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A comprehensive review was conducted to compile the contributions of Mary B.

Dratman and studies by other researchers in the field of nongenomic actions of

thyroid hormones in adult mammalian brain. Dratman and her collaborators

authored roughly half of the papers in this area. It has been almost fifty years

since Dratman introduced the novel concept of thyroid hormones as

neurotransmitters for the first time. The characterization of unique brain-

region specific accumulation of thyroid hormones within the nerve terminals

in adult mammals was a remarkable contribution by Dratman. It suggested a

neurotransmitter- or neuromodulator-like role of thyroid hormone and/or its

derivative, 3-iodothyronamine within adrenergic systems in adult mammalian

brain. Several studies by other researchers using synaptosomes as a model

system, have contributed to the concept of direct nongenomic actions of

thyroid hormones at synaptic regions by establishing that thyroid hormones or

their derivatives can bind to synaptosomal membranes, alter membrane

functions including enzymatic activities and ion transport, elicit Ca2+/NO-

dependent signaling pathways and induce substrate-protein phosphorylation.

Such findings can help to explain the physiological and pathophysiological roles

of thyroid hormone in psychobehavioral control in adult mammalian brain.

However, the exact mode of nongenomic actions of thyroid hormones at

nerve terminals in adult mammalian brain awaits further study.
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1 Introduction

Three centuries after the initial anatomical description of the

thyroid gland (1), L-triiodothyronine (T3) was recognized as the

active form of thyroid hormones (THs) (2). Subsequent studies

have continued to unveil the functional roles of TH. The

identification of nuclear TH receptors (nTR), and the elucidation

of their transcriptional properties (3) unlocked new vistas for TH

research in most tissues. The cloning of nTR and its isoforms (4)

further strengthened the knowledge of the molecular foundations of

TH endocrinology in peripheral tissues. However, little evidence of

TH-induced transcriptional activity was detected in adult

mammalian brain (5). Hence, the mature mammalian central

nervous system (CNS) was identified as an unresponsive tissue to

TH. Meanwhile, researchers acknowledged the relationship

between adult-onset thyroid dysfunction and various neurological

and psychological anomalies in adult humans. Two major isoforms

of nTR (nTRa, nTRb) were demonstrated in adult mammalian

brain. Still, the transcriptional mechanism of TH action could not

explain the behavioral sensitivity to TH in the adult mammalian

brain (6).

A parallel group of researchers including Dr. Mary B. Dratman,

turned their thoughts in a different direction. THs are synthesized

from the amino acid tyrosine, the known precursor to

catecholamines. The final synthesis of catecholamines occurs by

decarboxylation and other modification reactions (7). The

structural chemistry implied that T4 and T3 also could be

decarboxylated in a similar way, resulting in tetraiodothyronamine

(T4AM) or 3,3’,5’-triiodothyronamine (T3AM) and derivatives.

These amines might exert aminergic actions like classical

catecholamines. The hypothesis that aminergic TH derivatives

could have neurotransmitter-like functions was proposed (6, 8). To

examine this hypothesis, the differential localization of THs within

the mammalian CNS was examined. Distinct brain regional

distributions of radioactivity were observed following

administration of radiolabeled THs (9). The finding of radiolabeled

THs in synaptosomes, a nerve ending preparation without cell nuclei,

indicated a potential action at the synapse. The concept gradually

evolved for a role of TH derivatives in having neurotransmitter-like

actions. This idea suggested that TH derivatives might have

nongenomic effects in brain, like other neurotransmitters do.

Although genomic pathways for TH action in adult brain are now

known (10–12), Dratman’s research was fundamental in identifying

the predominantly noncanonical actions of THs in mature

mammalian CNS (13–15).

The objective of the present paper is to perform a

comprehensive review of the research contribution by Dratman

and studies by other researchers to explore nongenomic mechanism

of action of THs in adult mammalian brain.
2 Methods of comprehensive review

We have executed a comprehensive review to find literature

related to the nongenomic actions of TH at nerve terminals in adult
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mammalian brain. The literature search was conducted using the

following key words: ‘adult’, ‘mammalian’, ‘brain’, ‘synapse’, ‘nerve

terminal’ , ‘synaptosome ’ , ‘thyroid hormone ’ , ‘T3 ’ , ‘T4 ’ ,

‘triiodothyronine’, and ‘tetraiodothyronine’ with different

combinations, using a ‘Pubmed’ search. Subsequent manual

curation of the articles included criteria such as articles in

‘English language’ and articles focusing only on synaptic regions

of adult brain.

