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Zebrafish as an emerging model
to study estrogen receptors in
neural development

Marie-José Boueid, Océane El-Hage, Michael Schumacher,
Cindy Degerny*† and Marcel Tawk*†

U1195, Inserm, University Paris-Saclay, Le Kremlin Bicêtre, France
Estrogens induce several regulatory signals in the nervous system that are mainly

mediated through estrogen receptors (ERs). ERs are largely expressed in the

nervous system, yet the importance of ERs to neural development has only been

elucidated over the last decades. Accumulating evidence shows a fundamental

role for estrogens in the development of the central and peripheral nervous

systems, hence, the contribution of ERs to neural function is now a growing area

of research. The conservation of the structure of the ERs and their response to

estrogens make the zebrafish an interesting model to dissect the role of

estrogens in the nervous system. In this review, we highlight major findings of

ER signaling in embryonic zebrafish neural development and compare the

similarities and differences to research in rodents. We also discuss how the

recent generation of zebrafish ER mutants, coupled with the availability of

several transgenic reporter lines, its amenability to pharmacological studies

and in vivo live imaging, could help us explore ER function in embryonic

neural development.

KEYWORDS

estrogen (17b-estradiol), estrogen receptor - ESR, GPER, zebrafish, neurogenesis, glia,
oligodendrocyte (OL), notch
Introduction

Estrogens, essentially the three major forms: estrone (E1), estradiol (E2) and estriol

(E3), are a group of hormones that are necessary for the development of female

characteristics and reproduction (1–4). Estetrol (E4) is also an estrogenic steroid that is

exclusively synthesized in the fetal liver during human pregnancy, yet remains with

unknown function (5, 6). However, long gone are the days when these hormones were

solely considered as “reproductive hormones” since a wealth of data acknowledge estrogens,

as well as other reproductive hormones, as essential players in nervous system development

and function (7–13). Once secreted, estrogens can be delivered from the periphery into the

nervous system via the blood stream. Estrogens can also be synthesized locally within the

nervous system and target adjacent cells through paracrine activity, or synthetized and
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signal within the same cells through autocrine activity (14). The very

early exposure of vertebrate embryos to estrogens underscores their

fundamental role during development. Indeed, the mammalian

embryo grows in a rich estrogenic environment, and estrogen is

later provided to embryos maternally through the placenta (15). It is

also delivered in the egg yolk of oviparous vertebrates (16).

Estradiol, being the major female sex hormone and most effective

of the three major estrogens, has been the focus of most estrogenic

pathway studies in animals and humans.

In all cases, estrogens mainly exert their function via interaction

with specific receptors, called estrogen receptors (ERs). Estrogens

mediate their function via classical ERs, or membrane-associated

ERs. ERa and ERb are responsible for genomic estrogen effects,

whereby estrogens bind to the ER in the cytoplasm which then

dimerizes and translocates to the nucleus, to finally interact with

estrogen responsive element (ERE) DNA sequences found in target

genes (3). This classical hormone action is defined as slow response

mechanism, considering that ERs must shuttle between cytoplasm

and nucleus to exert their transcriptional function. However, other

studies have reported a very rapid increase in cAMP in response to

E2, highlighting a possible interaction with the adenyl cyclase

machinery, thus a non-genomic action. This fast non-genomic

estrogen activity could be attributed to a specific membrane

initiated steroid signal (MISS) on the ER, that allows the latter to

translocate to the membrane following posttranslational

modifications (3). On the other hand, it was only recently that a

7-transmembrane G protein coupled receptor, GPR30 or GPER (G

protein-coupled estrogen receptor), was proposed as a novel non-

classical ER that would mediate estrogen rapid signaling (3, 17–21).

The zebrafish is a fantastic vertebrate model to follow highly

dynamic activities of neural cells and their interaction with

neighboring cells. Its external development makes it an ideal

model for genetic manipulation as early as the one-cell stage and

provides a vertebrate model for drug screening and signaling

analysis. Their ability to absorb drug compounds enables testing

of hundreds of molecules in a relatively short time. Furthermore,

zebrafish larvae remain transparent throughout the first weeks of

development, which enables careful imaging of live cellular and

intracellular events, at a level of detail unfeasible in any other

vertebrate organism (22–26). Even though zebrafish generation

time is similar to rodents, they develop relatively fast when

compared to other vertebrate models. Most importantly, they

share conserved molecular mechanisms with other organisms,

including regulation of neural development (27).

