogeneous group of disorders of glucose metabolism

dysfunction (1), the global prevalence of which has risen dramatically in recent years, a

figure projected to reach 783 million by 2045 (2). Excessive exposure to fluctuating glucose

concentrations is increasingly recognized as an important pathological factor contributing

to diabetic microvascular complications, which eventually lead to diabetic kidney disease,

retinopathy, and neuropathy (3, 4). Among these, diabetic kidney disease (DKD) is of great

concerns due to its high prevalence and harmful effects on the kidney. It is estimated that

more than 40% of individuals with diabetes worldwide are affected by DKD, which is a
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leading cause of chronic kidney disease (CKD) and end-stage

kidney disease (ESRD) (5). Moreover, DKD patients with ESRD

have an alarmingly high mortality rate (6), and the therapy typically

required for survival is renal replacement therapy (RRT), such as

kidney dialysis or transplantation, both of which impose a huge

financial burden on individuals and society (7). Hence, a deeper

understanding of the molecular mechanisms underlying DKD is

urgently required to assist in the discovery of effective therapeutics

that can halt its progression and lower the associated risks.

Hyperglycemia is widely considered the primary etiological

factor in the development of DKD, as it encourages metabolic

and hemodynamic changes in the kidney, causing alterations in

renal component structure and function such as glomerulosclerosis,

tubulointerstitial inflammation, and fibrosis, which contribute to a

decrease in glomerular filtration rate (GFR), ever-increasing

albuminuria, and ultimately renal failure (8–10). Additionally,

accumulating data indicate that the pathophysiology of DKD may

be influenced by oxidative stress (OS), hypoxia, and overactivity of

the renin-angiotensin-aldosterone system (RAAS) (11). Moreover,

the available data suggest that long non-coding RNAs (lncRNAs)

may be involved in the development of DKD, offering a novel

avenue for the DKD therapy (12).

Long non-coding RNAs (LncRNAs), which are linear

transcripts longer than 200 nucleotides that lack protein-

translation potential, are of low abundance and stability making

up the majority of non-coding RNAs (ncRNAs) in the genome (13,

14). Typically, lncRNAs are classified into multiple subtypes based

on their positions, including sense, antisense, intronic, bidirectional,

and intergenic (15). They exert biological functions by modulating

various physiological processes, including cell differentiation,

proliferation, and responses to various stresses (16). Recently, an

expanding collection of studies have demonstrated differential

expression of lncRNAs at the cellular and tissue levels in the

kidney, ultimately leading to damage to cell masses that accelerate

renal fibrosis and glomerulosclerosis (17).

Among them, lncRNA H19, the first imprinted and maternally

expressed gene to be discovered in eukaryotes (18), is located close

to the telomeric region of chromosome 11p15.5 and forms an

imprinted domain with the gene insulin-like growth factor 2(IGF2),

which is expressed from the paternal allele (19). Notably, during the

development of kidney embryos, lncRNA H19 is extensively

expressed in the ureteric bud branches and epithelial components

of the metanephros, whereas its expression dramatically declines

and fades in the postnatal period (20). Occasionally, lncRNA H19 is

re-expressed during the activation of tumors, tissue repair, and

intracellular stress, exhibiting its significance in aging, cancer, and

liver diseases (21–23). Similarly, researchers found that H19 is

upregulated in patients with DKD compared to that in the

control group, and further studies have suggested the molecular

mechanism of lncRNA H19 in regulating different processes of

DKD (24). Therefore, in this review, we outline the latest

deve l opment s in lncRNA H19 fo r modu l a t ing the

pathophysiological processes of DKD and propose prospective

future treatment strategies for DKD (Figure 1).
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2 ‘Sophisticated’ structure changes
in DKD
2.1 Key changes in the diabetic glomerulus

Hyperglycemia affects nearly all renal components, including the

glomeruli, tubules, and interstitium. However, the glomerulus is

traditionally classified as the first step in DKD. The Renal

Pathology Society established four categories of glomerular lesions

in 2010: Class I, glomerular basement membrane (GBM) thickening;

Class II, mesangial expansion; Class III, nodular sclerosis

(Kimmelstiel-Wilson lesions); and Class IV, advanced diabetic

glomerulosclerosis (25).

GBM thicking, glomerular hypertrophy, and glomerular

filtration barrier (GFB) deficiencies are early signs of glomerular

alterations (26). Among these, the initial and most typical change in

glomeruli is GBM thickening, which is also a hallmark of podocytes

and glomerular endothelial cells (GECs) dysfunction (27). GBM is

composed of laminins (LM), nidogens, collagen IV (Col. IV), and

heparan sulfate proteoglycans, all of which are required for

glomerular capillary wall formation and kidney filtration (28).