A similar search was conducted using above-mentioned

keywords with ‘Dratman MB’ as an additional keyword. Out of a

total 345 articles (including duplicates), 58 articles were selected for

the present study. Of these, 26 articles were published by Dratman

et al. Notably, 32 articles (other than publications of Dratman et al.)

were found to be related to TH action on synaptosomes. The

selected 58 articles were categorized based on the topics of

interest. The chronological development of the concepts by

Dratman et al. and separate studies by other researchers is

presented graphically in Figure 1.
3 Nongenomic actions of TH in adult
mammalian brain

A major contribution of Dratman and her collaborators is the

notion that THs have actions in mature mammalian CNS by

noncanonical mechanisms. The effects of THs to bind to nuclear

receptors, which in turn interact with DNA to regulate gene

expression, are not as prominent in mature mammalian brain as

in developing brain (3, 5, 6).
3.1 Summary of findings of the
comprehensive review

In the comprehensive review, we have focused on the details of

the contributions of (a) ‘Dratman et al. (levels 1 to 9 on the right-

hand Y-axis) and (b) separate studies by other investigators (levels

10 to 19 on the right-hand Y-axis) in the field of nongenomic action

TH in adult mammalian brain (see Figure 1).

The research publications by Dratman were categorized into

nine different types of findings (levels 1-9 on the right-hand Y-

axis);. Her publications included concepts of the brain TH

homeostatic mechanism (i.e., the maintenance of the T3/T4 levels

in nerve terminals in level 9 and brain tissues (levels 6-8) under

different experimental conditions). Additional Dratman

publications (level 5) included the transport of TH to brain, the

role of T3 and/or its derivative 3-iodothyroamine (3-T1AM) within

adrenergic systems, the sympathomimetic actions of TH, the

behavioral impact of TH and the direct nongenomic action of T3

on neuronal activation. Notably, all contributions of Dratman et al.

include research outputs through in vivo experiments with findings

of T3/T4 and their metabolites in brain tissues, nerve terminals and

isolated synaptosomes.

The research publications by other workers under levels 10-19

(Figure 1; right-hand Y-axis) include both in vivo (levels 10-12) and
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in vitro experiments to find the thyroid status and effects of T3/T4

on synaptosomes isolated from adult rodent brain.

The research publications concerning drug administration to

rodents included blockers of synaptosomal norepinephrine (NE)

transport (level 12) or neurotoxins for the locus coeruleus (origin of

adrenergic nerve cells in brain) described by Dratman et al. (level 6).

Additional studies, by other researchers, employed antidepressant

drugs (level 12).

3.1.1 Contributions of Dratman
Level 1-9 (Figure 1) demonstrates a summary of contributions of

Dratman regarding development of the concepts of nongenomic action

of TH in adult mammalian brain. These studies are summarized below

(Figure 2). She provided insights into TH actions including (a) the adult

brain responsiveness to TH, nullifying the earlier concept of non-

responsiveness of adult brain to TH, (b) the maintenance of adult

brain TH levels by deiodinase systems, and (c) iodothyronine production

as catecholamine analogs and their possible action in brain, particularly

in the case of thyroidal illness (16). Based on the experimental evidence

since the 1970s (Figure 1), Dratman proposed the concept of

nongenomic action of TH in adult brain [i.e., the sympathomimetic

activity of “iodothyronine-derived neurohormones” in brain (17).

Dratman identified, for the first time, the in vivo accumulation of

radiolabeled T4/T3 at nerve terminals using synaptosomes isolated

from adult rat brains after intravenous injections of T3/T4 (Figure 2)

(6, 18–20). Additionally, her group reported that T4/T3 might act

peripherally in the salivary gland (21) and centrally in autonomic

nervous system for regulation of blood pressure (20) and heart rate (22).

Behavioral studies showed that TH might influence the

circadian rhythm of temperature regulation (23) and have an

impact on affective disorders (24) related to thyroidal dysfunctions.
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Dratman extended her studies with findings of the in vivo

localization of radiolabeled T4/T3 in different regions of adult rat

brain (a) after injection of TH (6, 9, 19, 20, 25–31), (b) during

altered thyroidal states (20, 32–37) and (c) after pharmacologically

altered adrenergic systems in brain during euthyroid (6, 28, 34–36)

and altered thyroid conditions (6, 34–37). The pharmacological

interventions in their studies were induced by adrenergic uptake

inhibitors such as desmethylimipramine (35–37) and reserpine

(28), and the neurotoxic agent [N-(2-chloroethyl)-N-2-

bromobenzylamine hydrochloride (DSP-4)] selective for

adrenergic neurons in the locus coeruleus (6, 34). Notably, this

series of reports supported the concept of accumulation of T3 in

different regions of adult mammalian brain and its action as

neurotransmitter and/or co-transmitter with adrenergic

systems (Figure 2).