In this review, we will highlight recent findings from zebrafish

and rodents that report nuclear and non-genomic activities of ER

signaling in embryonic nervous system with a focus on

neural development.
Characterization of estrogen
receptors

Even though some hormones vary between humans and

animals in their spatial and temporal expression, it is important

to note that so far, every animal organism has contributed to our
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understanding of hormonal function, sometimes with astonishing

and unexpected outcomes.

Regarding estrogens, scientists have made a great progress in

understanding ligand/receptor interactions, their downstream

effectors and contribution to physiological functions. Moreover,

additional progress is expected in the coming years to dissect

estrogens, and more specifically ER signaling in neural circuit

formation and interaction.

Estrogen receptors are part of the so-called nuclear receptors,

known for their transcriptional activity by binding to specific

response elements. These receptors present a conserved functional

domain organization, with four to five shared domains. Among

these are i) the N terminal domain that contains the first of two

transactivation domains, and is highly variable; ii) the C domain,

which contains the highly conserved DNA-binding domain (DBD);

and iii) the E domain, which contains the ligand-binding domain

(LBD) and the second transactivation domain, that is also well-

conserved and responsible for dimerization (28). Indeed, as

mentioned above, there are two types of ERs in rodents, ERa and

ERb. Mouse ERa amino acid sequence shares an overall homology

of 88.6% and 97.3% with human and rat ERa sequences

respectively, while human ERb shares 89% identity with rat ERb
and 88% with mouse ERb (29–31). Moreover, rat ERb shares more

than 95% homology in the DBD domain, and 55% amino acid

identity in ligand-binding domain with rat ERa (32). Similar

findings were observed in mice ERs, whereby the DBD domain

presents a high degree of conversation between the two subtypes

(96%) (33). Furthermore, whilst ERa and b can form homodimers

of either subtype and interact with their response elements, the two

ER subtypes are also able to form DNA-binding heterodimers and

potentially diversify estrogen signaling pathways (33).

Two types of estrogen receptors are found in zebrafish, Era and

Erb, encoded by three distinct genes: era or esr1, erb1 or esr2b and
erb2 or esr2a; erb being duplicated. Initial sequence analysis

indicated that zebrafish Era shares 47.1% identity with human

ERa, while Erb1 and b2 had 46.8% and 51.5% identity, respectively,

with human ERb (34, 35). The characterization of these receptors

showed Kd values of 0.74 nM for Esr1, 0.75 nM for Esr2a and 0.42

nM for Esr2b (36). Moreover, all ERs were able to induce a reporter

gene activity with an ERE that is estrogen dependent. A link

between estrogen activity and estrogen responsive element has

also been established through a transcriptomic study. This

revealed that estrogens stimulate metabolic pathways during

zebrafish development, that liver, pancreas and brain are the most

responsive organs to estrogen treatment and that estrogen effects on

zebrafish development are stage-specific (37).

Apart from the well characterized estrogen nuclear receptors, it

has been shown that a G protein coupled receptor, GPR30 or GPER,

is activated by E2 at the cell membrane (18). Weigel and colleagues

originally isolated and cloned GPR30 from an estrogen receptor

(ER)-positive carcinoma cell line (38). They mapped it to

chromosome 7p22 and showed that its transcript encodes a 375

amino acid protein. Using SKBR-3 cells, Dong and colleagues found

that estrogen binds to GPR30 with a Kd of 2.7 nmol/l (39).

In 2009, Liu and colleagues cloned a full-length cDNA

homologous to the GPER of rodents from the testis of zebrafish.
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It is located on chromosome 3, contains three exons while human

ortholog has two; its protein sequence shares 71.5% identity with

human GPER (40) (updated sequence analyses are found in Table 1,

Figure 1). Using gper-transfected Cos-7 cell line, they revealed the

presence of E2-binding sites in GPER, with a Kd of 2.3 nM.
Expression of estrogen receptors
during neural development

The nervous system is a heterogeneous structure of different cell

types that originally derive from neural stem cells (NSCs), to give

rise to neurons and glia. The terms neurogenesis and gliogenesis are

used to define the spatially and temporally controlled

transformation of NSCs into differentiated neurons and glia,

respectively (41). Thus, the incredible diversity of neurons and

glia in the nervous system, results from the tight and fine balance

between proliferation and differentiation of neural progenitor cells.