Along with GBM, GECs and podocytes are the other two main

constituents of GFB; when they are in a dysfunctional state, they

contribute to albuminuria and a decrease in GFR (29, 30).

The dominant alteration in the glomerulus is glomerular

podocyte dysfunction or podocytopathy, which is marked by

podocyte loss, cellular hypertrophy, and foot process effacement

(31, 32). Reactive oxygen species (ROS) produced during

hyperglycemia trigger podocyte detachment and apoptosis,

ultimately resulting in podocyte loss (33). Due to the limited

potential for podocyte regeneration, high glucose levels induce an

adaptive response in the form of podocyte hypertrophy, which aims

to maintain glomerular integrity and reduce glomerulosclerosis

(34–36). As a result, both podocyte hypertrophy and deletion are

responsible for the podocyte foot process effacement (37).

Additional glomerular lesions include deletion of endothelial

fenestrations and expansion of the mesangial matrix. The

negatively charged glycocalyx decorated on fenestrated endothelial

cells is essential for maintaining fluidic equilibrium and controlling

vascular permeability, as well as preventing blood cells from attaching

to the vascular wall (38, 39). Hence, elimination of specific glycocalyx

components such as keratan sulfate, chondroitin sulfate, dermatan

sulfate, and hyaluronic acid, enhances the endothelial permeability

and triggers microalbuminuria (40, 41). Similarly, the continual

reduction in the surface area of the fenestrated endothelium is an

outcome of the death and pyroptosis of podocytes brought on by high

glucose levels (42, 43).

Furthermore, hyperglycemia accelerates matrix expansion and

alterations in glomerular mesangial cells (GMCs), which are the

central stalk of the glomerulus making up 30-40% of all glomerular

cells and role as a functional unit with endothelial cells and

podocytes (44, 45). The mechanism of GMCs alterations in DKD

is convoluted. It is commonly acknowledged that elevated blood
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glucose promotes the formation of the extracellular matrix (ECM),

which is connected to altered GBM remnants, and stimulates pro-

apoptosis or pro-proliferation signaling, which boosts apoptosis,

proliferation, and hypertrophy in mesangial cells, all of which

ultimately leads to proteinuria and glomerular hyperfiltration

(46–50). Notably, mesangial cells increase the levels of Col. IV,

plasminogen activator inhibitor 1 (PAI-1), and fibronectin (FN) to

induce glomerular fibrosis (51). Additionally, endothelial-to-

mesenchymal transition (EndMT) and epithelial-to-mesenchymal

transition (EMT) are involved in renal fibrosis (52, 53).
2.2 Renal tubular dysfunction
and fibrogenesis

In contrast to careful studies on glomerular degeneration over

the past few years, renal tubule interstitial impairment in DKD has

largely been disregarded. Currently, the particular role of the renal

tubule is of great interest in scientific research. Situated in the outer

layer of the renal tubule, renal tubular epithelial cells (TECs)

reabsorb chemicals such as amino acids and glucose from the

urine, which is crucial for preserving the glomerulotubular
Frontiers in Endocrinology 03
balance. Additionally, TECs also influence the glomerular

filtration rate by regulating concentrations of ions like Na+ and

Cl-; this procedure is known as tubule-glomerular feedback (54, 55).

In the early stages of DKD, renal tubular cells exhibit adaptive

hypertrophy and elongation to maintain the glomerulotubular

balance in response to glomerular hyperfiltration (56, 57).

Subsequent histological alterations in the tubulointerstitium

include tubular atrophy, peritubular capillary rarefaction, and

inflammation, all of which contribute to the development of renal

fibrosis (9, 58). Cell death functions as the main mechanism of renal

tubular atrophy which is manifested by caspase-1-dependent

pyroptosis, transforming growth factor-b(TGF-b1)-dependent
ferroptosis, and caspase-3-dependent apoptosis (59–61).

Moreover, increased diabetes-related inflammation encourages

EMT in tubular epithelial cells and peritubular pericyte migration,

both of which induce tubulointerstitial fibrosis (62, 63).

Microvascular rarefaction refers to the peritubular pericyte

moving out of the capillary and into the interstitial space (64),

whereas EMT is marked by the acquisition of the mesenchymal

markers smooth muscle actin (a-SMA) and the loss of the

intracellular adhesion protein E-cadherin (65). As mentioned

above, the hallmark pathological renal changes in DKD, such as
FIGURE 1

Graphical Abstract: LncRNA H19 in Diabetic kidney diseases. This figure is created with BioRender.com, and the authors have been granted a license
to use the BioRender content.
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GBM thickening, podocytopathy, loss of glomerular endothelium

fenestrations, mesangial matrix expansion, and tubulointerstitial

fibrosis, have all been well documented (Figure 2).
3 Pathogenesis of diabetic
kidney disease