Dratman further examined brain homeostatic mechanisms to

maintain the T3/T4 levels at nerve terminals under altered

conditions (9, 33, 35, 37). Finally, she proposed the possibilities of

postsynaptic action of THs or derivatives after their release from

adrenergic nerve terminals (34, 38). In addition, her group reported

that T3 can induce nongenomic action on neuronal activation of

hippocampal cells, one of the target regions of adrenergic system in

adult rat brain (14). Such findings help to explain the physiological

or pathophysiological influences of TH in psychobehavioral control

in adult mammalian brain.

3.1.2 Works of other researchers
Separate in vivo and in vitro studies have been executed by other

investigators using synaptosomes isolated from adult rodent brains,

to find the exact mechanism of nongenomic action(s) of T3 at nerve

terminals (see Figure 1: levels 10-19, Figure 2). These studies
FIGURE 1

A chronological view of literature addressing the conceptual development of the nongenomic action of TH in adult mammalian brain. The graph
represents the year-wise (X-axis) publications of the research articles (hollow dots) with development of the concepts (Y-axis, right-hand). The
numbers close to the dots correspond to the reference numbers listed in the review. All publications have been curated through the comprehensive
review of literature in Pubmed searches. The text (Y-axis, right-hand) represents the categories (19 levels) of experimental results found in the
publications. For example, the experimental results at level-9 (Y-axis; right-hand) indicate the publications in support of the concept originated and
developed by ‘Dratman MB’ concerning T3/T4 levels in synaptosomes isolated from rat brain after radiolabeled TH injection to the animals. The
contributions of other findings of ‘Dratman MB’ in support of various concepts are as mentioned in level-1 to level-8 (Y-axis, right-hand). The
research publications by others relate only to synaptosomal studies for both in vivo and in vitro experiments as mentioned from level-10 to level-19
(Y-axis, right-hand). Some research articles include more than one level of concept.
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described several nongenomic actions exerted by TH, including

protein phosphorylation, calcium-flux, NOS activity, putative

membrane receptor binding, uptake and release of THs.

Synaptosomes isolated from the whole brains of adult rats show

deiodinase activities for conversion of T4 to rT3 and T3 to 3,3’T2 or

3’,5’T2 (39). T4 and T3 have been estimated in synaptosomes

isolated from 11 different regions of adult rat brain (40). The

adult rat brain shows thyroid homeostatic mechanisms at nerve

terminals by increasing synaptosomal T4 and T3 levels (41, 42)

during altered thyroidal conditions, particularly at initial stages of

the altered conditions (43). Anti-depressant treatments alter T3

levels in synaptosomes isolated from frontal cortex (44), amygdala

(45) and cortical areas (46) of adult rat brains. Therefore, these in

vivo studies using isolated synaptosomes under different

experimental conditions indicate that nerve terminals of adult

mammalian brain have a capacity to maintain their T4/T3 levels

for a certain extent of conditions.

In adult rat brain synaptosomal fractions, a Na+-dependent

carrier-mediated uptake for T3 was demonstrated that involved

both high-affinity and low-affinity transport systems. T4 was

transported by a concentration-dependent but Na+-independent

manner (47). One study showed that cortical synaptosomes can

release T3, but not T4, under depolarized conditions through a Ca2

+-dependent process, thus supporting the concept that T3 can act as

a neurotransmitter (48). Still, additional research is needed to

confirm this point. Furthermore, T3 enhances Ca2+-dependent

release of GABA under depolarizing conditions (49). T3 enhances

Na+-dependent tryptophan transport (50) and inhibits leucine (51,

52) or GABA (53) uptakes in synaptosomes. These in vitro studies

show that T3 is transported at nerve terminals and/or alters the ion-

dependent transport of amino acids and amino acid derivatives as
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rapid nongenomic actions of T3 at nerve terminals of adult

mammalian brain.