This is achieved through the coordination of a multitude of signals,

combining extrinsic cues with intrinsic signaling pathways, that are

both well defined in time and space. Accordingly, any alteration to

the diversity and numbers of neurons or glia, will systematically

lead to defects in either brain size, such as microcephaly and

macrocephaly, or function, through defective wiring or neural

network activity (42).

Estrogen receptors are both widely expressed in the developing

fetal rodent brain, from as early as E16.5 for ERa, and E10.5 for

ERb. Era is more localized to the hypothalamus after birth, while

Erb expression remains more dispersed and found in several areas

of the brain and within different cell types, including serotonergic

neurons, interneurons, microglia and oligodendrocytes (12).

Zebrafish era is expressed, through different isoforms, from

very early stages of development, highlighting a maternal

contribution (43). Zygotic expression is also evident, with high

levels of expression observed until 96 hours post fertilization (hpf)

(latest to be analyzed). The expression of erb2 is very low during

early stages, but then progressively increases following zygotic

transcription. erb1 is highly expressed at early stages, drops down
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and then increases between 24 and 48 hpf (44). However, the

highlighted results from qPCR experiments do not correlate with

whole mount in situ hybridization, since no expression of the three

different er mRNAs was observed at early stages. esr1 expression

was only detected in the liver at 48 hpf and at 14 days post

fertilization (dpf) in the forebrain. esr2a and b expression is

visible at 32 hpf in the forebrain, followed by an expression in the

hypothalamus at 48 hpf (34, 44). Thus, the precise spatiotemporal

developmental expression of these receptors is yet to be clarified.

Work form Olivier Kah’s group shows that estrogens stimulate the

expression of aromatase B, a key enzyme responsible for converting

androgens to estrogens, in the presence of estrogen receptors, with a

higher activity in the presence of Esr2b and a (44). It is possible that

fish aromatase is highly expressed in brain regions where ER are

strongly expressed too, and that Esr2a and b might be responsible

for aromatase expression in radial glial cells in zebrafish brain.

Whether there is a direct correlation between the expression and

function of ER and aromatase, is yet to be demonstrated, since no

functional genetic studies have addressed this issue so far.

GPER expression is mainly studied in adult brain, showing an

expression in multiple areas of the central and peripheral nervous

systems, including the hypothalamus, spinal cord and dorsal root

ganglia (17, 45, 46). Zebrafish gper, on the other hand, was found to

be expressed at very early stages, and is widely distributed in

different regions of the developing brain, as early as 18 hpf (47, 48).
Role of estrogen receptors in
neural development

Most studies have focused on estrogens or molecules and

compounds with estrogenic activity as important players in

neuroprotection under pathological conditions. Estrogens, indeed,

promote neuronal cell survival by increasing the expression of

growth factors and/or anti-apoptotic molecules (49, 50). This

estrogen activity might also be related to their capacity to

modulate dendritic spines, axonal growth, synaptic signaling and

plasticity (12, 51–57).
TABLE 1 A comparison of Estrogen receptors’ proteins.

Estrogen receptor Species RefSeq % identity to human

Esr1 Mus muculus NP_001289460.1 88.98

Rattus Norvegicus NP_036821.1 88.17

Danio rerio NP_694491.1 57.91

Esr2 Mus muculus NP_9975590.1 85.77

Rattus Norvegicus NP_036886.3 88.68

Danio rerio (isoform a)
Danio rerio (isoform b)

NP_851297.1
NP_777287

56.05
54.7

GPER Mus muculus NP_084047.2 86.93

Rattus Norvegicus NP_598257.2 86.4

Danio rerio NP_001122195.1 71.52
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As mentioned above, ERs are widely expressed in the nervous

system, however, only a small number of studies have analyzed the

impact of estrogen receptor genetic invalidation on neural

development in vivo. The majority of studies have used selective

ER agonists or antagonists to study the role of ERs in biological

processes and to demonstrate receptor specificity. To evaluate the

effects of estrogen on ERa and ERb, some have utilized the ERa and

ERb antagonist ICI 182,780 in combination with estrogen (44, 58).