Considering that the underlying cellular processes resulting in

the aforementioned histological presentations are considerably

complex, continued attention to the pathophysiology of DKD is

required. There is general agreement that critical metabolic

derangements affect kidney hemodynamics and encourage

immune dysregulation in early diabetes (66). Owing to the direct

relevance of metabolic disorders, dyslipidemia, and intracellular

stress, there is an increasing level of ROS, advanced glycation end

products (AGEs), and lipid deposition (67–69). Moreover,

intracellular stress includes hypoxia, endoplasmic reticulum (ER)

stress, and OS (70), which generates ROS such as peroxides,

superoxide, and hydroxyl radicals (71), which are linked to

podocyte damage, focal segmental glomerulosclerosis (FSGS), and

tubulointerstitial fibrosis (72). Activation of the RAAS is likely

correlated with hemodynamic mechanisms, such as glomerular

hyperfiltration and hypertension (73–75), which have long been

known to be responsible for the initiation and propagation of DKD

(76). Additionally, interactions between metabolic disorders and

hemodynamic abnormalities lead to immunological dysfunction

including inflammation and renal fibrosis by triggering the
Frontiers in Endocrinology 04
production of pro-inflammatory and pro-fibrotic mediators (77–

79). Moreover, emerging evidence indicates that autophagy

dysregulation, mitochondrial dysfunction, apoptosis, pyroptosis,

and ferroptosis contribute to renal damage in DKD (78, 80–83).
4 LncRNA biology

LncRNAs are abundant as functional units in eukaryotes,

performing precise expression patterns in their various subcellular

localizations, which has recently been the focus of intense debate.

Numerous lncRNAs are limited to and abundant in the nucleus,

governing transcriptional programs via chromatin remodeling and

interactions in trans or cis (84). However, some are present in the

cytoplasm, where they mediate signal transduction pathways,

translational programs, or post-transcriptional genetic regulation,

whereas others are present in the mitochondria and ER, where their

functions remain still obscure (85).

Depending on their roles, lncRNAs are commonly categorized

as signals, decoys, scaffolds, and guides molecules that engage in

diverse biological processes that affect gene expression, including

epigenetic, transcriptional, post-transcriptional, translational, and

post-translational regulation (16, 86). LncRNAs unlock the

capabilities of epigenetic gene regulation by affecting histone

modifications close to gene transcriptional start sites, boosting

methylation of the gene promoter, and encouraging chromatin
FIGURE 2

Pathological changes in the glomerulus and renal tubule of DKD. The pathological changes of the glomerulus mainly involve glomerular endothelial
cells, mesangial cells, glomerular basement membrane, and podocytes. Endothelial cell changes include loss of glycocalyx, endothelial-
mesenchymal transformation, apoptosis, and pyroptosis. Changes in podocyte include podocyte apoptosis, podocyte hypertrophy, podocyte
detachment, podocyte loss, and podocyte foot process effacement. Mesangial cell changes include proliferation, hypertrophy, and apoptosis.
Pathological changes in the renal tubules include tubular epithelial cell apoptosis ferroptosis, pyroptosis, autophagy, epithelial-mesenchymal
transformation, and peritubular pericyte migration. These lesions, as well as the thickening of the basement membrane and the accumulation of
extracellular matrix, contribute to the exacerbation of fibrosis in diabetic kidneys. This figure is created with BioRender.com, and the authors have
been granted a license to use the BioRender content.
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remodeling (87–89). Indeed, lncRNAs actively participate in

transcriptional regulation by either trapping and regulating

transcription factors (TF) or functioning as active enhancers to

stimulate or suppress transcription (90–92). In addition to their

roles in epigenetic and transcriptional regulation, lncRNAs also

handle post-transcriptional regulation through several approaches,

including the formation of specific lncRNA-protein complexes

(lncRNPs) that operate as competitive endogenous RNAs

(ceRNAs) or “sponges” of microRNAs (miRNAs), thereby

regulating alternative splicing, mRNA degradation and

diminishing mRNA stability (93–97). Furthermore, lncRNAs

regulate several other aspects of gene expression, such as the

disruption of translational processes by binding to eukaryotic

translation initiation factor 4 gamma 2 (EIF4G2) and post-

translational regulation via protein interactions (98, 99).
5 Classical lncRNAs in DKD

Thus, understanding lncRNAs in eukaryotes has broadened our

understanding of the role of lncRNAs in regulating gene expression

and other biological processes. Reports on the interactions between

lncRNAs and DKD have emerged in recent years, suggesting their

essential roles in the pathogenesis of DKD. LncRNAs regulate many

crucial factors linked to the DKD progression in different cell

masses (100).
5.1 Podocyte injury: autophagy, apoptosis,
mitochondrial dysfunction