T3 shows high-affinity binding to synaptosomal membranes

(54–56) isolated from adult rat brain cerebral cortex. T3 inhibits

Na+/K+-ATPase activity in cerebrocortical synaptosomal

membranes (56) and thus can modulate the neuronal

depolarization in adult rat brain (57, 58). T3 inhibits membrane

bound ectonucleotidase in synaptosomes isolated from

hippocampus of adult rat brain and modulates ATP hydrolyses

(59). These studies indicate that T3 can act in a nongenomic fashion

to minimize the ATP loss at the synaptic level. T3 stimulates the

activities of Ca2+/Mg2+-ATPase (60) and acetylcholinesterase (61)

in cerebrocortical synaptosomes. Hence, T3 may have a role in

calcium homeostasis and the modulation of cholinergic

neurotransmission in adult brain. T3 inhibits glutamate-induced

Ca2+-uptake in synaptosomes isolated from mouse whole brain

(62). Furthermore, T3 enhances depolarization-induced

Ca2+-uptake (63) in synaptosomes isolated from rat cerebral

cortex and causes a transient rise in intrasynaptosomal

Ca2+-calcium levels (64) which indicates the nongenomic action

of T3 on the Ca2+-dependent neurotransmission process. Altered

thyroidal conditions also mobilize the synaptosomal Ca2+-level

(65). Interestingly, the transient rise of intrasynaptosomal

Ca2+-was found to be associated with synaptosomal nitric oxide

synthase activation (64). This indicates that T3 can act through a

nongenomic Ca2+-calcium-dependent nitric oxide (NO) signaling

pathway at synapt ic reg ions and thereby modula te

neurotransmission. In addition, a series of in vitro experiments

demonstrated the T3-induced Ca2+- and calmodulin-dependent

synaptosomal protein phosphorylation (66–68) that underlies

nongenomic cellular signaling pathway (Figure 2).
A

B

FIGURE 2

Schematic presentation of nongenomic actions of THs in neurons of adult mammalian brain. (A) Anterograde transport of T3 in adrenergic neurons
at LC and accumulation of T3 in terminal target sites after T3 microinjection in the LC. The concept has been adopted from Dratman’s published
research (Figure 1: level 4). (B) Synaptosomal actions of T3 in in vivo and in vitro experiments. The accumulation of T3 in synaptosomes (#1) was
reported by Dratman (Figure 1, level 9). All facts (#1-8) are reported by other researchers (Figure 1, levels 10-19). v, vesicle; fv, fused vesicle.
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3.2 Implications of Dratman’s work on
nongenomic action

Dratman’s work provided a variety of types of support for her

idea that THs have nongenomic actions and have distinct signaling

roles (6, 14, 18–20, 25, 34) in mature CNS.

3.2.1 Implications of localization in
nerve terminals

As mentioned in section 3.1.1, much of Dratman’s research

investigated the anatomical and subcellular localization of

radioactivity in adult rodent brain following injections of labeled

THs (8,9,19, 20,25-31). Electron microscopic studies showed

accumulation of radiolabeled THs in neuropil, especially in nerve

terminal regions (9, 20, 28). In addition, subcellular fractionation by

differential centrifugation of homogenates of brain showed that the

radiolabeled THs were concentrated in synaptosomes (6, 18–20).

The subcellular localization of THs points to the potential role

of the compounds at the synapse. Dratman therefore espoused the

hypothesis that THs (or their derivatives) might have

neurotransmitter-like actions. The localization in nerve terminals

readies the compounds for release into the synaptic cleft, where they

might have influences on postsynaptic or presynaptic receptors.

Thus, the THs are optimally positioned to participate in a synaptic

signaling role.

3.2.2 Implications of axonal transport
Thaw-mount autoradiography indicated that following

intravenous (IV) administration of 125I-T3, radioactivity

corresponding to T3 (80%) or other iodinated organic

compounds (15%) accumulated in discrete brain regions. At 10

hours post-injection, the radiolabel shifted to fiber tracts, implying

that it is transported along axons (25). Additional studies showed

that IP administration of the DSP-4, toxin specific to adrenergic

neurons in locus coeruleus (LC), reduced the distribution of T3

immunohistochemistry in specific sites in the forebrain, the target

site of the adrenergic neurons originated from LC (34). These data

suggest that DSP-4 disrupted the transport of T3 throughout the

brain and indicate that the transport is orthograde. Since

orthograde axonal transport requires energy (69), such transport

of T3 may indicate the importance of the hormone for actions at the

nerve terminal, in keeping with a signaling function at the synapse.

3.2.3 Implications of localizations of THs
in brain areas

The concentration of radioactivity in discrete brain regions

following administration of radiolabeled THs suggests that the

actions of the hormones or their derivatives are specific to

particular brain functions under particular circumstances in adult

mammalian brain. These actions could be either nongenomic

or genomic.