However, while ICI 182,780 is an antagonist of ERa and b, it has
also been shown to act as an agonist of GPER (59). This suggests

that some of the positive effects of estrogen may be mediated by

GPER. Researchers have also used selective estrogen receptor

modulators (SERMs). SERMs are ER ligands that exhibit

preferential binding affinity towards one receptor isotype over the

other, and can help clarify the specific contributions of each

receptor subtype to the biological effects of estrogen (60). Thus,

gene invalidation of each of the ERs remains a good strategy to

assess their role(s) in neural development in vivo.

Neurogenesis takes place in the two proliferative regions of the

mammalian brain, the subventricular zone (SVZ), and the

subgranular zone (SGZ) of the dentate gyrus in the hippocampus,

where NSCs are abundant (61). Interestingly, both ERa and ERb, as
well as GPER are all expressed in NSCs of rat embryos, highlighting a

potential role for these receptors in the behavior of NSCs (8, 62). A

wealth of studies shows an important role for estrogens in the
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proliferation of NSCs. Treating NSCs with E2 enhances the

proliferative activity of NSCs, either using human NSCs, or

primary cultures of embryonic rat derived NSCs (63). E2 activity,

in this case, seems to be predominantly mediated by ERb (8). Indeed,

ERb-/- mouse brains show a significant decrease in the number of

neurons in the cortex, and their brain is smaller than those of controls

(64). Studies from Gustafsson’s lab propose a role for ERb in

neuronal migration and preventing apoptosis during development

(65). Using mouse embryonic stem cells (mESCs), studies from the

same group found that proliferation was higher and neurogenesis

reduced in ERb KOmESCs. Data provide evidence that ERb plays an

important role in maintaining stem cell identity by curbing

proliferation, and possibly favoring nonneuronal fate (13, 66). It

remains hard to reconciliate all these data given: i) the important role

of E2 in enhancing proliferation of NSCs and stimulating neuronal

differentiation in vivo and in vitro; ii) the smaller brain in ERb-/- mice

and increased levels of apoptotic neuronal death, while ERb is shown

to mediate apoptosis in neuronal cells; iii) high proliferation in NPCs

derived from ERb KO mice, with no significant difference in

apoptosis between controls and KO mice, and no changes in the

expression of neuronal markers. Few studies have addressed the role

of ERa in neural development, however, some data provide evidence

of an important role for ERa in mediating the differentiating and

neuroprotective effects of estrogens in vitro, in PC12 cells, with a

focus on neurite outgrowth (67).
FIGURE 1

Protein domain architecture of the different zebrafish Estrogen receptors. Length of protein and different domains are highlighted as Amino Acids.
Each domain is compared to the equivalent human one and the percentage of identity is shown. DBD, DNA Binding Domain; LBD, Ligand Binding
Domain and 7-TM, 7-Transmembrane Domain.
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The general consensus, even though results might depend on

the timing and location of estrogen activity, is that estrogens

stimulate the proliferation of neural stem cells in rodents. Thus,

one of the striking differences between zebrafish and rodent studies,

is the inhibitory effect of estrogens on cell proliferation in the brain

of adult zebrafish, as well as the strong expression of aromatase in

radial glial cells (RGs). Using ICI 182,780 as inhibitor of ERs activity

(although presenting GPR30 agonist properties), Olivier Kah’s

group showed a significant increase in the number of PCNA

positive cells in different areas of adult zebrafish brain. Moreover,

17b-estradiol treatment led to a significant decrease in PCNA

positive cells, suggesting a role for estrogens in inhibiting cell

proliferation through their nuclear receptors, at least partially, in

adult zebrafish brain (44, 68–70). As for embryonic studies, treating

zebrafish embryos with E2, during nervous system development,

decreased the number of BrdU positive cells in the thalamus,

olfactory bulbs, telencephalon and preoptic areas, while no

difference was observed in mediobasal and caudal hypothalamus

(71). Even though some of the areas affected differ between

zebrafish adults and larvae, a clear inhibitory effect of estradiol on

proliferative activity of neural cells is observed in zebrafish (69, 71).

Several studies highlighted a potential role for aromatase in RG

development, given its high expression in RGs. However, there is no

evidence so far of a role of aromatase in the behavior of RGs, or in

neurogenesis per se.