For example, a transcript called lncRNA AK044604 (Risa) is

situated very close to the sirt1 gene, which is recognized as a

modulator of autophagy and insulin sensitivity, contributing to the

onset of DKD through the regulation of podocyte autophagy and the

thickness of GBM (101). Furthermore, decreased levels of the

lncRNA taurine-upregulated gene 1(Tug1) are observed in

podocytes exposed to high glucose (HG) stimuli, exhibiting a reno-

protective role in DKD through the lncRNA Tug1/PGC1a axis,

which is essential for improving mitochondrial function (102). In

contrast, lncRNA maternally expressed gene 3 (Meg3) is upregulated

under the HG conditions, thereby increasing dynamin-related

protein 1 (Drp1) expression and its phosphorylation or

translocation, which triggers mitochondrial fission and podocyte

damage in diabetic mice induced by streptozotocin (STZ) (103).

Similarly, lncRNA PVT1 is up-regulated in DKD patients, and in

vitro experiments explain that it encourages the recruitment of

histone 3 lysine 27 trimethylation (H3K27me3) in the forkhead

box A1(FOXA1) promoter region by recruiting enhancer of zeste

homolog 2 (EZH2), which lessens FOXA1 expression, thereby

increasing apoptosis and damage levels in podocytes (104).
Frontiers in Endocrinology 05
5.2 Tubular epithelial cells: EMT
and fibrosis

Overexpression of lncRNA NEAT1 is observed in the TECs which

further promotes EMT and fibrosis through the ERK1/2 pathway

resulting in the accumulation of critical cytokines like connective tissue

growth factor (CTGF), TGF-b, vimentin, and a-SMA (105).

Additionally, under the treatment of TGF-b1, cytoplasmic lncRNA

growth arrest-specific 5 (GAS5) expression is significantly increased in

the human proximal tubule cell line (HK-2) and exerts its biological

effects by serving as a sponge for the miR-96-5p and enhancing the

formation of fibronectin to exacerbate renal fibrosis (106).

Furthermore, in the AGE-treated GECs and TECs, the expression of

lncRNA Erbb4-IR is dramatically elevated in a Smad3-dependent way

which can boost the production of Col. I and Col. IV, as well as worsen

renal fibrosis by sponging miR-29b (107).
5.3 Mesangial cells: proliferation and
ECM accumulation

LncRNA NR_033515, competitively binding to miR-743b-5p, is

engaged in fibrosis, EMT, and proliferation in DKD as evidenced by

the rise in fibrogenic proteins and epithelial cell markers such P38,

a-SMA, FN, E-cadherin, as well as mesenchymal marker Vimentin

(108). Moreover, in the HG-treated mesangial cells, lncRNA cyclin-

dependent kinase inhibitor 2B antisense RNA 1(CDKN2B-AS1) is

significantly elevated which binds to miR-424-5p to stimulate the

production of high mobility group AT-hook 2(HMGA2). The levels

of the proteins linked with PI3K/AKT signaling are increased

through the DKN2B-AS1/miR-424-5p/HMGA2 axis, together

with the stimulation of cell proliferation and ECM buildup (109).
6 Biological functions of lncRNA H19
in DKD pathogenesis

In addition to the aforementioned lncRNAs, H19 has received

an avalanche of interest from researchers because of its unique

biological characteristics. Because of its differential expression

during the endocrine progenitor stage of pancreatic-islet

development, H19 is crucial for pancreatic-islet development and

function (110). LncRNA H19 is highly expressed under

hyperglycemia and serves as a crucial regulator in many

pathophysiological processes of DKD, including the inflammatory

response, EMT, cellular proliferation, apoptosis, autophagy, and

fibrosis. We outline the following four modes of action of lncRNA

H19 in modulating DKD: its role as a miRNA sponge, role in gene

methylation, role as a precursor of miR-675, and role in interacting

with protein. Additionally, we illustrated the regulatory mechanism

of lncRNA H19 in different renal cells (Table 1).
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6.1 Role as a miRNA sponge

LncRNA H19 serves as a miRNA sponge to regulate EndMT,

proliferation, inflammation, EMT, fibrosis, oxidative stress,

ferroptosis, and pyroptosis (Figure 3). For example, a

considerable increase in lncRNA H19 expression has been

observed in mouse mesangial cells under HG conditions. Then,
Frontiers in Endocrinology 06
the luciferase reporter assay demonstrated that lncRNA H19 binds

to miR-143-3p to boost the production of inflammatory molecules

interleukin-6 (IL-6) and TNF-a as well as pro-fibrogenic molecules

like TGF-b1, Col. IV, and FN, thereby advancing the inflammation

and proliferation of GMCs (111). Similarly, in the serum of clinical

patients with CKD, lncRNA H19 was positively linked with the

expression of TNF-a and IL-6, the latter served as a risk factor for
TABLE 1 The mechanism of lncRNA H19 in different renal cells in diabetic kidney diseases.