3.2.3.1 Implications of locus coeruleus in actions of TH

As mentioned in 3.2.2, injections of LC-specific toxin DSP-4

depleted the T3 immunoreactivity in the LC and in noradrenergic
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projection sites throughout the brain (34). LC cell bodies are

thought to be noradrenergic, since a lesion of the LC depletes

most of the NE throughout the contralateral forebrain (70). As a

result of these findings, Dratman hypothesized that T3 in brain is a

co-transmitter with NE (34).

After the discovery of iodothyronamines in brain (71), Dratman

and her colleagues made a comprehensive study of 3-T1AM in the

LC (38). Microinfusion of 3-T1AM into the LC dose-dependently

increased neuronal firing rates in 62% of the responsive neurons. IV

injection of radiolabeled 3-T1AM resulted in radiolabeling over

discreet brain areas, including LC, cortical areas and mammillary

bodies. Since 3-T1AM has actions which generally oppose the

effects of THs, it may be concluded that the 3-T1AM-induced

increases in cell firing in the LC have negative feedback activities to

regulate output of the LC.

3.2.3.2 Implications of the role of the hippocampus
in TH actions

The series of in vivo studies by Dratman et al. indicates that T3

is strongly accumulated in the hippocampal formation (6, 9, 20, 25,

26, 28–31, 34), particularly in pyramidal cells (26) at the cornu

ammonis (CA1 and CA3) and in the granular layer of the dentate

gyrus (20, 25) with pericellular neuropil in dentate gyrus (20). As

described above (section 3.2.3.1), the experimental evidence

accumulated by Dratman et al. indicates that TH interacts with

adrenergic neurons originating from the LC and modulates

adrenergic neurotransmission at their target sites. The LC

provides noradrenergic neuronal connections to hippocampal

glutamatergic pyramidal cells, to GABAergic interneurons in the

CA1-CA3 connections and to glutamatergic granular cells in the

dentate gyrus of the hippocampus (72).

Dratman et al. (14) conducted electrophysiological experiments

with adult rats using microelectrodes inserted in (a) the dentate gyrus

in vivo and (b) in CA1 of hippocampal slices isolated from adult rat

brain during in vitro experiments. The electrophysiological recordings

were analyzed to find the changes in (a) population spikes and

excitatory postsynaptic potentials (EPSPs) in vivo and (b) cellular

firings generated by the pyramidal cell layer in vitro. Euthyroid and

hypothyroid animals were used for both experimental conditions. The

effects of T4 microinjections were analyzed with the in vivo

experiments. The effects of T4 and T3 microinjections on prior and

post applications of NE were investigated during the in vitro

experiments. These experimental findings showed that T4 and T3

had opposite effects, as described below.

(a) T4 inhibited field potentials in vivo, with pronounced effects

in the hypothyroid condition and suppressed the stimulatory

response of NE in vitro on the cellular firings.

(b) T3 enhanced the stimulatory response of NE in vitro on the

cellular firings.

(c) T4, T3 and NE were without effect in vitro on the cellular

firings during hypothyroid preparations.

Based on these results, Dratman et al. (14) concluded that the

cellular forms of THs might be the key factors for rapid

nongenomic action of TH on the neuronal excitability in the

hippocampus. Such a nongenomic action of TH might involve
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the adrenergic system. The adrenergic system appeared to be very

low or absent in hypothyroidism due to a reduction of adrenergic

activity during the hypothyroid condition.

The hippocampus has a widely accepted role in the mechanisms

of learning and memory (73). The effects of hypothyroidism include

an inhibitory influence on learning and memory (74–76). These

findings imply that the hippocampus is an important target tissue

for effects of THs on learning and memory. The almost

instantaneous electrophysiological effects of THs strongly support

a nongenomic mechanism.
4 Conclusions

The present review of literature analyses the putative mode of

nongenomic action of TH at nerve terminals of adult mammalian

brain. Roughly half of the studies in this area belong to Dratman et al.

TH appears to function in multiple forms including T3 itself and

other derivatives like rT3 and 3-T1AM depending on the conditions.

The experimental evidence supports the idea that T3 can act as

neurotransmitter and modulate uptake/release of other

neurotransmitters and ions at synaptic regions. T3 can elicit the

nongenomic signalling including calcium-dependent and NO-

mediated pathways in synapses. T3 may act through membrane

binding and/or other non-nuclear receptors, which remain

unidentified. Notably, it is a burning issue whether TH acts

presynaptically and/or postsynaptically at nerve terminals and how

it is associated with long-term potentiation related to memory

formation and cognitive functions. The exact pathophysiological

mechanisms of TH at nerve terminals in adult brain would unveil

a new horizon of neuroscience research concerning better treatment

strategies for cognitive dysfunctions related to dysthyroidism.
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