While most behavioral studies focused on GPER-selective

agonists and antagonists to study the role of GPER in mice

behavior (56, 72–74), only few studies assessed its direct role in

anxiety and stress responses using GPER KO mice and GPER-

deficient rats (75, 76). A potential role for GPER in neural

development is yet to be revealed in rodents. A recent study by

Pemberton and colleagues has shown, although limited to selective

agonist G-1 and E2, a role for GPER activation in neural growth,

neural firing activity and intracellular Ca2+ rise in primarily

cultured E18 rat embryonic neurons (77).

Zebrafish studies have brought more insight into gper function

during development. Using a morpholino knockdown approach,

Lin H. and colleagues revealed an increase in apoptosis and a

significant decrease in the expression of some neuronal markers in

gper morphant embryos, such as Zn-12, Znp-1 and Zn-5 (48).

Additional studies, including gper KO mutant, are needed for more

accurate analysis of gper activity in neural development. The first

functional analysis of gper function during development, using a

gper KO mutant, is led by Romano and colleagues, in which they

show a fundamental role of Gper, centrally, in regulating zebrafish

embryonic heart rate, by modulating estrogen and T3 levels in the

developing brain (47).
Estrogen receptors and notch
signalling

As mentioned above, estrogens can regulate several aspects of

neural development, however, it was not clear until recently how
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ERs might contribute to neural development. As the Notch pathway

is critical to neurogenesis, it was reasonable to consider an

interaction between ER and Notch signaling. Both neurogenic

genes (notch, delta), as well as proneural genes (neurogenin,

neuroD), are required for neurogenesis (i.e. neuronal cell fate) in

zebrafish and mice. While notch is expressed in proliferative neural

stem and progenitor cells regions, neuroD and neurogenin are

expressed in postmitotic neurons (78). Thus, the molecular

mechanisms driving neuronal development in zebrafish require a

similar regulatory cascade to rodents. Moreover, zebrafish present a

unique opportunity to analyze the development, behavior and

function of not only neurons, but also major glial cell types in the

nervous system, from radial glial cells, oligodendrocyte precursor

cells, oligodendrocytes, Schwann cells, microglia and the recently

identified astrocytes (79–85).

Given the complexity of the nervous system and the diversity of

its population during development in vivo, a recent study led by

Gustafsson’s group tried to address ER and Notch interactions using

embryonic stem cells derived from controls and ERb KO mice.

Using a targeted gene-expression profiling in combination with

pluripotency markers, the authors provide evidence of reduced

neurogenesis and enhanced oligodendrogliogenesis in ERb KO

stem cells, although, there was no significant difference in the

expression of neuronal markers. This correlated with higher

proliferation, and no measurable differences in apoptosis. Authors

also show a sharp decrease (75%) in the expression of Hes3

transcript in ERb KO stem cells (66). Indeed, Notch-Hes signaling

is a major driver of neural stem cell renewable since it prevents

premature differentiation through Notch-Delta lateral inhibition.

Hes genes are found highly expressed in neural stem cells and are

considered as repressors of neural differentiation. Hence, reducing

Hes levels leads to a significant increase in proneural genes’ activity,

a premature neurogenesis, as well as rapid depletion of the stem cell

pool. This is the first clear demonstration of a role of ERb in the

transcriptional activity of a major signaling player, Notch-Hes, in

neurogenesis. This highly defined cell culture system is hence a

powerful in vitro tool to assess gene-expression profiling. However,

the picture is far from clear when it comes to ER activity during

nervous system development in vivo, where intercellular

communication between the different players, and varied extrinsic

peripheral and local signaling is established. This added to the

complexity of Notch-Hes oscillating activities that drive either

proliferation or differentiation via other oscillating partners, makes

it hard to define a clear role for ER in neurogenesis/gliogenesis (86,

87). Overall, in vitro studies have so far established ERb as a major

modulator of Notch-Hes activity in neural stem cells.