Expression Samples Targets Functions References

up Mesangial cells miR-143-3p, IL-6, TNF-a, TGF-b1, Col. IV, and FN Inflammation, Proliferation,
Fibrosis

(111)

up Serum IL-6, TNF-a Fibrosis (112, 113)

up STZ-mice,
podocyte

miR-29a, TGFb, Smad3, FSP-1, CD31 Fibrosis, EndMT (114, 115)

up HK-2 cells miR-17, a-SMA, FN, Col. IV, and Col. I Fibrosis, EMT (116)

up Mesangial cell miR-129, HMGB1, Nrf2 Ferroptosis (117)

up podocytes NLRP3 Pyroptosis (118)

up podocytes ATG7 Autophagy (119)

up serum Beclin-1 Autophagy (120)

up Tubular epithelial cells DIARS3, mTOR Autophagy (121)

up CIHP‐1, HEK 293 cells miR-675, VDR, EGR1 EMT, Fibrosis, (122)

up Diabetic mice MFN-2 Mitochondrial dysfunction (123)

up DKD rats, glomerular endothelial cells Akt/eNOS GEC damage (124–126)
FIGURE 3

Role of lncRNA H19 as a miRNA sponge in DKD. LncRNA H19 could sponge miRNA inhibits its expression and engage in regulating the diverse
pathogenesis of DKD, including EMT, EndMT, inflammation, proliferation, oxidative stress, ferroptosis, pyroptosis, autophagy, and fibrosis. →:
promote, —: inhibit. This figure is created with BioRender.com, and the authors have been granted a license to use the BioRender content.
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DKD (112, 113). Consistent with these findings, lncRNA H19 was

up-regulated in both the STZ-induced animal model and the TGF-

b2-induced human microvascular endothelial cells (HMVECs),

blocking miR-29a expression to significantly increase the activity

of the TGF-b/Smad3 pathway (114). In addition, miR-29a

promotes nephrin acetylation to reduce the effects of

hyperglycemia on podocytes (115). Further research has revealed

that in diabetic kidneys, lncRNA H19 knockdown inhibits EndMT

by upregulating the expression of mesothelial cell marker FSP-1 and

downregulating the endothelial marker CD31 (114).

Another recent study demonstrated a favorable correlation

between lncRNA H19 and renal fibrosis. Using TGF-b-induced
HK-2 cells, StarBase 2.0 to identify miRNA recognition sites

associated with lncRNA H19 during renal fibrosis, including miR-

20, miR-93, miR-106, miR-18, and miR-17. It was shown that

lncRNA H19 can function as an endogenous RNA to decrease miR-

17 levels and boost the production of a-SMA, FN, Col. IV, and Col.

I but reduce E-cadherin in unilateral ureteral obstruction mice.

These findings collectively show that lncRNAH19 exacerbates renal

fibrosis in DKD via the miR-17/fibronectin regulatory networks

(116). Moreover, by serving as a miRNA sponge for let7, lncRNA

H19 positively controlled the production of ten-eleven

translocation (TET1), which in turn influences the epigenetic

regulation of upstream TGF signaling genes including

thrombospondin 1 (TSP1) and TGF‐b receptor 2 (TGFBR2). This

increased the phosphorylation of the TGF signaling intermediate

SMAD2 and the overexpression of the EndMT markers FN,

vimentin, and smooth muscle 22 alpha (SM22‐a). Based on these

findings, it suggests that the lncRNA H19/TET1 axis may

contribute to phenotypic alterations during DKD progression

(127). Besides, lncRNA H19 activates the PI3K/AKT pathway and

regulates tyrosine 3-monooxygenase/tryptophan 5-monooxygenase

activation protein zeta (YWHAZ) expression to promote EMT by

working as an endogenous sponge for miR-340-3p and miR-140-5p

(128, 129). Similarly, binding to and suppressing miRNAs like miR-

138 and miR-148a, lncRNA H19 promoted the EMT markers along

with stabilizing TGF-b through lncRNA H19/miR-138/SOX4 and

lncRNA H19/miR-148a/ubiquitin-specific protease 4 (USP4) axes,

which may further result in fibrosis (130, 131). Through sponging

miR-106a-5p or miR-103-3p in a Runx2 dependent way, elevation

of H19 contributes to increased vascular calcification (VC) in the

kidney (132, 133).

Ferroptosis is another potential target of lncRNA H19 in DKD.

Previous studies revealed that curcumin therapy markedly

decreases the production of the lncRNA H19 in lung cancer cells

to induce ferroptosis. Mechanistically, lncRNA H19, which works

as a rival endogenous RNA bounding to miR-19b-3p, suppresses

ferroptosis as shown by the increased transcriptional activity of

ferritin heavy chain 1 (FTH1), a gene that is both an endogenous

target of miR-19b-3p and a depressor of ferroptosis (134).