Other studies have linked estradiol to dendritogenesis and

Notch. Estradiol, by the inhibition of Notch signaling, increases

the expression of the proneural gene neurogenin 3, and regulates

neuritogenesis in developing hippocampal neurons; a mechanism

that involves, at least partially, GPER (51). Collectively, data point

to a major role of estradiol in mediating several aspects of neural

development by modulating Notch signaling, and involving

classical ERs, as well as GPER.
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With regard to estrogen receptor activity in zebrafish, it has

been shown that Esr are fully functional during development. esrb2
is shown to regulate the development of sensory hair cells within

neuromasts, part of the lateral line organ that mediates directional

water movements, prey capture and predator avoidance. The

number of sensory hair cells was significantly reduced in esrb2
morphants, while supporting cells were present. It is important to

note that lateral inhibition is the main mechanism driving zebrafish

neuromast differentiation, by imposing a binary fate between hair

and supporting cells. Nascent hair cells, expressing Delta protein,

inhibit their neighboring cells from adopting hair cell fate, forcing

them to become supporting cells; notch1a and notch3 appear to be

upregulated in esrb2 morphants. Two of notch ligands, deltaA and

deltaB were also upregulated, a mechanism that might explain, at

least partially, the suppression of hair cell differentiation (88). On

the other hand, it has been shown that esr1 is required for cell

migration within zebrafish posterior lateral line primordium, by

repressing chemokine receptor CXCR4 (89). Whether CXCR4 and

Notch interact in this particular context is still to be investigated.

Moreover, it would be interesting to assess whether this defect is

observed in esr1-/- mutants.

While in vitro studies in rodents established a strong link

between ERb and Notch signaling, there remain many open

questions: Do ERs contribute to generating the cell diversity

within the nervous system of zebrafish? Do they interact with

Notch signaling in vivo?
Estrogen receptors and
oligodendrogenesis

Estrogen receptors are expressed in both OPCs and

oligodendrocytes (OLs), in vitro and in vivo, suggesting that

estrogen signaling may play a role in regulating the proliferation,

differentiation, and survival of these cells. Indeed, studies have

shown that estrogen treatment can increase the number of

oligodendrocytes and myelin production, in vitro and in vivo

(90). In particular, estrogen receptors have been shown to play a

role in promoting the differentiation of OPCs into mature

oligodendrocytes. Estradiol–ER axis was found to activate the

pAkt/mTOR pathway in oligodendrocytes, a pathway known to

regulate and promote oligodendrocyte differentiation (72). Studies

have suggested that ERa signaling may be particularly important

for promoting oligodendrocyte differentiation, while ERb signaling

may be more involved in promoting oligodendrocyte survival and

myelin maintenance.

Additionally, well-established animal models of demyelination

have shown a prominent role of these nuclear hormone receptors in

myelination, by promoting oligodendrocyte maturation and

development. It has been suggested that estrogen signaling may

have a protective effect on myelin and oligodendrocytes in various

condit ions that involve demyelination or damage to

oligodendrocytes, such as multiple sclerosis. Studies have shown

that estrogen treatment can improve myelin repair and reduce
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inflammation and demyelination in animal models of multiple

sclerosis. Mice lacking ERb in oligodendrocytes are more prone

to myelin damage than WT mice in the experimental autoimmune

encephalitis model of multiple sclerosis (91). Nevertheless, it was

found that ERs are not necessary for SERMs to exhibit their potent

effects on OPC differentiation and remyelination in vivo (92).

Comparative analysis of the transcriptome in the cortex of ERb
knockout male mice (BERKO) and wild type (WT), revealed

upregulation of myelin genes in BERKO mice. Qualitative

analysis further demonstrated disrupted layering in the motor

cortex of BERKO mice, as evidenced by staining for myelin basic

protein (MBP). Transmission electron microscopy (TEM)

confirmed a significant increase in axonal myelination thickness

in the KO cortex, which was surprising. However, it is possible that

loss of ERb promotes oligodendrogliogenesis, but impairs OL

functionality (93). Interestingly, microarray data revealed a

significant upregulation of oligodendrocyte-specific factors,

including Omg (oligodendrocyte-myelin glycoprotein), and the

oligodendrocyte fate-specific transcription factor Olig2

(oligodendrocyte transcription factor 2), in BERKO cultures.

Overall, findings suggest that loss of ERb may enhance

oligodendrocyte differentiation and proliferation, possibly through

the dysregulation of oligodendrocyte-specific genes (66). Whether

ERs have distinct functions during the different stages of OL

development, in vivo, remains to be clarified.