Additionally, lncRNA H19 knockdown increased cell division and

decreased ferroptosis in brain microvascular endothelial cells

(BMVECs) by modulating the miR-106b-5p/acyl-CoA synthetase

long-chain family member 4(ACSL4) axis (135). Intriguingly, an
Frontiers in Endocrinology 07
increase in the tubular pro-ferroptosis gene ACSL4 was linked to

the renal function of acute kidney tubular injury patients, which

triggered ferroptosis in TECs (136). Furthermore, lncRNA H19 has

been shown to serve as a sponge for miR-129 (137), and, positively

regulate ion of high-mobility group box 1 (HMGB1) which

modulates oxidative stress and hyperglycemia-induced ferroptosis

in mesangial cells through the nuclear-related factor 2 (Nrf2)

pathway (117).

Given the crucial role of autophagy and pyroptosis in the

progression of DKD, the regulatory relationship between lncRNA

H19 and regulated cell death (RCD) cannot be neglected. Previous

research has illustrated that lncRNA H19 also serves as a sponge for

miR-22-3p and miR-423-5p to boost the activity of the Nod-like

receptor family pyrin domain-containing 3 (NLRP3) (138, 139), a

marker of pyroptosis and a factor in podocyte damage, thereby

encouraging pyroptosis (118). Besides targeting miR-423-5p and

miR-22-3p, lncRNA H19 also exhibits negative effects on miR-21,

whereas the reduction of miR-21 enhances the expression of

programmed cell death 4 (PDCD4), forming a competing

endogenous RNA network (ceRNET) that significantly promotes

an imbalance in the NLRP3/6 inflammasome, leading to pyroptosis

(140). Another fascinating finding suggests that lncRNA H19

reverses mitochondrial damage and cell growth inhibition by

sponging miR-93-5p under the condition of lipopolysaccharide

(LPS) (141). Similarly, increased levels of lncRNA H19 trigger

cellular autophagy via the lncRNA H19/miR-143/autophagy-

related protein 7 (ATG7) signaling axis (142), while ATG7 is a

hallmark of podocyte autophagy (119).

Apart from a miRNA sponge, lncRNA H19 exhibits its

regulating effects in gene methylation, protein interaction, and

transcription of small RNAs (Figure 4).
6.2 Role in gene methylation

In addition to acting as a miRNA sponge, lncRNA H19

influences the gene methylation of downstream cytokines. These

findings suggest that lncRNA H19 binds to and inhibits the enzyme

S-adenosylhomocysteine hydrolase (SAHH), resulting in the build-

up of SAH, which prevents the transcription factor DNA

methyltransferase 3 B (DNMT3B) from methylating the Beclin1

promoter. As a consequence, lncRNA H19 encouraged Beclin1

transcription to trigger autophagy (143). However, the serum of

patients with DKD has lower levels of Beclin-1, pointing to the

probable involvement of lncRNAH19 and autophagy in this disease

(120). Aplasia Ras homolog member I (DIRAS3), which is

extensively expressed in epithelial cells, encodes a small GTP-

binding protein (121). Interestingly, lncRNA H19 decreased the

amounts of DIRAS3 and increased the mTOR-related proteins to

inhibit podocyte autophagy (144), however, a high level of podocyte

autophagy is essential to maintain renal homeostasis (145). Shensu

IV, a well-known Chinese prescription, promotes lncRNA H19/

DIRAS3-regulated autophagy to prevent kidney injuries in

DKD (144).
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6.3 Role as a precursor of small RNAs:
lncRNA H19/miR-675 axis

Regarding the unique structures of miR-675 and H19, scientists

have revealed some interesting findings. MiR-675, which is

embedded in the first exon of H19 gene (146), is activated in

response to increased lncRNA H19 synthesis, indicating that

lncRNA H19 modulated the transcription of miR-675. Luciferase

reporter assay further confirmed this combination. What’s more, 3′
UTR of vitamin D receptor (VDR) contains a complementary

sequence of miR-675, providing a regulatory possibility for miR-

675. The VDR is negatively linked to early growth response protein

1 (EGR1), a transcription factor of lncRNA H19. Furthermore,

EGR1 stimulated the Wnt/b-catenin pathway, the classical signal of

EMT, to accelerate renal fibrosis. These observations suggest a

negative feedback loop for lncRNA H19/miR-675/EGR1 during

the progression of DKD (24, 122). Notably, there might be a similar

function of lncRNA H19/miR-675 in DKD because of its role in

regulating EMT in hepatocytes, breast cells, and skin squamous cells

(147–149), as well as its inhibitory effect on iron-stored protein

ferritin (FHC), which is necessary to maintain iron metabolism in

the kidney (150).
6.4 Role in interacting with protein

LncRNA H19 also influences downstream protein expression via

direct binding. By binding to heterogeneous nuclear

ribonucleoprotein A2B1(hnRNPA2B1), lncRNA H19 maintains and

increases the expression of Raf-1 to activate the Raf-ERK signaling

linked to EMT (151). In addition, overexpression of lncRNA H19
Frontiers in Endocrinology 08
prevented Pink1 mRNA from binding to eukaryotic translation