GPER is expressed in oligodendrocytes within the rat spinal

cord and corpus callosum (94). It is also detected throughout the

different stages of oligodendrocyte differentiation and

promyelinating stages in primary oligodendrocyte cultures. Thus,

GPER may play a role in oligodendrocyte development, a function

that is yet to be studied.
Estrogen receptors and
neurodevelopmental activity

A recent example of the role of estrogens in the development of

zebrafish nervous system comes from Charles Tyler’s lab. In this

nicely executed work, authors reveal a new function of estrogens

during early brain development. They identify novel estrogen

responsive cells, EROB, that play an important role in the

development and function of the olfactory sensory system, at least

by modulating the intrinsic neuronal activity in the olfactory bulb of

developing zebrafish (95). Although, a precise mechanism of

estrogen activity within this newly identified glia is still missing,

this work identifies a fundamental role of estrogens in the

development of the olfactory sensory system. Interestingly,

alteration in estrogen activity has also been linked to several

neurodevelopmental disorders (96), and estrogenic compounds

were able to rescue the nighttime hyperactivity phenotype

observed in zebrafish mutant embryos of contactin associated

protein-like 2 (cntnap2), an autism-related gene (97). This result

might be relevant to understanding the significantly high prevalence

of Autism Spectrum Disorder (ASD) in Preterm Infants (98).
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Indeed, the human fetus is exposed to different levels of estrogens

that reach their highest peak during the third trimester, a period

characterized with maturation and rapid growth of the brain (99). It

is possible that this high prevalence of ASD is related to the reduced

hormonal activity, including from estrogens, that preterm infants

experience during their development. Studies have shown that

increased high risk of ASD is directly linked to loss of placental

hormones, particularly in males (100). Even though zebrafish

development is substantially different to mammals, notably in the

absence of a placenta, it is quite remarkable to observe such a

conserved link between hormones, such as estrogens, and autism

being established during embryogenesis.

Overall, these studies identify estrogens as modifiers of

developmental neural circuits with profound impact on adult

behavior. The question remains whether these estrogen related

activities signal through ERs.
Concluding remarks

Neural development describes the process by which neural

progenitor cells proliferate, self-renew and generate differentiated
Frontiers in Endocrinology 07
cel l types in the nervous system, including neurons,

oligodendrocytes and astrocytes in a timely manner. Although a

wealth of studies provides evidence of a direct role for estrogens in

this process, we are just starting to understand the underlying

molecular and cellular mechanisms, and the role of different ERs in

generating the diversity of neuron/glial cells. Zebrafish offers a

unique opportunity to study embryological decisions including

neural lineage, the timing of maturation (cells acquiring a certain

fate), and the molecular mechanisms of fate decisions. in vivo live

imaging makes it possible to track individual cells as they divide and

differentiate, as well as analyze symmetric and asymmetric divisions

that generate differentiating neurons and glial lineages, while

renewing the population of progenitor cells. This imaging

capability, combined with recently available ER mutants and

transgenics that mirror gene expression in vivo (e.g. oligos,

astrocytes, ERE activity, aromatase activity, notch sensors…)

(Table 2), will allow us to dissect the role of the different ERs in

embryonic neural development and circuit formation. Furthermore,

zebrafish mutants will be helpful to address the possible redundancy

between the different nuclear and membranous ERs in neural

development, an important feature of ER activity that is yet to be

tested in vivo.
TABLE 2 Available Transgenics/Mutants and Tools to study ERs in zebrafish.

Transgenic/Mutant Lines/Tools Citation

gper-/- (101)

esr1-/- (47)

esr2a-/- (47)

esr2b-/- (47)

gper-/- (47)

cyp19a1a-/- (102, 103)

cyp19a1b-/- (103)

Tg(cyp19a1b:GFP) (84)

TgBAC(cyp19a1a:EGFP) (102)

Tg(3ERE-Gal4ff) (104)

Tg(5xERE : GFP) (105)

esr1 MO (5’GGAAGGTTCCTCCAGGGCTTCTCTC3’) (89)

esr1 MO(CATGTAAAACAGGCTGGTCACCTTG) (106)

esr2a MO (AGAGAGTCTTACCTTGTATACTC) (106)

esr2b MO (TTGACCATGAGCATTACCTTGAATG) (106)

gper MO1 (5’TCACATTGGTAGTCTGCTCCTCCAT3’) (48)

gper MO2 (5’AGGTGCTACATACTTCATCTGTGTC3’) (48)
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