initiation factor 4A, isoform 2 (eIF4A2), blocking the translation of

Pink1 and reducing mitophagy through the Pink1/Parkin pathway

(152). Furthermore, in diabetic mice, H19 interacts with mitofusin-2

(MFN-2) mRNA. MFN-2 is a dynamin GTPase found on the outer

mitochondrial membrane that is encoded by nuclear genes and is

responsible for outer mitochondrial membrane fusion (123).
6.5 Role in other regulating factors related
to DKD

However, some studies did not explain the specific working

patterns of lncRNA H19 in DKD, leading to the following

conclusions. One study showed that lncRNA H19 is highly

expressed in both DKD rats and rat glomerular endothelial cells

(rGEnCs). Further experiments demonstrated that lncRNA H19

knockdown reduced the GBM and ameliorated GEC impairment,

as indicated by the high levels of the principal glycocalyx components

WGA and Syndecan-1, as well as the essential tight junction proteins

ZO-1 and Occludin. Additional research has demonstrated that

lncRNA H19 has a deleterious effect on DKD by blocking Akt/

eNOS signaling, which is essential for podocyte and GEC damage

(124–126). According to a recent study, phospholipid hydroperoxide

glutathione peroxidase (GPX4), a factor that negatively regulates

ferroptosis, is favorably linked to lncRNA H19 levels during

spontaneous abortion (153). Similarly, renal biopsy samples from

patients with DKD show lower GPX4 expression than those from

healthy controls, suggesting an independent predictor of ESKD

development (154). These discoveries will make it possible to

understand the relationships between lncRNA H19 and GPX4,
FIGURE 4

Other biological functions of lncRNA H19 in DKD. a: Gene methylation: LncRNA H19 regulates gene methylation of DIRAS3 to inhibit autophagy. b:
Role of the lncRNA H19/miR-675 axis in DKD, c: LncRNA H19 interacts with proteins (MFN-2 and eIF4A2) to induce mitochondrial dysfunction. →:
promote, —: inhibit. This figure is created with BioRender.com, and the authors have been granted a license to use the BioRender content.
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which will help choose therapeutic targets to control ferroptosis and

manage DKD progression.

In other disease models, lncRNA H19 plays a role in collective

pathogenesis, providing more possibilities for the role of lncRNA

H19 in DKD. For instance, lncRNA H19 promoted oxidative stress

and released inflammatory factors IL-6, IL-1b, and TNF- by

stimulating the NF-kB pathway in intracerebral hemorrhage

(ICH) rats (155). Additionally, lncRNA H19 might encourage the

translocation of b-catenin into the nucleus and trigger Wnt/b-
catenin signaling, leading to EMT (156). In hepatocytes induced by

IL-22, it is interesting to note that an elevation in lncRNA H19

influenced the expression of t AMPK and AKT proteins, which are

upstream regulators of mTOR signaling, ultimately preserving

mitochondrial function and integrity by activating the AMPK/

AKT/mTOR axis (157). Besides, it has been proven that lncRNA

H19 lowered the formation of ROS and lessened mitochondrial

damage by suppressing the NF-kB activation driven on by ox-

LDL (158).
7 Role of lncRNA H19 in nondiabetic
kidney disease

Nondiabetic kidney disease (NDKD) refers to kidney diseases

unrelated to diabetes, including glomerulonephritis, acute kidney

injury (AKI), focal segmental glomerulosclerosis, and minimal

change disease. Nevertheless, renal biopsy in diabetic patients

with chronic kidney diseases may indicate the following three

possibilities: DKD, NDKD, or a mixture of both DKD and

NDKD (159). Therefore, additional investigations of lncRNA H19

in NDKD are helpful to fully understand its role in DKD.

DKD patients are more susceptible to AKI, which has been

shown to deteriorate kidney function and is challenging to recover

from when it occurs in DKD (160). In AKI model mice, the elevated

expression of lncRNA H19 has been shown to stimulate the

synthesis of Wnt and b-catenin through sponging miR-196a-5p,

promoting Wnt/b-catenin signaling pathway, which in turn

promotes renal fibrosis (161). Meanwhile, another study verifies

that lncRNA H19 regulates the apoptosis, proliferation, and

inflammation of TECs in a miR-130 manner. The pro-apoptotic

proteins are elevated whereas the anti-apoptotic protein Bcl-2 is

decreased in HK-2 cells due to the lncRNA H19/miR-130a axis.

Additionally, the lncRNA H19/miR-130a/BCL2L11 axis stimulates

the production of IL-6, IL-1, and TNF-a while suppressing IL-10,

resulting in inflammation in the TECs (162). Notably, inconsistent

outcomes are observed in the renal adeno-associated virus 2

(AAV2)-mediated mouse model. LncRNA H19 is observed to

upregulate in the kidney biopsies of AKI patients. In vivo

experiments then confirm that lncRNA H19, which sponges miR-

30a-5p, could attenuate apoptosis and inflammation while also

stimulating pro-angiogenic signaling, suggesting a protective role

against kidney injury. It proves that capillary density and tubular

epithelial integrity can be preserved in the lncRNA H19/miR-30a-

5p axis (163). Altogether, these findings imply that lncRNA H19

might be crucial in AKI.
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Researchers found that lncRNA H19 was overexpression in the

glyoxylate-induced Calcium oxalate (CaOx) nephrocalcinosis

mouse models. Their additional findings that lncRNA H19

accelerates renal epithelial cell injury in a miR-216b-5p manner,

thereby up-regulating the expression of HMGB1, another target of

miR-216b-5p that is negatively linked with it. Then HMGB1

interacted with toll-like receptor 4 (TLR4) to promote the

transcription and expression of several chemokines and

proinflammatory cytokines like IL-6, IL-1b, and TNF-a via NF-

kB or NADPH oxidase ways (164). It is recognized that TLRs are

endogenous danger-associated molecular patterns produced in DM

that allow for the stimulation of the NF-kB signaling to trigger a

sterile tubulointerstitial inflammatory response (77). These results

collectively revealed a possible involvement for the lncRNA H19/

mir-216b-5p/HMGB1 axis in the pathology of TEC injury through

the modulation of OS and inflammatory response (164). It was

recently discovered in nephroblastoma cells that lncRNA H19

significantly influences the miR-675/TGFBI axis to enhance

proliferation and prevent apoptosis (165). Intriguingly, it has been

shown that IGF2 and lncRNA H19 compete for the same binding

enhancer, and the lncRNA H19-IGF2 imprinted gene area is likely

linked to an increased risk of having compromised renal function

(IRF) (166). Otherwise, renal clear cell carcinoma, Wilms tumors,

and renal cell carcinoma are all influenced by the interaction

between lncRNA H19 and IGF2 (167–169).
8 Conclusion and perspectives

This review focuses on the primary pathogenic alterations and

mechanisms of DKD, as well as the functions of lncRNAs in DKD,

highlighting lncRNA H19. Substantial evidence supports the

essential role of lncRNA H19 in the physiology and pathology of

the diabetic kidney. As a result, we outlined how lncRNA H19

might affect the phenotypes associated with DKD, including

inflammation, oxidative stress, autophagy, mitochondrial

dysfunction, EMT, EndMT, ECM buildup, and fibrosis. We

divided the mechanisms of lncRNA H19 in controlling DKD into

four groups at the molecular level: regulation of gene methylation,

protein interactions, miRNA sponges, and small RNA precursors.

Among these, we find that serving as miRNA sponges is more

common for lncRNA H19, which sponge miRNA to regulate

downstream factors to modulate fibrosis-related progressions and

hastens the development of DKD. Previous research revealed that

lncRNA H19 is an independent risk factor for T2DM. Increased

renal indicators (urea, creatinine, and UACR) and nephropathy are

more frequently linked to H19 expression (170, 171). In addition,

the discovery that metformin, a first-line therapy for type 2 diabetes,

might lessen kidney damage through downregulating lncRNA H19,

and therefore DKD, offers another direction for our investigation of

the potential of metformin for treating DKD. Despite these

developments, many unresolved problems persist. Drugs targeting

lncRNA H19 are limited. We can focus on some Chinese traditional

medicine such as Shensu IV to deeply explore the mechanisms of

lncRNA H19, providing novel therapy for DKD patients. Hence, in-

depth research on lncRNA H19 is required. More mechanistic and
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translational studies with tissue- and cell-type-specific H19−/−

animal models are needed. Additionally, studies are required to

validate preclinical findings in human samples and to examine the

effects of compounds that modulate lncRNA H19 in DKD clinical

trials. In the future, we propose a hypothesis that we can identify a

functional motif of H19 and deliver the functional motif to kidney

cells to alleviate kidney injuries, which is similar to some lncRNA-

targeted therapy in pathological cardiac hypertrophy and tumor

disorders. Furthermore, given the imprinted properties of lncRNA

H19, we may utilize its expression variations to investigate the

prevalence of DKD in various sexes, offering novel approaches for

illuminating the genetic landscape and the early detection of DKD.

In a word, lncRNA H19 provides more possibilities for us to

diagnose and treat DKD.
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